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Applications of Coherent States, squeezed states

To continue with our discussion on the Coherent States, let us see some more properties

on the Coherent of States. And let us start with the scale scalar product of two coherent

states.

(Refer Slide Time: 00:36)

So, let us see what we understand or what we learn from this scalar product. Of course,

you know that the Fock states which are the number occupation number states denoted

by N which are the eigenstates or eigenfunctions of this operator N, capital N which has

a form which is a dagger a this is a Hermitian operator which means that it gives a real

eigenvalues and also that this are orthonormal states.

So, one Fock basis is or orthonormal to another Fock basis. And so however, the state

alpha which is a coherent state it has complex eigenvalues and it is an eigenfunction of

the operator  a which is  lowering operator  which is  not  a Hermitian operator. So,  its

eigenstate of non-Hermitian operator let us write it here.



So, please take a note that we have explained this or rather we have stated all of these

facts earlier and this non-Hermitian operator is a that is a lowering operator and it has

complex eigenvalues. Thus it is not clear it is a not automatically clear, that the coherent

states are orthogonal which is and of course, they are distinct than the Fock states as we

have seen earlier and so its needs to be ascertained that whether these are orthogonal

states.
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And in order to do that let us take two coherent states alpha and beta and look at the

inner product between them I am just writing it as a beat beta alpha which we know that

by definition its D dagger beta D alpha 0.

So, this can be written as, so these 0s are the vacuum states and this D dagger and D

dagger beta and D alpha are basically the translation operator that we have learnt earlier.

So, this is a exponential minus beta a dagger exponential beta star a exponential alpha a

dagger exponential minus alpha star a this is the definition that we have studied for this

and along with there is a Gaussian factor which is equal to alpha square minus beta

square. So, this is the expectation and our rather the inner product of the two coherence

states. Now, it has to be seen that whether these two coherent states are orthogonal.

Now, in order to see that let us see the end states that is this one and this one and they

can be expanded in terms of the basically  the exponential  can be expanded which is

exponential minus beta a plus and all that and then you have an exponential minus alpha



a rather alpha star a which is equal to 1 minus alpha star a and plus all that. Now, it is

very clear that all these terms with a dagger and a in both at the edges will yield 0 when

they act on vacuum.

So, the ones that are saved or rather that are survive those survived are the ones and in

which case we have we can actually ignore them and we can write this down as a 0 and

now, we do the expansion to the other quantities as well which are this and this. So, this

is equal to 1 plus beta star a plus 1 by 2 factorial beta star a square plus of all that and

then we have a. So, and then we have a 1 plus alpha a dagger plus 1 by 2 factorial alpha a

dagger square and so on and then its 0 and of course, these are there.

And of course, we also have a the exponential this factor which will let us write them

here exponential minus half alpha square minus beta square. So, this yields, so then this

is  like 2,  1 by 2 factorial  root over 2 factorial.  So,  this  you will  get it  if  you see it

carefully by multiplying term by term and a plus um 1 beta star and a plus a 0 which are

for  different  values  of  these  for  basically  the  Fock  bases  which  would  generate  by

successively you know operating the a dagger and things like that a or a dagger and this

has to be taken. So, this is really a bracket not an angular bracket.

And then this is multiplied by a 0 plus alpha 1 plus a 1 by 2 factorial root over 2 factorial

alpha square 2 and all that plus all this and so on. So, this and of course, this whole thing

is multiplied by the exponential half just write it neatly. So, this is alpha square minus

beta square and so on. So, that is that is what comes out of this a inner product of two

coherent states.
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And just to remind you that we are trying to find out that whether two coherent states are

orthogonal or they form a complete set of states. And so this if you use the orthogonality

of the Fock bases that is this equal to delta n m then your beta alpha becomes equal to

exponential  minus half.  So,  there  is  a  sign problem that  I  have introduced from the

beginning there is a plus there and there is a plus, there is a plus there.

So, this is alpha mod square plus a beta mod square and a 1 plus alpha beta star plus a 1

by 2 factorial alpha beta star and so on plus. So, this is nothing but exponential that is the

expansion of the exponential alpha beta star. So, its exponential alpha beta star, so this is

equal to exponential minus half alpha mod square plus beta mod square plus alpha beta

star. Now, if you look at this alpha minus beta mod square. 

