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Linear Response Theory: Derivation of Kubo formula

Welcome back. So, we will discuss linear response theory and in particular Derivation of

Kubo formula in the context of condensed matter physics.
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So, you can take the title  as linear  response theory and derivation of Kubo formula.

However, in general the linear response theory goes beyond just the Kubo formula and it

is applicable to various branches of physics.

So, what we mean by a linear response? So, in presence of an external field when the

system  responds  to  a  given  external  field,  and  when  the  external  field  is  small  in

magnitude, then there is a linear response that the system demonstrate or exhibits and

this called as linear response theory. Such that say, the current density is given as this is

called as a Omh's law; where J the current density is written as sigma E where sigma is

the conductivity J is the current density and E is the applied electric field and this is valid

for small electric fields small values of the electric fields. And if say another example is

that the polarizability is or rather the polarization can be written as polarizability and the



electric field in a dielectric material. And so, these are examples of linear response that

we are familiar with.

Now, if the applied field is large then we actually may need to go to higher orders of the

electric field which are like e square and E cube and so on; in which case we deviate

from linear response theory. And there are examples of such non-linear materials which

have  their  own  domain  of  interest  where  people  study  non-linear  responses  of  the

system, and there are non-linear coefficients which are often of interest.

We will not go into that, but however we will derive formula for the linear response

theory. And by doing so we will make grounds for arriving at the Kubo formula which

establishes the connection between the current density and the electric field, which is

what is written here is also alternately. Alternatively it is a the statement of Omh's law

and this is what we are familiar with.

So, let us go into this linear response theory. So, any consider an arbitrary observable A.

And in absence of any field, any external field the thermal average of this observable is

written as A and this 0 in the subscript signify that there is no field. This is equal to 1

over Z 0 and this is phi 0 are the non-interacting Eigenstates or rather the Eigenstates in

the absence of any external field. This is the Boltzmann weighting, and this is a value of

the expectation value of A within the unperturbed states.

So, Z 0 is a partition function, E 0 energy and phi 0 are unperturbed Eigenstates. And

assumably we know the problem of H 0 phi 0 equal to E 0 phi 0. So, that is a starting

point, that we can solve the non-interacting or rather the unperturbed Hamiltonian that is

without an external field, exactly and five 0’s are the Eigenstates. Z 0 is the partition

function which is the exponential minus beta H; H being the Hamiltonian of the; and

summed over all the states and so on. And this is the thermal average of this quantity 
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Now, if  we apply an external  field  then the same expectation;  so in  presence of  an

external field. So, this the same observable at the thermal average of that is written as; so

1 over Z now is the partition function for the system; which is perturb perturbed by the

external field. And, this is again having the same form accepting that all those 0’s are

now replaced by just  the quantities  such as  Z 0 is  now replaced by Z and phi  0  is

replaced by phi. And these exponential minus beta E no longer beta E 0 where E 0 was

the energy of the unperturbed state and this is a phi A phi.

So, this in the linear response regime when the external field is not too large, this we

should be able to write it as A 0 plus a delta A ok. And it is important to find this delta A.

So, our task at hand is to find this delta A ok. And which appears because of the field. So,

this appears because of the external field.

So now, let us write down the Hamiltonian in presence of the field. That is the total

Hamiltonian  including  the  unperturbed term,  plus  the  term that  is  arising  out  of  the

perturbation. So, that Hamiltonian is written as H of t, this is equal to H 0. Now H 0 can

in principle include interaction terms and there is no embargo on that. So, H 0 is the

Hamiltonian without an external field; which could have an electron interaction electron

lattice interaction a single particle energies and so on, but is independent of time.

And the term that is, the term that depends on the external field is written as this where

the perturbation or the external field is switched on at t 0 and before that it was non-



existent. So, a for t less than t 0 we have H of t equal to H 0. And at after t greater than or

after t equal to t 0 or rather t greater than t 0 we have this Hamiltonian, which is H of t

equal to H 0 plus H prime theta t minus t 0 where theta t minus t 0 is the theta function;

which you all know that a theta t minus t 0 equal to 1 for t greater than t 0 equal to 0

otherwise ok.

So, this H satisfies this equation the Schrodinger equation which is i del t of y t and of

course, we have taken H cross equal to 1 ok. So, the problems clear that we are talking

about the thermal average of an observable which is given by A. And this observable can

be written in the linear response regime as A 0 plus delta A. And we need to find delta A,

and the Hamiltonian has a part which is independent of the external field which is H 0,

and the part that depends upon the external perturbation or rather the external field is H

prime  t.  And the  whole  Hamiltonian  or  rather  the  full  Hamiltonian  is  H of  t  which

satisfies the Schrodinger equation ht phi t equal to i del del t of phi t.
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Now, in  the  interaction  picture  the  perturbed  states  are  so,  phi  of  t  it  is  equal  to

exponential minus i H naught t and a phi 0 where again we have taken H equal to H cross

equal to 1. So, this is equal to nothing but minus i H naught t U t of U t t 0 and a phi

naught at t equal to t 0. So, where U of t t 0 is the same definition that we have seen

earlier, it is a t 0 to t and a t t prime H t prime and plus other terms if we do not decide to



stop at  linear  in the perturbation term which is  equal to  here H prime.  So, H prime

includes the perturbation term or the external field term.

