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So, short recap to begin today’s discussion. So, we were talking about time dependent

Perturbation Theory. So, we have a time dependent perturbation which is likely to cause

transitions of from one state to another maybe from a ground state to an excite state or

vice versa.
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And the Hamiltonian the perturbation Hamiltonian is written as its H prime m k which is

a function of t and then we have a Amk sine omega t that is the perturbation that we have

been talking about. K is the initial state where the system was before the perturbation

was switched on and m is say an excited state or a different state that than compared to K

and we are  going to  talk  about  computing  this  coefficient.  So,  that  is  related  to  the

probability of making a transition for the system to make a transition from an initial state

K to a final state m, we could simply say that it is a final state and if we are resorting to a

first order perturbation theory we will put a one here and the that is going to be the thing

or the quantity to compute and this is what we have found yesterday or rather the last



discussion that we were having that is. So, this is equal to i A m k and 2 h cross and

exponential i t naught omega m k plus omega and minus 1 and omega m k plus omega

and the exponential i t naught omega m k minus omega minus 1 and omega m k minus

omega.

And. So, it consists of 2 terms the first term is called as the absorption term, which we

will see immediately the second term is called as the emission term and we will talk

about these separately. In fact, we are going to concentrate mostly on the second term

which as i said that its related to the emission that is transition from one state to another.

So, let us look at each one of the terms; so, the denominator of the first term. So, one is

first term in RHS that is inside the bracket. So, then the poles of that pole spins were the

denominator becomes 0 that is this is the condition and omega m K as we have said that

it is E m minus E K over h cross plus omega equal to 0. So, that immediately tells us that

E m equal to E K minus h cross omega which means that E m is less than E K and. So, E

K is the initial state or the unperturbed level before the perturbation was switched on. So,

what it means is that the H prime m K which is of course, related to the A m K and so, on

it carries away energy and so, its related to the absorption. So, the field is absorbing

energy from the system. So, that is why its called as a absorption term and let us look at

the second term.
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And that term is of course, with a negative sign it is a minus i Am k by 2 h cross and I

have an exponential i t naught omega m k minus omega minus 1 divided by omega m k

minus  omega  and  so,  on  we  can  write  this  we  can  simplify  this  we  can  write  the

numerator as a sign by taking exponential i t naught by 2 omega m k minus omega out.

So, that gives this one the second term with one exponential minus i t naught omega m k

minus omega by 2.

So, if we do that simplification then we will and that way we can get rid off this i as well

because the sign in terms of the exponential comes with a definition which has a 2 i in

the denominator, and once we do all that which i leave it to you its a simple step to

complete. So, this is h cross and we will keep a i t naught by 2 omega m k minus omega

and. So, this is exponential. So, this becomes really a sin. So, its a sin and then there is a

t naught by 2 omega m k minus omega and divided by omega m k minus omega and we

just come back to this term.

 Now look at  the denominator  the denominator  is of course, the denominator  makes

sense when or rather it has a pole, when omega m k equal to omega which means that

Em now is a E m minus E k its equal to h cross omega and that tells us that the E m is

greater than E k which means that the H prime m k or the perturbation term is it pumps

energy into the system, and this is related to emission 

So, now; so, basically we will  more concentrate on this  rather than on the first term

because this term makes a large contribution close to the resonance that is known omega

m k becomes equal to omega, and in any case both terms are equally important let me

just with a diagram let me explain that. So, this is your omega axis and this is omega

equal to 0, now I have plus omega here and a minus omega here. So, these are. So, there

is a plus omega and minus omega. So, there is a a line which are. So, this corresponds to

the emission line or the second term and this corresponds to the absorption and that is the

first term.

Now, of course, these are the spectroscopic lines or these are the lines that will show up

in experiments, and these lines cannot just be a you know very sharp lines which would

of course, and the width of the line would depend on the basically the least count of the

measuring apparatus or the energy range over which it can measure sort of these or rather

these see this line.