So, that can be written as alpha minus beta and alpha star minus beta star which is equal

to alpha mod square if you just open up that is multiplied term by term its alpha square

plus beta square minus alpha beta star plus alpha star beta and the. So, this is equal to, so

beta alpha mod square is nothing, but equal to exponential alpha minus beta square. So,

the so the main thing is that after doing all this algebraic turns out that the coherent states

are not orthogonal and in fact, they are only orthogonal when alpha is much greater than

beta or alpha minus beta is much greater than 1. So, in general coherent states are not

orthogonal.  The transition probabilities only vanish if  alpha minus beta much greater

than 1. So, this is the conclusion for this.
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And, but of course, they form a complete set of states. So, this I will not prove it here,

but one can show that which we may actually do it in a tutorial that the coherent states

form a complete set of states. So, even if they are not orthonormal to each other they still

form a complete set of states and which can be shown by showing that this summing

over the coherent states this gives 1 and so on. So, these are some of the properties of the

coherent states.
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Let us now go to study what are called as squeezed states, ok. So, this is very well known

that the uncertainty principle which Heisenberg had proposed puts an impediment in the

in the study of various quantum systems or rather positional measurements of quantum

systems. And this of course, is sort of dampens you know the enthusiasm by the quantum

engineers  where  they  want  to  do a  lossless  transmission  of  quantum information  by

optical  means.  So,  just  to  summarize  that  uncertainty  principle  is  an  impediment  to

transmission of information by optical means.

So, there are of course, quantum noises. So, quantum noise is an essential ingredient to

optical communication. So, the very relevant and pertinent question in this regard is that

can we beat  the uncertainty  principle  or  can we reduce the effect  of  the uncertainty

principle, and so this is the question that we want to box it and possibly the squeeze

states give a clue to this answer. So, it is important to understand that the uncertainty

principle is actually a statement about the area in the phase space. 

So, is about area in the phase space which what I what we mean by that is that it is this

product of a small you know the pixel in the phase space.  So, if we can divides the

procedure to deform and squeeze this area which can be effectively used for reducing the

noise.  Such  squeezing  process  is  of  course,  it  does  not  de  validate  the  uncertainty

principle, but it is just an engineering that one can think of doing and the possible means

of doing it is via squeezed states we will see what that is.

So, the question that one asks is that can one squeeze or deform this area in the phase

space, phase space, ok. Again a question that we want to box because it is a very relevant

question and to keep in mind that this procedure does not de validate the uncertainty

principle that we all are familiar with. So, let us see that how it can be squeezed.
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Before that let us try to see some basics which we already are quite aware well aware of

and  consider  two  non-commuting  operators  a  and  b  I  mean  which  are  which  are

conjugate to each other each other such that x and p committed, ok. So, let us do this

commutator and let us write this as i C, where i C is another. So, these are Hermitian

operators just like our p and x are. So, C is another Hermitian operator. So, in general it

is a Hermitian operator, but it could be just a C number in some cases that we will just

see in a moment. 

So, this is the commutation relation and it does not commute, ok, the commutation of

these two Hermitian operators give me another Hermitian operators which is i C and the

uncertainty principle satisfies delta A multiplied by delta B that should be greater than

equal to half of C, where C is the as I told it is an Hermitian operator and we have taken

an expectation value of that operator and this expectation value is taken with respect to

some state psi. And as usual our definition of delta A is nothing but A square average

minus A average square and similarly for B and C, etcetera.

So, as I told that the expectation value of A, B and C are calculated within some given

state psi and this state psi the expectation values are computed within a state psi, and this

psi will earn a name as a minimum uncertainty state if the one of the observables say

delta A will satisfy certain relation we will just write that. So, this psi will be called as or

rather will be called as a better word, will be called as a minimum uncertainty state, state



provided um. So, if a delta A and delta B they follow an equality rather than an inequality

which  appears  here.  So,  that  is  the  minimum  answer  or  rather  that  is  a  minimum

uncertainty and they would follow this relation where an equality exists.
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Now, these states will be called as squeezed if one of the observables say a satisfies a

delta A square should be less than half C square of course, along with that the minimum

uncertainty  condition has  to  be satisfied.  So,  a  state  can actually  satisfy a  minimum

uncertainty condition, but may not satisfy the squeezed condition as its written here. But

for a squeezed state to occur this condition has to satisfy it has to be satisfied along with

along with what we have just said. So, delta A delta B should be equal to half of a C and

this will be called as, so this is called as ideal squeezed states. 

So, the whole idea is that the quantum fluctuations of a squeezed state in one observable

say A are reduced below these half  C,  if  at  the cost of the fluctuations  in  the other

observable.  So,  let  us  write  this  because  it  is  an  important  statement  thus  quantum

fluctuations of a squeezed state in one of the variables or observables say A are reduced

are reduced to values lower than half of mod C at the expense of fluctuations in the other

observable. So, let us give some examples in order to validate our claims or at least to

check the definition of the squeeze state.
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So, you remember that we have introduced the canonical variables or observables x and

p in terms of a and a dagger and we are going to take those say A equal to half of a plus a

dagger and B equal to 1 by 2 i a minus a dagger. So, if you simply so, these are our x and

p as we have said that these applies to two canonically conjugate variables which are

which could be x and p. So, if I take A and B commutator and want to see that how it

behaves this commutator has a value which is i over 2. So, it is very clear that C is equal

to 1 here which is a constant.