So, if we substitute this phi t and this U t into this equation that we have we have written

down here. So, let us write this down as equation 1, the Hamiltonian is say equation 2,

and then we will talk about this as equation 3, and this as equation 4. If we put them

down, and then we can write down A of t which is equal to a of 0 minus i t 0 to t dt prime

and sum over phi 0. And there is a phi 0 A of t H prime t prime phi 0 and exponential

minus beta E 0 over Z 0.

So, this is the term that is the first term is the term that is without any external field. And

we have kept so, what we did is that putting 3 and 4 in 1. And we have retained linear

terms  in  H prime.  I  have  skipped  a  step  which  you should  fill  it  in  that  there  is  a

commutator bracket of A t and H prime t prime which are coming because of this 1

minus this which will be there on both sides, because there is a phi t and a phi. So, there

is a phi there and a phi there. So, each one will involve a U t t 0, and then you will write

it and then take the; so, keep terms up to linear in H prime. And then you will see that the

commutator bracket comes out. So, just one step that has been skipped which you should

fill up.

So, in a shorthand notation so, 80 equal to A 0 minus i t 0 t prime, sorry, t it is not p

prime there is no. So, there is t prime is a dummy variable here as well I mean the t

prime is a dummy variable in this step which is step just below the equation 4. And this

is  equal  to we can skip those 5 0’s understandable that  it  is  the ground state  or the

unperturbed expectation values of this commutator A t and H prime t prime,.

So, this is the term that we wanted to find and this is the term that we get in linear

response theory. So, this comes out as a commutator between the observable and the time

dependent  part  of  the  Hamiltonian  which  is  due  to  the  external  field.  So,  this  is

essentially the linear response theory.

Let us now write a particular form for H prime.
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So, consider H prime of t equal to some f r t and the B r and a d r. So, that is a volume

integral,  and this  is  a  coefficient  and this  is  the external  field.  At  this  moment  it  is

nothing but just  you know; I mean sort  of this  is actually  a vector. So, this  is  a dot

product of that. So, this b is not to be confused with magnetic field B is any field that you

may want to consider.

So now our delta A r t this is equal to minus i dr prime and dt from 0 to t, and we have A

r t B r r prime t prime I mean let us write it without this just to; so they look same and

there is a f r prime t prime. And of course, we will have to write down the exponential

minus beta Z, Z beta E 0 divided by Z 0, E 0 divided by Z 0. So, that is the thing that we

want to write.

So now dropping this term for the moment, we will simply write it as d r prime and

minus infinity to plus infinity, and dt prime is a prime here. And a theta t minus t prime

and this is A r t B r prime t prime, and this and then you have a f r prime t prime. And so,

this is this integral is taken from minus infinity to plus infinity by introducing the theta

function that we see here.

Now, this  can further  be written as dr prime dt prime with appropriate  limits  of the

integral, this is equal to chi r t r prime t prime, and f of r prime and t prime; where chi of

r r prime t t prime. This is, t t t prime this is equal to minus i theta t minus t minus t



prime. And there is a A r t commuted with B r prime t prime and that is the form for this

coefficient that we have written as chi 

So, this equation let us call it give it a number let us call it as equation 5. Equation 5 is

known as the Kubo formula.
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And this formula is applicable to a variety of situation say density response function and

the chi is the dielectric constant. So, this A is the density response function and the chi is

the dielectric constant which is the coefficient that appears in our discussion. Then we

have current response and conductivity which is the coefficient. And then of course, we

have other such as magnetic response and susceptibility and so on. So, for r case we shall

consider this one, and we will compute the Kubo formula corresponding to the current

response and conductivity.

So, let us take an external electric field to have the form E r t which is a derived from a

scalar potential phi and a vector potential A. For the static case we have this minus grad

phi only, and for the time dependent case we will have to include a del A del t. However,

let us drop the first term by taking that you know by the potential since it is a quantity

which can be set to 0, that you can set the potential to be 0 at a point that you want, and

measure the potential from there. So, and so, basically this has a problem that this goes

all the way up to infinity so, it is unbounded



So, let us drop this further for now, and let us write e equal to simply equal to minus del

a del t. And the Hamiltonian is written as so, in presence of the field the Hamiltonian is

written as d r; this is we are writing it in continuum notation which are like psi of r and

there is a p plus e A divided square over 2 m and a psi of r. So, that is the Hamiltonian;

this Hamiltonian can be expanded by opening up the square which will give us 2 thing 3

terms rather, a p square over 2 m, and e square a square over 2 m, and there is a p dot A

and A dot p term. Not necessarily that p will come commute with A so, we will keep both

these terms.