So, let me give a little bit of a weight to these lines. So, these will be the spectral lines

that will be seen for each one of them and let us just talk about these things to be delta

omega  and delta  omega here  as  well  and this  distance  or  rather  the  the  2  lines  are

separated by a twice of omega fi which is. So, in this particular case as it the way the

figure is drawn, it is very clear that we need to consider one line at a time in the limit that

your delta omega is much much smaller than omega fi or 2 omega fi.

So, if this condition is satisfied, then only we need to look at one of the lines at a time

and maybe at this moment let us just consider that we are concentrating on the second

term which is the resonance term. The other term is called as the which is in the negative

minus omega so,  that  is  called as the anti-resonant term.  So, they are symmetrically

placed about 0 and at this as I said that we are just going to talk about the resonant term

at this moment. And let us tell this call this quantity let us just write with a different

color. So, let us call this quantity as alpha.
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 And in which case the so, the C m 1 t mod square its equal to A m k by h cross square

and there is a sin square alpha t naught by 2 divided by alpha square.

So, that is the form of this and let us in addition takes beta equal to alpha t 0 by 2. So,

then this thing would be written as Amk by h cross square sin square beta by beta square

and since we have taken a t 0 by 2 whole square common, that had to be multiplied here.

So, we will multiply it. So, t t 0 square by 4 and that will be there ok.



So, this is our form of the transition amplitude, which is related to the probability of

transition from initial state k to a final state m, and this quantity sin square beta by beta

square is  called  as  the sinc  function  and the sinc  function  or  the square of  the  sinc

function sin theta by theta is called as a sinc function. So, this is if we plot it it looks like

that you know the square will never become negative. So, it will look like this resembles

the diffraction pattern that you may have seen in optics is nicely symmetric I might not

have drawn it accurately, but it is it has to be you know I mean a little sort of all right.

So, this is; So, I am plotting a sin. So, this is my C m C m 1 t square and this is as a

function of you know. So, alpha in fact, this is like sine square beta by beta square apart

from these factors or you can take it to be proportional to this. So, this is proportional to

this is actually sin square beta by beta square versus alpha that is being plotted. So, this is

at alpha equal to 0 and this is at 2 pi over t 0, this is at 4 pi over t 0, this is at 3 pi over t 0

and this is at 5 pi over t 0 and so on so, forth all right.

So, this is a plot that we are plotting sin square beta by beta square versus alpha and so,

pi by t 0 corresponds to this entire thing Amk by h cross square t 0 square by pi square t

0 square by 4 and. So, 3 pi by t 0 will corresponds to this entire thing divided by 9 and at

5 pi by t 0 it is. So, at 5 pi by t 0 it is it corresponds to this entire thing divided by 25 and

so, on.

So, if you see this the area under the curve which is of course, related to the probability

of transition, it is proportional to t 0 because the height goes as 1 by t 0 and this alpha is

and then of course, it is a there is a t 0 square that is there and there is a 1 over t 0. So,

this multiplied by 1 over t 0 will give a t 0. So, that is the transition probability and the.

So,  area  under  the  curve  we  will  write  it  here.  So,  area  under  the  curve  transition

probability ok.

So, let me. So, that is the transition probability which goes as of course, as t 0 all right.

So, let us just give a physical picture that what is happening.
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So, you have 2 level system here call this as a phi f which is nothing, but that m by the

index m and this is a phi i and so, this is that term number 1 that is the absorption term or

the anti-resonant term and for the other one it is the phi f and a phi i and so, there is a

particle that makes a transition from phi f to phi i and that is the second term, which is

related to the emission. So, that is the physical picture for these 2 terms and of course,

we are more interested in talking about this the emission term, that we are talked about.

So, of course, the emission term is more important that is we can neglect the absorption

term when as I said earlier that 2 of omega fi we can put it inside a mod sign that is it

does not matter which one is bigger the as the final state energy is a bigger of the initial

state energies are bigger, this has to be much greater than delta omega.

