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Symmetries and Conservational Principles in Quantum Mechanics

So, now we are going to talk about the Symmetries and the Conservational Principles in

Quantum Mechanics. 
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So, what do you mean by this is the following. Corresponding to a particular symmetry

that  is  present  in  a  given  quantum  system  there  are  certain  quantities  or  certain

observables which are constant of motion, and corresponding to that constant of motion

there are some conserved quantities, which help us to simplify many aspects of a given

problem. And these simplifications have helped us in developing various things that we

will see along the way. 

And so a very this is known to you from your first course of quantum mechanics that, a

particular  operator  commutes  with  the  Hamiltonian  then  they  share  the  same set  of

eigenfunctions and they can be diagonalised simultaneously. So, these are basically the

symmetric  properties  of  that  Hamiltonian  and  corresponding  to  that  some  quantum

number which is a good quantum number for that operator would remain conserved.



We will explain that as we go along and so symmetries are usually of two kind. So, one

is discrete symmetry or let this so discrete symmetry for example, such as inversion or

parity which is known as parity which we will discuss and may be time reversal etcetera.

Whereas, there are other examples of continuous symmetry, such as rotation and other

things such as you know even like translation etcetera these are. So, corresponding to

this symmetry transformations that is the system remains in variant under a particular

operation such as say translation or rotation there is there are some generators which

would be conserved and it denotes a constant of motion.

So,  for  example,  if  a  Hamiltonian  commutes  with  a  displacement  operator  then

momentum operator is constant of motion of motion or a in other words this implies that

momentum is  a  conserved quantity. So,  p or  k they can be called  as good quantum

numbers. So, here of course, we are taking about linear momentum and similarly the

Hamiltonian. So, this is example 1 and this is 2. So, Hamiltonian commutes with the

rotation  operator  which  also  can  be  read  as  generators  of  rotation  then  the  angular

momentum is conserved, all right.
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So,  Emmy  Noether  formulated  a  theorem  which  showed  a  relation  between  these

conservation laws, and the continuous symmetries that are present in the system. This

you might have also read in classical mechanics in the name of Noether’s theorem.



So, here of course, we will talk about a few discrete symmetry principles, symmetries

and they are namely say exchange of particles then of course, we will also talk about

continuous symmetries and give a few examples which can be given. So, these are the

discrete symmetries are exchange of particles and parity or space inversion, and 3 time

reversal invariants.
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So, let us see one by one and we will only discuss this briefly. So, one is exchange of

particles. So, this the Fermions and the bosons have very distinct properties with regard

to the exchange of particles. So, of course, let us talk about the Fermions to begin with.

So, they have anti symmetric wave function. What we mean is that we have a psi r 1, r 2,

so that is equal to minus psi r 2 r 1. And also there is a Pauli’s exclusion principle and in

a many particle system a psi r 1, r 2, r i, r j and r n this is equal to minus psi r 1, r 2 and r

j r i, r n.

So, as we change the coordinates of a one particle or rather interchange the coordinates

of two particles that is r i going to r j and r j going to r i it picks up a negative sign and as

we do it twice it picks up another negative sign. So, it becomes equal to positive. So,

what it means is that under even number of such transposition or change in the positions

of particle you will have a plus sign appearing which is, so this is minus 1 whole to the

power. So, this factor is like minus 1 whole to the power p, where p is the number of a

changes that are made and so this p is even then we will have a plus sign and p is all we



will have a minus sign. So, this is also a as I said that it is also true in many particle

sense.

And these properties encoded or rather these properties are encoded in a Fermi Dirac

statistics, statistics which are developed by Pauli, Fermi and Dirac this is in 1926. So,

which basically describe the statistical properties of Fermions at low temperature.
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It is important to understand that this anti symmetric property enables writing the wave

function in the form of a Slater determinant, psi to be there is a many particle psi that we

are  talking  about  to  be  written,  ok.  So,  what  are  Slater  determinants?  They  are  the

following that, basically the wave function is written in terms of matrices and we know

that if we change the row or a column interchange a row or a column with another then it

picks up a negative sign the determinant picks up a negative sign. And this is exactly

what is required for the wave function of a many particle Fermi system and also if two of

the rows or the column becomes same identical then the determinant vanishes and this is

nothing, but the exclusion principle.

So,  these are  encoded here and they are of course,  for half  integral  spins,  these are

applicable  to  the  half  integral  spins.  And  the  statics  of  course,  has  a  very  great

applicability  for,  and  applicable  to  large  scale  stability  of  Fermi  systems  and  the

existence of periodic table. 



So,  let  us  talk  about  Boson’s  which  correspond  to  symmetric  wave  functions.  So,

symmetric  wave  function  means  the  symmetric  with  respect  to  the  interchange  of

particles which means that psi r 1, r 2 equal to psi r 2, r 1 and in a many particle sense a

psi r 1, r 2, r i, r j, r n equal to psi r 1, r 2, r j, r i, r n. So, and of course, there is no

constraint on the number of particles that can occupy one quantum state.
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And of course, the important consequences are very well known. So, this was by Bose

and Albert  Einstein in 1924, when they were actually trying to formulate the correct

statistics  for  photons  and  immediately  afterwards  a  Bose  Einstein  condensation  was

proposed below a certain critical temperature for a given bosonic system where all the

particles  will  macroscopically  occupy  one  quantum state.  And  of  course,  this  is  the

buildup of particles in the momentum space corresponding to a momentum k equal to 0.