However, you see the p square by 2 m the first term is actually a part of H 0. So, this can

be written as H 0 and plus e over 2 m and we have a dr and there is a psi dagger p dot A

psi plus A psi dagger A dot p psi. And there is A plus e square over 2 m d r A square psi

dagger psi.  And so, this  can be written as H 0 plus a delta H just the way we have

segregated the unperturbed part of the Hamiltonian which is without the field, and the

delta H coming from the term which includes a vector potential which comes because of

the external field A or rather external field e.

So, what is the form of; so, H 0 is of course our nothing but a dr and a psi r and a p

square over 2 m psi of r.
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And delta H is nothing but d r psi dagger and we have a p dot A plus A dot p psi. And

plus a term which is dr a square psi dagger psi. Since p is equal to minus i h cross del, we



can use the definition of J 1 by 2 mi and a psi dagger del psi minus del psi dagger psi and

plus e by m a psi a psi dagger psi.

So,  this  is  called  as  the  paramagnetic  current  density.  And  this  is  known  as  the

diamagnetic current density. So, this we will represent by a J p p for paramagnetic and

this will represent by a J d. So, the perturbation term can be written as so, delta H which

is the perturbation term which is equal to a dr a J dot A where J is the current density and

a is the vector potential. And let us now write down the state; so, a many body state n n

can be written as n equal to n 0 plus n 1 and. So, n 1 n 0 is of course, the unperturbed

state which is same as phi 0 if you want, and n 1 includes the correction up to first order

ok.
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So, if that is the case my n J n so, this J now consists of a paramagnetic term which is

coming from the current without a field, and the diamagnetic term is because of the field

that is because of the vector potential A. And so, this is equal to n 0 J p n 0, plus n 0 J d n

0 plus n 1 J p n n 1 and plus n 1.

So now this term cannot be included because we have taken the corrections up to the first

order. So, n 1 contains an order of A and J d will also contain an order of A. So, those

terms will be of the second order and you have to neglect those term in a linear response

theory. Thus n J  n ideally  should have 4 terms coming from J  p and J d;  however,

because the n 1 is the correction up to first order in the external field, and J d is also



includes a term which is linear in the external field; we will have to drop that term. So,

any term that is of the order of a square has to be dropped.

Now, you look at the first term in this above. So, this can be said to be equal to 0 for the

reason so, at equilibrium there is no current. So, this is equal to 0 so, the first term goes

to 0, and then the thermal average of this the second term. So, this is the second term;

which is because of the field is nothing but e by m A r t and a rho r. And this rho r is

coming from psi dagger, psi and we have taken the thermal average.

So, now to establish a contact with our earlier notation that we have used; let us write,

so, we have B of r which is equal to a paramagnetic J p of r, f of r t which is equal to e A

r t. And a vector which is the left hand side of the linear response equation; which is

equal to a J p alpha r.

So, the current the expectation value of the current or the thermal average of the current

is written as rather thermal average is written as this.
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J p alpha r t, this is equal to e d r prime and a chi a p alpha beta r t r prime t prime A beta

r prime t prime. We are almost there with the Kubo formula accepting that this a has to

be now converted into e. So now, where our chi p alpha beta r, r prime t, t prime it is

equal to minus i theta t minus t prime and J p alpha r t J p beta r prime t prime and this.

So, this is your chi the paramagnetic part of the response. And including the diamagnetic



term so, chi p alpha beta r, r prime t, t prime is written as delta alpha beta delta r minus r

prime delta  t  minus t  prime,  and rho r  t  by m plus  this  chi.  So,  this  is  the  not  the

paramagnetic, but this total chi. So, this is equal to p alpha beta. And this is coming from

the diamagnetic term.

So, this is the diamagnetic contribution to the response and this is the paramagnetic. So,

since H 0 is time independent this chi paramagnetic susceptibility, it does not depend

upon 2 variables t and t prime the 2 the 2 time variables; rather, it depends on t minus t

prime, so that we can write and in fact, the whole susceptibility, basically because of

these factors. So, chi alpha beta r r prime t t prime t t prime it is equal to chi alpha beta r r

prime t minus t prime. And this is.
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So now, Fourier transform of this J alpha r omega, it is equal to e d r prime chi alpha beta

r r prime omega, and there is a A beta r prime omega. So, that is the contribution due to

the external field.