 Now delta omega that is the line width depends on the time duration for which the

perturbation is switched on. And if we simply go by the order of magnitude using a or an

estimation  rather  using  Heisenberg’s  uncertainty  principle,  then  this  can  be  simply

written  as  2  pi  over  t  0.  So,  just  to  remind  you  t  0  is  the  duration  for  which  the

perturbation is switched on ok. So,; that means, that the t 0 has to be much greater than 1

by omega fi which of course, at resonance its equal to 1 over omega which means that

the additional  restriction of neglecting the anti-resonant term is that,  the perturbation

term must  go through several  cycles  in  this  interval  0  to t  0  ok.  So, that  is  the the

additional restriction that we have.



Now, if the t 0 is of the order of 1 over omega, we more we have a situation where the

perturbation is linearly varying with time and in which case it is not possible to neglect

or rather separate out these 2 terms, such that we can concentrate on 1 at the expense of

another. So, we will  take this  to be true that that this  the perturbation term must go

through several cycles. So, it is rapidly oscillating during the time that the perturbation is

switched on all right.

Now, this has been told earlier it could happen that during the course of transition the

particle or the atom goes on to a state, the final state is a part of a continuum which

means that it is not a single well defined state it is a sort of collection of many states and

its a continuum; which forms a continuum by a having many energy levels having very

close  by  values  all  right.  In  which  case  we  cannot  talk  about  a  probability  of  this

transition and rather we should talk about a probability density of transition,  and this

probability  density  should  be  integrated  over  in  order  to  get  the  total  probability,

integrated over all possible energy states that line that you know in that range.

 (Refer Slide Time: 23:00)

So, coupling with states of the continuous spectrum and so, if the final state falls into a

continuum and so, phi f is not well defined. So, the probability density will be given by

phi f and psi t mod square, and this probability density has to be integrated over and how

does it arise? It arises say consider a collision event, in which a particle with an initial

momentum p i which. So, p i which means that the energy E i equal to p i square 2 m we



are talking about a free particle and this particle after the collision gets scattered on to a

final momentum pf.

And now the detector by which it is being captured has an has a finite angular aperture,

and the energy selectivity of the sensitivity may not be perfect, and in which case we talk

about the solid angle of the detector which or other detects this particle and this gives.

So, this going to finite energy sensitivity, the detector measures energies in a solid angle

or momentum rather we talked we should talk about momentum in a solid angle d omega

and that gives. So, basically the final state energy. So, which means that its between

some E f and E f plus d E f is the detection takes place, in which case we will have to

actually count the number of states which falls into that continuum of states between E f

and Ef plus dEf and so, the probability P of say phi f t it should be sum over all these

final states and then it is a phi f psi t and square.

(Refer Slide Time: 27:20)

Now this sum over f that is the energy states that line that range Ef to Ef plus dEf is

nothing, but the density of states corresponding to that final state energy, hence this p of

phi f and t has to be integrated over and one gets a phi f and psi t mod square and rho

epsilon d epsilon, and this is the final result for that probability for system to make a

transition  from  an  initial  state  to  a  final  state  in  presence  of  a  time  dependent

perturbation.



So, we now equipped to talk about the Fermis golden rule and let us see what it means in

the present context that is including this density of states for the final states and so, on.
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So, let us. So, let us take again a sinusoidal perturbation of the form that we had taken.

So, we have taken this H prime to be or rather H prime m k to be equal to a mk sin

omega t that is what we have been discussing 

And now we let us call it as a P fi t just the same thing as what we have written as the

transition probability its nothing, but Amk a mk is in general Hermitian; so, which means

Amk equal to a km star and so, on. So, this divided by h cross square and a sin square

beta by beta square and at t 0 square by 4 and beta equal to omega f minus omega i

divided by 2 into t. So, it is alpha into t and hence this is what we need to calculate and

then we if you wish. So, this is that P fi t now this P final state phi f r t is equal to 1 by h

cross square d epsilon rho epsilon and phi f H prime phi i square and a sin square beta by

beta square which is just again writing this Amk, where just try to connect that m is equal

to the final state and k equal to the initial state ok. So, this is implicit here and now we

have to perform this integral.

