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So, today we are going to talk about the Quantum Harmonic Oscillator. And we use the

raising and the lowering operators in order to solve the quantum harmonic oscillator

problem. In a way this is an alternate way of doing it by without solving a Schrodinger

equation  with  a  lot  of  rigor  that  we are  used  to,  but  this  method  gives  as  much of

information as we would have gotten by solving that equation by say a power series

method and this is quite intuitive and it is quite easy to follow. Today I have prepared the

notes, so we will go through them slide by slide slowly.

(Refer Slide Time: 01:22)

So, to start with some general discussions on the harmonic oscillator it is one of the most

studied problem in both classical and quantum mechanics, ok. And in both classical and

quantum mechanics the frequency of oscillation does not depend upon amplitude and

these  are  the  features  of  harmonic  linear  harmonic  oscillator  problem.  So,  all  the

quantum states as a result of this are periodic in time with the same period. So, it is

similar to the particle trapped in a potential well the quantum harmonic oscillator has

only bound states, ok.



And there is a discrete state set of equally spaced energy spectrum or the given quantum

states  that  are  there.  So,  what  we  are  essentially  talking  about  is  that  we  have  an

oscillator potential which is like this and this is x and this is V of x. So, all these levels

the lowest one we will see that it is equal to half h cross omega, and then it is 3 half h

cross omega, and then it is 5 half h cross omega and so on. And we will keep getting

these wave functions corresponding to each of these energy levels. So, this is called as

ground state energy let us call that as E 0 and then there is E 1, and then there is a E 2

and so on. And this spectrum continues which are equally spaced as I said. So, this is one

of the differences with the particle in a box where the energy spectrum is not equally

spaced rather it goes as square of the quantum number. So, it goes as n square h cross

square pi square over 2 m a square as you know is the width of the well.

So, that way it is different from the quantum harmonic oscillator and in fact, it is because

the energy levels are equally spaced one can actually talk about this raising and lowering

operator  or  the  creation  operator  and  the  annihilation  operator  they  are  used

interchangeably. So, here we have talked about the creation operator, but generally we

will use raising and lowering operator. So, all the eigenstates energy eigenstates of this

problem can be generated from the ground state this is what we will see by the end of the

discussion that by repeated application of a creation operator.
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So, let us start our discussion. So, the solution of the harmonic oscillator potential in the

Schrodinger equation, as I said requires significant mathematical rigor to arrive at the

solution for the eigenvalues and eigenfunctions. So, this is the equation that you need to

solve and this is the Schrodinger equation time independent Schrodinger equation for a

potential which is of the form half k x square where your omega is equal to root over k

by m. So, a it is a x square potential which is here. So, this part is the V of x and psi, and

there is a kinetic energy term the first term on the left is the kinetic energy and then it is a

potential energy and they are operating on psi and giving me the total energy psi E psi.

And as I said that it  can be solved by solving this differential  equation maybe using

something like a power series method which is cumbersome. Here we use a much less

cumbersome method and operator method so to say. So, let us highlight this operator

method and we will outline that in the following slides.

(Refer Slide Time: 05:48)

So, to write down the Hamiltonian of a quantum harmonic oscillator which is given by h

equal to minus h square over 2 m d 2 dx 2 plus half m omega square x square. So, if we

introduce operators of the form which is a equal to root over m omega by 2 h cross a

dagger equal to root over m omega by 2 h cross and multiplied by this operator where x

is the position operator and p x is the momentum operator, same here with the x plus i

over m omega p x and x minus i by i over m omega p x and so we are doing it in one

dimension.  So,  we are  having in  this  particular  case  variables  which  are  x and p x



however,  this  method  can  be  generalized  into  3  dimensions.  There  is  of  course,  a

difference  between  one  dimension  and  3  dimensions,  so  you  have  degeneracy  in  3

dimensions where in one dimension which we do not have any degeneracy.