Now the vector potential A is related to the electric field as follows. Your e omega it is

equal to i omega A omega. So, the current density is actually written as so, the current

density  J  the electronic  current  density  is  written  as  minus e J  this  is  the J  e  is  the

electronic current density. And this J is the one that we have derived just  in the last

slides.



So, our J e alpha r omega it is equal to a d r prime a sigma p alpha beta r r prime omega e

beta; so, this is not required, e is not required. So, it is equal to r prime omega. So, the

conductivity  tensor  is  written  as  this  is  called  as  the  conductivity  tensor.  So,  this

conductivity tensor is defined as sigma alpha beta r r prime omega, it is equal to i e

square by omega chi alpha beta r r prime omega.

So, in general this conductivity tensor is a non-local quantity; that is the contribution at a

given point r depends on the neighbouring points r prime. And that is why you have to

sum over all the neighbouring points in order to get the electronic current density.
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So, also for a homogenous system for an isotropic system or isotropic or homogeneous

that is fine that is they mean the same. Sigma alpha beta r r prime omega that is equal to

sigma alpha beta r minus r prime omega. So, the system is translationally invariant.

So, the quantity that is here the conductivity tensor does not depend upon 2 variables r

and r prime; rather it depends on a single variable which is r minus r prime. And again a

Fourier transform into the momentum space yields J e alpha q omega. It is equal to sigma

alpha beta q omega and e beta q omega. So, this is our Kubo formula for the current

response. So, the current response depends in the linear regime that is for small values of

the electric field is linearly related to the current density or the thermal average of the

current  density, and the coefficient  is known as the sigma which is that conductivity

tensor. Remember it depends upon both momentum and frequency.



And let us see some of it is properties. So, the conductivity tensor actually i e square over

omega delta alpha beta rho q omega by m and plus chi p alpha beta q omega. So, this is

the diamagnetic contribution and this is the paramagnetic contribution; where we can

write down this. So, chi p alpha beta q omega it is equal to a minus i dt prime theta t

minus t  prime exponential  i  omega my omega, omega t  minus t  prime and then the

commutator. So, it is J alpha q t and J beta q prime my sorry minus q and t prime and this

and so on. So, that is the paramagnetic part.  And so, it  is important  to note that the

diamagnetic part actually rather it is it vanishes for or rather it blows up.

So, what happens in the static limit? That is let us ask this question that as omega goes to

0, what happens to these 2 terms? So, it seems that as omega goes to 0 the diamagnetic

part actually blows up, but that blowing up is compensated by a part of this paramagnetic

susceptibility,  and  giving  you  a  static  DC  conductivity  or  DC  conductivity  static

conductivity.
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So, static case; omega going to 0 so, the diamagnetic part blows up diverges for usual

conductor conductors, this divergence is cancelled by a part of the paramagnetic term;

there by yielding the DC conductivity finite. Interestingly, in a superconductor which is a

perfect diamagnet one gets the diamagnetic contribution dominates and the paramagnetic

contribution vanishes and what one gets is the following.



The paramagnetic contribution becomes negligibly small or it becomes 0 and the DC and

the conductivity; the conductivity not DC, but the conductivity is purely imaginary. So,

sigma, alpha, beta for or we will writing it upstairs we will continue doing that. And for a

superconductor is a q omega and it is i e square over omega and delta alpha beta rho q

omega and divided by m.

And this  is a purely imaginary thing; an imaginary conductivity  implies conductivity

implies  an inductive  behaviour  which you know from electric  study of  electricity  or

rather these circuits LR circuits and LCR circuit etcetera. So, you have a the impedance

which is a or rather the inverse of the impedance which is the conductance is a purely

imaginary quantity. And so, this says it is a no dissipation of energy.

So, this implies that there is no dissipation of energy because of the flow of current and

we know that these are called as the super current. And there persistent currents which

would go for you know many years without any significant loss. And this arises because

the paramagnetic part goes to 0 and only the diamagnetic contribution that remains. In

diamagnets  as  we told  earlier  that  the  diamagnetic  susceptibility  or  the  diamagnetic

response is far lower than that of a superconductor.

A superconductor has a diamagnetic susceptibility of minus 1 which means it exactly

cancels out the external field the magnetization is just opposite to the field external field.

And whereas, in normal metals or in the so called diamagnets it is of the order of 10 to

the power minus 5; so there is it  does not lead to dissipation less energy and like a

superconductor.

So, to summarize we have looked at the Kubo formula within a linear response theory.

The Kubo formula talks about the current and it is relationship to the applied field, and

the proportionality or the coefficient that comes out is called as the conductivity tensor.

And the conductivity is a momentum and frequency dependent quantity, and we have of

course, the special interest is to talk about DC conductivity which is at the omega equal

to 0 limits. 

And this is what happens at a finite omega sigma will be a proportional to or rather will

depend on q and omega. This is what we get from linear response theory where the

response of the system to perturbation is linear to that of the external field.