 Now in order to perform this integral it could be quite complicated because there are. In

fact, 3 terms which all depend upon the energy, that is the term which is shear the term

which is the density of states, which depends upon energy which is usually a smooth

function in most of the cases that we are accepting in some pathological cases where this



density of states show a divergence close to some bandage or some such thing this is the

matrix element square and this is that sin square beta by beta square of the sinc square

function that we have obtained because of the time dependent perturbation 

Now, it is not too difficult to understand that both these quantities are somewhat slowly

varying quantities. The only quantity that varies very rapidly for the resonant term we are

talking about the just the resonant term is this quantity that is the sin square beta by beta

square. And this sin square beta by beta square if we just go on to see your the plot that

we have drawn earlier is this. So, if you see this you see the major contribution of this

probability density would come from this central  peak and the auxiliary peaks are of

course, there but they are you know by down by a factor of 9 or down by a factor of 25.

So, they are not as important as this and because of this close to resonance, we can sort

of replace it by a delta function with the width which is very small and that width of

course, we will talk about that width.

But the fact that the sin square beta by beta square can be replaced by your you know by

a delta function, that one has to be convinced about first and this is what i am trying to

impress upon, that in this particular this term or this integral that we are talking about the

one that is most important is the sin square beta by beta square.

So,  if  we  are  trying  to  replace  it  by  a  delta  function  c  what  are  the  conditions

corresponding to that. So, let us take this limit t tending to infinity sin square beta by beta

square is nothing, but a delta function up to a constant factor, which is E minus Ef i or

we can simply write it as a epsilon minus which is a general energy and this is 2 pi h

cross t delta of Ef i minus E. So, this is just like that limit epsilon tending to 0 sin square

x over epsilon divided by x over epsilon is can be replaced by a 4 pi by epsilon delta of x

and just you try to connect that x by epsilon is equal to alpha t by 2 in our case where x is

equal to alpha and epsilon equal to 2 over t ok.

So, the main or the summary of this discussion is that, that we are going to replace this

sin square beta by beta square by delta function which is the singularly most I mean

rapidly varying function, the other functions are somewhat slow varying and can nearly

be taken as constant in the vicinity of resonance ok. And this delta function has got a

width which is given by 2 pi h cross over t and so, in this width we are going to talk

about the density of states in that energy width how many energy states are there, that



need  to  be  incorporated  in  calculating  the  transition  probability.  So,  that  is  actually

encoded into our rho epsilon d epsilon.
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So,  let  us  just  introduce  that  we  are  in  interested  in  talking  about  the  transition

probability per unit time which is equal to 1 by t 0 and then we have a C k t mod square

let us just write C m because this is what you are C m t square and if we are talking about

the  first  order  perturbation  theory  we  will  have  a  one  on  in  the  here  and  then  its

integrated over all final states and of course, these m lies in to in the continuum.

So, we will introduce as we have said that we will introduce density of states, we can

write it as a rho m which is between epsilon m and epsilon m plus dE m ok. So, w will be

1 over t 0 d E m rho m c m mod square now the dE m equal to d of epsilon k or rather

epsilon m minus epsilon k minus h cross omega this is as we said that is for the resonant

term and this is equal to d of omega k m minus omega h cross and this is e equal to d of

omega k m minus omega and multiplied by a t naught by 2 just to make it look like a

beta that we have introduced and there is a 2 h cross by t 0. So, this is equal to a 2 h cross

by t 0 tb d beta.

So, the transition probability per unit time becomes equal to 2 pi by t naught and d beta

rho m or we can I mean instead of writing it as rho. So, we can write it as rho epsilon m

and a km mod square Amk and A k m are same as I said that they are mostly Hermitian.