In any case, so these are called as raising operator. So, a dagger is called as a raising

operator and is called as a lower lowering operator. And they carry the same meaning as

creation operator and annihilation operators which are represented by or rather denoted

by a dagger and a respectively and so here you see that a and a dagger are written in

terms of linear combinations of x and p x. Now, in order to know whether this is a valid

transformation,  because we are taking these operators x and p x and using the linear

combinations of that we are writing two more operators which are aand a dagger. So, in

order  to  know,  that  we  need  to  check  the  commutation  relations  and  how  the

commutation relations are preserving the commutation relations of x and p x which is

known to be equal to i h cross.

(Refer Slide Time: 08:04)

So, let me just write this. So, this is x p x this is equal to i h cross which means that x and

p x are do not commute. In fact, the commutation has a finite value which is given by i h

cross and this is very well known. So, let us see that what information we get from the

commutation relations of a dagger and so on.

So, if you use x p x equal to i h cross one can show that the a dagger commutation in that

order that is first a on the left a and then a dagger will give you one and a commutation



of course will  give you 0,  a dagger  a  dagger  will  give 0.  So,  these are  actually  the

particularly the bosonic commutation relations that we come across which we have seen

as  well  earlier  and  so  we  want  to  see  that  whether  a  dagger  satisfy  the  bosonic

commutation relations rather this thing comes that is a dagger commutation equal to 1.

So, let us show one them and you should be able to do the other one exactly in the same

manner. So, a dagger commutation equal to a dagger minus a dagger a; now, going back

to this a and a dagger do you see that we have quadratic in these operators a dagger and a

dagger a. So, this term gets multiplied twice which is m omega by 2 h cross the square

root goes away. And then we have written the operator corresponding to a and then the

operator corresponding to a dagger and then negative of then again a dagger and a. And

if we open up the bracket we will have a x square and x p x with a minus i by m omega

and there is the other term is i over m omega p x x and plus 1 by m omega p x square.

Now, this minus sign comes here and I have opened a bracket and have again multiplied

these two terms the last  two terms and so on and then if  you simplify  and use this

commutation relation between x and p x this a a dagger commutation comes out to be

equal  to  1.  So,  these  are  the  commutation  relations  and if  I  use  these  commutation

relations they actually preserve the well known commutation relations of x and p x, all

right.
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So, the algebra is becomes actually much simpler if you take care of this m omega and h

cross by using dimensionless variables such as x tilde and p x tilde, where p x tilde is

equal to minus i d dx tilde and the dimensionless coordinate x tilde satisfy satisfies x

tilde and a p x tilde commutation equal to i. So, we do not have to worry about the h

cross etcetera. And now, in terms of these less variables or rather these operators the

raising and the lowering operator can be written in a much simpler form which is 1 by

root 2 x tilde plus i p x tilde where as a dagger is equal to 1 by root 2 x tilde minus i p x

tilde.

So, once again one can actually a check very easily that a a dagger just like earlier should

is equal to 1 and similarly the commutation relation between a a and a dagger a dagger

that  will  vanish.  But importantly  what happens is  that  the Hamiltonian takes a form

which is half of x tilde square plus p x tilde square and there is no m there is no h cross

etcetera and there is no omega as well, and we can write this of course, in the form of x

tilde plus i p x tilde and x tilde minus i p x tilde. So, this x tilde square plus p x tilde

square will come. Now, that would give a a feeling that we are actually having because a

s are 1 by root 2. So, one a and one a dagger, so this actually becomes a not, so this really

becomes a a a dagger and not a a dagger a let me just write that once again.

Because this  is  a definition of a,  so this  is  actually  a a dagger. But however, that  is

incorrect  and the  reason that  it  is  incorrect  is  that  that  x  tilde  and p  x  tilde  do  not

commute.
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So, what it should become is actually that h is in fact, a combination of a a dagger or a

dagger a in fact, it is half of a a dagger plus a dagger a this you can simply check using

the definitions that we have given. So, this is nothing but equal to half of x tilde square

plus p x tilde square, ok.

But since a a dagger equal to 1 minus a dagger a that is because your just now what we

have seen is a a dagger equal to 1. So, then this can be written as a dagger a the H tilde

which is the dimensionless Hamiltonian for the problem becomes a dagger a plus half.