So, the Heisenberg uncertainty principle takes delta A into delta B should be greater than

half, ok. So, that is the uncertainty principle. Now, let us consider the expectation values

of A and B and the variances delta A and delta B within the coherent states, ok. So,

define so coherent state is given by alpha which is equal to a D alpha and 0, just to

reiterate the notation 0 is the vacuum D alpha is the translation operator which produces

an a state coherent state alpha that is written with a ket on the left hand side. So, my

alpha a alpha that is equal to A alpha plus i B alpha. 

So, this is equal to 0 D alpha a D alpha and this is nothing but equal to alpha. So, it is

very clear that A alpha is equal to real value of alpha and B alpha is equal to imaginary

alpha, alpha. So, one of the canonical variables has an expectation with respect to the

coherent state which is real part of alpha. And the other one the imaginary one has got an



overlap in the coherent state as imaginary beta sorry I mean some imaginary alpha where

alpha is of course, a coherent state.
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So, now, if we want to calculate the variances, so that is equal to alpha delta A square

alpha which is equal to 0 or delta A square 0 equal to one-fourth alpha delta B 0 alpha

which is equal to 0 delta B 0 which is equal to one-fourth itself.

So,  the  coherent  states  are  indeed minimum uncertainty  states,  but  whether  they  are

squeezed states or not that we are not sure, but they are definitely minimum uncertainty

states. So, these are so. So, now, the squeezed states as we said earlier offer possibilities

of beating the quantum uncertainty, the quantum uncertainty limit in measurements. So,

let me box this is an important statement. So however, a neither Fock which is n nor

coherent which is alpha are squeezed states.
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So, in fact, one can actually calculate that that delta A equal to delta B equal to half for

coherent states whereas, delta A equal to delta B equal to half 2 n plus 1 for the Fock. So,

this is for the Fock states. So, it is clear that the Fock states are actually the states in the

occupation number basis which was quite largely used in dealing with quantum harmonic

oscillator. So,  a  squeezed state  can be obtained from a coherent  state  by applying a

squeezing operator which is S by xi, which is xi star a square by 2 exponential minus xi a

dagger square by 2. 

So, S xi, S xi acting on a vacuum which is 0 now it is important to understand that the

coherent states are actually built from the vacuum states by the translation operator. So,

if the translation operator yields one then coherent state yields a vacuum and there is a

special vacuum state, and so if S xi is made to act on 0 that gives me a state coherent

state xi. So, this acting on 0 is gives me xi and S of xi acting on alpha gives me another

state which is alpha xi. So, these are the so, they show that S xi operating on the trivial

coherent state gives a xi which is a coherent state, and a S xi acting on a coherent state

gives another coherent state which is alpha xi.
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So, the in fact, the squeezed states are of 4 types, one is the number squeeze states, two is

the face squeeze state, and of course, in addition to that we have a space squeeze state

and  a  momentum  squeeze  states.  So,  let  us  give  some  demonstrations  or  pictorial

representations of these states.
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So, let us look at. So, this is my A axis which is real alpha and this is my B axis which is

imaginary alpha, and so there is a vacuum state and this vacuum state can be translated to

get  a  coherent  state  pardon this  shapes  that  are  not  coming very well.  So,  these are



intended to be circular. So, these are squeezed. So, there is a vacuum state and this is a

coherent  state  and coherent  state  which is  all  we know that.  So,  there  is  a  D alpha

operation that gives a state, so a vacuum state becomes a coherent state and similarly for

the squeezing part.

So, there is a this, and then this, this. So, this is A, this is B again, this is real part of

alpha, and this is imaginary part of alpha, and so this is of course, a squeezed vacuum.

So, we have simply written it as xi and again this is operated upon and one gets coherent

squeeze state. And this is given as alpha xi according to the definitions that we have

given. So, this is more or less the introduction about the coherent states and squeezed

states they are taken up as applications of the quantum mechanics on quantum harmonic

oscillators that we have learnt. 

And  of  course,  there  are  many  many  examples  that  are  used  I  mean  in  optical

communications, in teleportation and so on and various branches of optomechanics. We

will not go into very specific details of these applications, but rather referred to you or,

so references on squeezed states are one is a Y B Band. So, it is a Light and Matter and

Electromagnetism, Optics, Spectroscopy and Lasers, and it is a Wiley publications. 

Number 2 is Scully and M. S. Zubairy, and so this is a quantum optics book we will give

you this let us let me just type out this, and this is from the Cambridge University Press,

ok. So, these are some of the references on the squeezed and the coherent states which

me you may want to look at. And we will move on to another topic. 