So,  its  sin  square  beta  by  beta  square.  So,  this  is  much  slow  varying  function  as



compared to this this is a fast varying function. So, this is what it is. So, these are the

transition probability per unit time and then of course, we can write this down as.
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So, this W is equal to 1 over 2 h cross we take this thing out and take its average value

since this is a much slowly varying function as compared to the second one then we take

this and take an average value of these 2 terms and take them out, and let us write them

as rho epsilon m and A km square and a minus infinity to plus infinity that is sin square

beta by beta square and there is of course, a d beta. 

Now, this  has a value this  integral  has a value that  value is  equal  to pi ok.  So, this

becomes simply equal to pi over 2 h cross and this rho now I can I can also split this 2

terms and so, this is A km mod square by 2. So, the average value of this matrix element

can be written as a half of the; of these A km square and. So, this is equal to simply equal

to. So, if we write it in words, its equal to the transition probability per unit time is

proportional to the density average density of states average density of states we write it

with a dos. So, Dos means Dos is for density of states for the final continuum of states.

So, its average density of states a multiplied by the square of the matrix element of the

perturbation term between initial and final states ok.

So, write it with this thing and let me just box it once again this is called as a Fermi’s

golden rule all right. So, this is the Fermi’s golden rule and its applicable to a variety of

situations especially say, the ionization of the hydrogen atom in the ground state. So,



when hydrogen atom or the electron in the hydrogen atom is in the ground state, and if it

is somehow given an energy which is equal to 13.6 electron volts, that is the magnitude

of the perturbation of the time independent  part  of the perturbation there is a matrix

element Amk, if that is of that order 13.6 electron volt and then this electron will be

ejected  or  this  hydrogen  ion  will  be  ionized,  and  this  electron  will  go  on  to  final

continuum of states and the final those density of states of those final continuum of states

will have to be taken into account in order to calculate the transition probability by unit

time and it has also to be multiplied by the average density of states of those final states 

So, instead of doing that which is ionization of hydrogen atom let us give a short in

introduction to the lasers or which is a part  of a big or rather discussion called as a

interaction of radiation with matter, we will not do that very rigorously, but we will just

introduce the a b coefficients and we will tell you that how to calculate these coefficients

Einsteins A, B coefficients ok
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So, let us again define a 2 level system this is called level one and this is called level 2

and this is called the A12 and this is called I will write it with a dotted line which is

called as a B 12 and we will also write with another dotted line which is called as a B 2

1. So, it is just the final state is written first and then the initial state is written. So, these

are called as the Einstein’s A B coefficients. So, where so, these are called A fi and B fi.

So, there A f i and Bf i. So, the A coefficient it stands for spontaneous emission and the b



coefficient  stands for induced emission also absorption we will  tell  you what and in

which case the first term that we are neglected in that original expression we will have to

be brought back.

So, the transition probability for induced emission for spontaneous emission say first

spontaneous emission is equal B 12 u omega let me just write that u omega is the energy

density  or.  So,  let  us  have  u  omega is  the  energy  density  per  unit  frequency  range

frequency range,  that is  between or you can say u omega d omega to be the energy

density between omega and omega plus d omega which is a better representation. So, we

will talk about u omega d omega together which is an energy density in the range in the

frequency range omega and omega plus d omega.

So, the transition probability for spontaneous emission is this I am sorry this is not for

spontaneous emission spontaneous emission does not depend upon the energy density its

simply equal to A12. Now the transition; so, this is number o1; number 2 is transition

probability  for  induced  emission  its  equal  to  B  12  u  omega  and  third  is  transition

probability for induced absorption. Once again to remind you that this is the first term

that we have talked about earlier; so, this is B 21 u omega

So, these are the nomenclatures of these ab coefficients and let us see that at steady state.
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The number of upward transitions is same as as the number of downward transition. So,

that tells that N 2 multiplied by A 12. So, that is the number of atoms making a transition

from 2 to 1. So, that is n 2 and n one is the number of atoms making a transition from 1

to 2. So, it is A 1 2 plus B 1 2 u omega this is equal to n 1 B 2 1 u omega. So, i can write

that A 12 plus B 1 to u omega equal to N 1 plus N 2 B 2 1 u omega. So, as minus E 1

equal to h cross omega one can write down from the Boltzmann distribution N 1 by N 2

is equal to exponential by e one beta or by k t which is equal to exponential h cross

omega by k t. So, that is N 1 by N 2. So, A 1 2 plus B 1 2 u omega equal to exponential h

cross omega by k t B 2 1 u omega. So, u omega is equal to A 1 2 divided by exponential

h cross omega by k t b 21 minus B 21.