So, that is a lowest momentum value which all the particles go and occupy below certain

temperature and this was later verified in or experimentally observed by rubidium atoms

and other bosonic atoms in 95. The main impediment was actually achieving a very low

temperature which could be done after you know many years of research in getting or

achieving a low temperature. So, that one can actually see condensate to form. And this

was done by group in Colorado at  boulder  in  1995. And then soon afterwards  large

number of groups have made this BEC which is, so this is called as a BEC, BEC possible

in a variety of systems, alright.



Let us go over to the next symmetry principle which is let us call it as a parity or the

space inversion,  so space inversion and parity. So,  space inversion or parity. And so

basically think of a parity operator P, where P psi r equal to psi of minus r. So, this is

called as even parity when the parity operation, so parity operator operating on the wave

function does not change the sign of the wave function. So, this called even parity and

acting on this gives me minus sign this is called as the odd parity.

So, the equation of motion is i h cross del p del t its equal to P H. So, if the parity

operator commutes with the Hamiltonian this commutator is equal to 0, and one says that

the parity is conserved um. So, which means that the system has a right left symmetry or

it is un has a symmetry if it  the special coordinates undergo an inversion or a parity

operation. So, under this parity operation r the position vector that goes to minus r, p

goes to minus p; however, a J or L goes to J and does not change sign goes to L and

simple reason is that L is equal to r cross p they change sign then of course, the angular

momentum operator does not change sign. J is of course, L plus S which s is the spin

operator.
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So, in general P psi of r equal to epsilon P psi of r. P square psi of r if I operate it again

by the parity operator it gives me a epsilon P square psi of r. Now, this should be equal to

psi of r. So, if you do an inversion once and then again be inverted about some certain

fixed  point  or  certain  fixed  access  then  the  system  comes  back  to  its  original



configuration. So, P squared of psi P square acting on psi r will give me psi r. So, epsilon

P will have values which are plus minus 1 and plus 1 corresponds to even parity and

minus 1 corresponds to odd parity. So, plus 1 has is called as even parity and minus 1 is

called as a odd parity, ok.
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So,  let  us  talk  about  the  third  symmetry  property  that  is  called  discrete  symmetry

property  that  is  called  as  time  reversal  symmetry.  So,  time  reversal  transformation

implies that t goes to minus t. So, it reverses the velocity of particles, but does not affect

positions. So, if r t is a solution of m r double dot t equal to minus gradient of v which is

a force then r of minus t is also a solution of this equation, but the moment we include a

damping term which is proportional to velocity this does not hold good.

So, a term say since it is a damping term on writing it with a minus sign, but that is not

required for this discussion. So, this is gamma and a dr dt which is basically a velocity

term does not validate the fact that r of minus t will is also solution of this. And thus a

term like this actually breaks the time reversal in variants and a practical example of this

not only a damping term like this, but in presence of a magnetic field or in presence of a

magnetic field um. So, this is a. So, it is like q into dr dt cross b again it does not time

reversal  does not hold.  And hence we can say that  the time reverse eigenstates  time

reverse states are not eigenstates of the Hamiltonian are not eigenstates.



And this holds because of the loss of in variants under the reversal of velocities. So, if

the velocities  are  reversed then of  course,  the time reversal  invariants  does not  hold

good. And under this time reversal r of course, remain as r p because its proportional to

the velocity it becomes minus p, and because one of them change sign that the j or l they

change sign minus j or minus l and so on.
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So, let us see what a time reversal operator is. The time evolution of a state of a state is

represented by i h cross del psi del t equal to H psi. Let a time reversal operator be

represented by tau um. Now, if this time reversal operator namely tau commutes with H

the Hamiltonian of the system, then we can write see we just want to introduce a and tau

is an unitary operator. So, i h cross del del t of tau inverse tau acting on psi its tau H, its

H tau inverse tau psi. Now, if we left multiplied with a time reversal operator again then

this becomes equal to this.

Now, since tau H equal to 0 because they commute so a minus i h cross del del t of tau

psi becomes equal to H tau psi, so H. So, if the psi is operated by a tau. So, that still

obeys the same equation of motion and since then if we compare between these two. So,

a tau i h cross del del t of tau inverse that is this part that is there so this is equal to a

minus i h cross del del t.
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So, that tells that if tau psi is equal to psi star then the commutation relation is satisfied.

Thus time reversal operator is simply the complex conjugation operator, ok. We shall in a

while a talk about discrete or rather the continuous symmetries we have been talking

about discrete symmetries. So, we will talk about continuous symmetries and see some

of the examples of continuous symmetries in real systems, and that is what would be the

motives or the objective of the course. From now on that will apply these concepts basic

concepts to various fields of applied fields which are of scientific importance these days. 