So, we can now, define this one as an operator the a dagger a to be an operator which we

call as number operator and we will see why we call that because this acting on a energy

eigenstate returns me the state itself, and also counts the number of oscillators or the

number of bosons if you like to say that is there in that particular quantum state.

So, as I said that so, it is which one acts on a state is the number of oscillators in that

state. So, this is my Hamiltonian which is a dimensionless Hamiltonian we have taken

care of the dimensions of or rather these variables m h cross omega etcetera are absorbed

in the definition of a and a dagger and so on.
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So,  there  are  some  interesting  commutation  relations  that  exist.  In  fact,  these

commutation relations are quite helpful in doing the operator algebra that is involved in

this  particular  case  or  rather  the study of  this  quantum harmonic  oscillator. So,  N a

commutation N a is  a  dagger a and commute commutation with a.  So,  if  you use a

commutation identity which is A, B and C, where A B and C all are operators. So, that

will be a commutation of B C and A C commutation multiplied by B.

So, N and a commutation I will have a to be equal to a dagger, B to be equal to a and C

to be equal to a. So, I have a a dagger a a and I have a a dagger a commutation and

multiplied by a. So, the first term gives 0 because a a commutation as we say that it is

equal to 0 and a dagger a is equal to minus 1, and the reason is that that a a dagger equal

to the commutation a a dagger equal to 1. So, a dagger a should be minus 1. So, this

becomes equal to minus a.

So, just to remind you that the N the number operator and a the commutation relation

yields a minus a which immediately says that a is not an eigenstate of or rather a and n

they do not share the same eigenstates. So, that is a does not have an eigenstate which is

an eigenstate of n as well. So, the number energy states that we are talking about is not

an eigenstate of a, or a dagger in this particular case. We can also show that exactly in the

same manner that n a a dagger equal to a dagger. So, let us just repeat that quickly.



So, I have N a dagger. So, this is equal to a dagger a a dagger and this is equal to a

dagger if we use this relation that we have written down. So, I have a a dagger and a a

dagger and a plus a dagger a dagger and multiplied by a. Now, this is of course, equal to

0 and this is equal to 1, the first term equal to 1. So, this is equal to a dagger which is

what we have written.

So now we want to know that what are the eigenstates of N; maybe that they are not the

same  eigenstate.  So,  a  a  and  a  dagger  have  different  eigenstates  or  rather  these

eigenstates are not the eigenstates of a and a dagger, but still we want to know what are

the eigenstates of N, capital N, operator which is a dagger a. And let this small n ket

small n which is written here E is the eigensket of the number operator N. So, that when

N acts on the ket n returns me N and the ket n. As I said that though these ket n is an

energy eigenstate and when the number operator operates on the energy eigenstates it

returns the same eigenstate and also returns the number of oscillators in that state.

(Refer Slide Time: 19:13)

Now, what kind of relations do these a or rather if a acts on these N what kind of states

emerge even if they are not eigenstates we need to know. And in order to do that we have

operated N on a vector or a state which is a multiplied by n and this gives us it is a n

minus 1 and acting on these a the vector same vector a act a acting on N. And now this is

not difficult to find out because in just the last slide we have calculated that N a is equal

to minus a. So, N a minus a n is equal to minus a and this is what we have used here. So,



the one so these two terms have combined to give me N acting on the vector a times the

n ket which is n minus 1 and operating on the ket a multiplied by the vector n.

So, this of course, says that a n is an eigenstate of n with an eigenvalue and minus 1 and

similarly we can also use the other commutation relation that is N a dagger which is

equal to a dagger, and by doing that we can take a vector or a state which is a dagger n

which went at it by n which gives me a n plus 1 and returns me the same ket. So, this is

an eigen ket a dagger n is an eigen ket of or eigenstate of n with an eigen value a n plus

1; a dagger is called as a raising operator and a is called as a lowering operator. So, these

are some of the things that we need to know.