Now, in order to find these coefficients we can do a comparison with a Planck’s law of

blackbody radiation.
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Radiation and where u omega is given by some constant quantities such as this and the

both  distribution  follows  here  and  so,  comparing  let  us  call  this  as  1  and  2.  So,

comparing 1and 2 B 12 is equal to B 21 which says that the probability of of induced

emission and absorption are the same.

So, from one can get u omega equal to A 1 2 divided B 12 now since they are same one

can simply write it as h cross omega by k t minus 1. So, A 1 2 divided by B 1 2 its equal

to h cross omega cube by 4 pi square c cube. So, that tells that A 12 a one 2 equal to h



cross omega cube by pi  square c cube and into B on12.  So,  there is  a  actually  one

coefficient out of the 3 which is independent because where the 2 of them are equal and

one of them has a relationship with another; so, one independent coefficient ok.

So, the last thing that one can see here is the following that if we if we want to prove that

these B 1 2 equal to B 2 1 how that comes about in a more rigorous way.
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Then let us talk about the absorption term in presence of the time dependent perturbation.

So, absorption; so, which means that m equal to A 2 k equal 1 and. So, c 2 t in our

original language is equal to minus i A 2 1 by 2 h cross exponential i t naught omega 2 1

minus omega minus 1 divided by omega 2 1 minus omega. So, that is the c 2 and the

emission term is m equal to one and k equal to 2 and. So, that is the c 1 t is equal to a

plus a 1 by 2 h cross and exponential i t naught omega one 2 plus omega minus 1 omega

12 plus 0 So, we will prove that c 1 t mod square equal to c 2 t mod square. So, c 1 star t

can be written as.
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So, c 1 star t can be written as minus i A 1 2 by h 2 h cross exponential minus i t naught

omega 1 2 plus omega minus 1 omega 12 plus omega that is also omega one 2 equal to

minus omega 2 1. So, that makes the c star t is equal to minus A 1 2 star ok. So, I should

make it start as well knowing that these are our mission we will we can change it 2 h

cross and exponential minus i t naught omega minus omega 2 1. So, that is the and minus

1 divided by omega minus omega 22 1.

 Since H prime is Hermitian A m k is equal to a km star which has been already told. So,

it is if one can see that now a one t mod square equal to a 2 t mod square.
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And since a 1 t mod square is proportional to B 12 u omega which is the emission term

and a 2 t is B 2 1 u omega which is the absorption term; so, B 1 2 equal to B 2 1.

Now, microscopic derivation of these coefficients we have not derived this coefficient,

but those coefficients are very easy to derive from whatever we have done and each of

these,  we know now that there is just  only one coefficient  that is  unknown and that

coefficient can be determined exactly in the same way that we have calculated this these

x these transition probabilities the only thing that we need to know is that the H prime

which will come from the interaction of radiation with matter and we will do it in a

tutorial problem this interaction of radiation with matters

And what is the Hamiltonian for that what you need to know is that a priori without

going into the details now the canonical momentum now changes from p to p minus e a

where a is the vector potential, which gives the magnetic field which be equal to curl a

and of course, there is a gauge choice of gauge that could be also discussed there, but

other than that we now have all the necessary tools to calculate the transition probability

which is only a feature of the time dependent perturbation, as has been stressed many

times for and.

So, as I told that it can also be used to calculate the ab coefficients, now we just know

need  to  know one  coefficient  and  the  rest  will  follow or  we can  also  calculate  the

ionization of hydrogen atom by using this time dependent perturbation theory.