(Refer Slide Time: 21:34)

So, let us try to understand that what kind of these number n. So, what are the restrictions

on n or what are the conditions on n that are possible, we are talking both in terms of the

quantum number n and the state n, so as to have a better understanding.

Now, consider the length of the vector a operating on n. So, if you want to know the

length we have to take the square of the vector and this is the square. So, I take a mod

square of this which finally, can be written as prime a dagger and a n. If you open this up

it becomes n a dagger a n and so this is equal to n and then capital N and n, capital N

acting on small n will give me a n and n this inner product of the ns n vectors. So, it is

very clear that this is equal to 1 and because it is a length that we are talking about length



of a vector which cannot be negative, so its non negative and so cap this small n must be

greater than equal to 0.

So, what it means is that by applying repeatedly a on n we can obtain eigenvectors with

eigenvalue n n minus 1 n minus 2 and so on however, this conflicts with the notion that

these numbers must be non-negative because it is related to the length as we just talked

about unless of course, the sequence terminates with the value n equal to 0. So, if n n

minus 1 n minus 2 all are positive and the one that is coming at the end which is simply

equal to n that should I mean not that n, but that value of that the last term in this series

should become equal to 0 else these cannot be positive definite.

So, what it says is that for n equal to 0 a acting on n should give me 0. So, that is a acting

on 0 is the 0 thus that is if a 0 is is 0 or a null vector. So, a acting on a 0 is a null vector

which means that this is I mean it has a it is a vector of 0 magnitude.

(Refer Slide Time: 24:30)

So, further we have seen that a dagger n is proportional to the state n plus 1 if we want to

understand that how it is related we can simply write that a dagger n its equal to C n n

plus 1. And C n can be calculated as follows. I can take multiply it by its conjugate

which will give me a a and a bar n a a dagger n and this how I we write. So, there is a C

n mod square which is equal to n a and a dagger n. So, this is equal to n a a dagger n



Now, a a dagger is equal to 1. So, a a dagger is equal to 1 plus a dagger a. So, that is

equal to 1 plus n and 1 plus n if you put it here then that n what were we what we mean

is that capital N that N, mult operating on small n will give me a small n times the ket n

and so this C n square is simply nothing but equal to the inner product of the operator N

plus 1 between the energy eigenstates which are given by n. 

So, this is equal to n plus 1 and there is n plus 1 and n plus 1. So, this is ortho this is

normalized. So, this is n plus 1 inner product of n plus 1 and n plus 1 is equal to one. So,

C n is equal to root over of n plus 1, which means that a dagger acting on n gives me a

state which is n plus 1 which means one oscillator more in that state. So, if I operate a a

state with n oscillators I will get one oscillator mode and will return me with a coefficient

which is equal to root over of n plus 1.

(Refer Slide Time: 26:43)

And similarly for the other one that is for the a acting on n will reduce a number of the

number of oscillators by 1. And so this is root over n into n plus n minus 1 and this is of

course, true except for n equal to 0 because you cannot have 0 minus 1 minus 1 to be a

eigenstate of this particular problem. So, it cannot be a member of the vector space that

we are talking about. So, because a is 0 that is a acting on 0 a is the as I said that it is a

lowering operator. So, if you have already 0 oscillators then you cannot lower it any

further. So, a 0 will correspond to 0. 



So, the 0 is actually called a vacuum and this state n can be built from a a 0. So, any state

n can be built from 0 by repeatedly operating by this a dagger. So, a dagger whole to the

power n divided by n factorial and the acting on the ket 0; so, this is how all eigenstates

of the quantum oscillator problem can be generated. So, this is very intuitive that you just

need to know the ground state or the vacuum here and in fact, the better word for 0 is not

a vacuum of course, it does not contain any oscillator. So, in that way it can be written as

a vacuum, but this is also the ground state. 

So, remember H is equal to a plus a dagger a plus half, so which is n plus half. So, if

small n ket, ket small n is an eigenstate of capital N it should also be an eigenstate of the

Hamiltonian H because this is what they are simply off by a factor of half which should

not create any problem. So, the Hamiltonian operating on the ket n gives me N plus half

ket n which gives me small n plus half ket n. So, these n states are called as number

states they are also called as fock states after this Russian scientist V A Fock.
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Now, let us try to understand the matrix structure of a and a dagger. Now, it could be

possible that and it is it is true that these are not diagonal matrices. they are in fact the

diagonal elements are all 0 and these elements which are nonzero they exist on two sides

of the diagonal matrix. For example, this relation gives the root over I mean the bar n

prime a dagger n which is equal to root over n plus 1 and delta of n prime, so n prime

should become equal to n plus 1. And similarly for a it is root over n delta n prime equal



to n delta n prime n minus 1 and similarly for the diagonal term which is n prime n. So,

this should be capital N which I let me just change it. So, this is capital N let me write it

with a black.

And so capital N vector looks like you know it is diagonal with the entries as 0 1 2 3 4 5

6 etcetera etcetera whereas; all the off diagonal terms are equal to 0. While for the a

matrix it is the upper diagonal that exists that is basically just the term which is above the

diagonal  the  line above the  diagonal  that  exists  and for a dagger  the line below the

diagonal that exists because of this n prime being n plus 1. So, I write all you know sort

of, so I write as if like this. So, I have a 0 1 2 3 4 and so on and 0 1 2 3 4 and so on. So,

these are will be the ones that are nonzero are they look like the root over 1, root over 2,

root over 3 and so on and similarly here it will be the same, but just lying below the

diagonal. So, that is for a and a dagger written in the number basis.
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So, now, one obvious task at hand is to write down the matrix forms for x and p and we

just invert the relation we initially wrote down a in terms of x and p. Now, we can write

down x in terms of a and a dagger so if that becomes true then its root over h cross by

two m omega and then it is all these terms that are coming on both sides. So, it is a

basically a plus a dagger. So, whatever is in a will come and whatever is in a dagger will

also com. Let me just show that by two different colours. So, the red color is coming



from the above the diagonal, and there is a say green color that is coming totally below

the diagonal and so on.

And it is as for, so this is for x. So, that is the operator corresponding to the position

variable and the operator corresponding to the momentum variable also looks somewhat

similar and which are obtained from the linear combinations of a and a dagger. This is

just  for  you  to  note  that  look  these  are  infinite  operators.  So,  they  are  not  finite

dimensional matrices and in no two infinite dimensional matrices commute and hence x

and p they do not commute and so do a  and a dagger they are infinite  dimensional

matrices as well.
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So, the wave function in position space that is to connect with what we all know the

Gaussian. So, if we define the ground state as a psi 0 x which is equal to x and 0 that the

ket the bar x and the ket 0, this notation that we have used earlier. So, a on psi 0 x of

course, gives 0 because a annihilates or rather a lowers and this since there is no boson at

all or harmonic oscillator at all it cannot lower the number. So, we start from that this is

thekinetic energy and this is the the potential energy and then that is acting on the ground

state.  And if  you solve this  differential  equation the ground state  wave function will

come as a naught exponential minus m omega by m omega x square by 2 h.

So, if you normalize then a 0 comes out to be m omega by pi h, h cross whole to the

power one-fourth and similarly the psi n is equal to x n, and x a dagger by n factorial root



over which is on 0 and then we write down this operator which is corresponding to the a

dagger. And then operate it on n times to get the nth eigenstate starting from the ground

state.

So, as I told earlier that all the excited states of a quantum harmonic oscillator can be

obtained from the ground state of this from the ground state, and the ground state as it is

shown here is a perfect Gaussian. So, it is a Gaussian, ok. So, this is the psi 0 x and this

is x and so on, and this is your the full width of half maximum is actually related to this

coefficient m omega by 2 h cross.

So, the whole algebra becomes easy, and this operator method as I said earlier as well

that it is possible because the energy spectrum is equidistant from each other and here we

have solved the harmonic oscillator problem. And the reason that we introduced this is

that we need later to talk about the squeezed and the coherent states which are one of the

interesting examples of the oscillator that we are going to do. 


