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Dynamical Symmetry in the Kepler Problem (i) 

Greetings, we will discuss unit 4 in this course. This will be on the Dynamical Symmetry 

in the Kepler problem. We will have a continuous discussion on symmetry and 

conservation laws with specific reference to the dynamical symmetry in the Kepler 

problem. 

(Refer Slide Time: 00:41) 

 

For those who joined the course late, let me mention that in unit 1, we studied the 

equations of motion - the Newton, Lagrange and the Hamilton equation of motion. We 

studied the oscillators and we studied the polar coordinate systems in unit 3. We will be 

using the polar coordinates in today’s class. 

We have already had some acquaintance with connection between symmetry and 

conservation laws. We met this in the first unit, where we illustrated this in a few cases. 
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This unit number 4 is specifically designed to discuss the dynamical symmetry. The 

dynamical symmetry is also called as the accidental symmetry in the two-body Kepler 

problem. 

(Refer Slide Time: 01:34) 

 

First, we will recapitulate little bit about the connections between conservation and 

symmetry and associate conservation of an energy with symmetry about temporal 

evolutions. So, we will very quickly recapitulate this, but we will see it coming in a 

slightly different context from what we have seen earlier. What we will do is to find how 

to determine, what physical quantities are conserved, if you know what the equation of 

motion is. 

Given an equation of motion, how do you get a conservation law? That is something we 

will discuss. As conservation of energy comes from the symmetry with respect to 

temporal evolution over a passage of time, the conservation of angular momentum is 

connected with the central symmetry. We will also get this from the equation of motion. 

We will ask that in the Kepler problem. You have these elliptic orbits that you see here. 

This solution is quite correct, but why do the ellipses not press? Why does it not go from 

one to the other in what is called as the Rosette motion because if you look at this from a 

distance, it will look like the petals of the rose. It turns out that neither the conservation 

of energy nor the conservation of angular momentum is sufficient to explain the fact that 

the ellipse does not actually presets and the ellipse does not undergo or rest at motion. 
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So, we will try to understand what is the origin of the fact that the ellipse itself is fixed 

and it does not presses. 

(Refer Slide Time: 03:49) 

 

This is connected to what is known as the dynamic symmetry of the Kepler problem. 

There is the vector quantity, which is conserved and it is along the major axis of the 

ellipse, so that remain fixed. This vector is called as the LRL vector - the Laplace-

Runge-Lenz vector. We will study this. The motivation to study this topic is to explore 

further connections between symmetry and conservation laws. This has very important 

and deep consequences on the foundations of physics, on the very frontiers of physics 

and also in technology. We need to study the mechanics of flights into space and all of 

these things have to come together, when it comes to you. For example, you know the 

rocket technology. 
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This is particularly important for us because we are now in this space age and there many 

scientist, engineers, technologists and entrepreneurs amongst us. These are the people 

behind the rocket science technology. The Russian, however you pronounce it, the first 

name sounds little easier, which is Konstantin followed by family name and then Robert 

Goddard the American and Hermann Oberth, who was the German. These are some of 

the first pioneers of the rocket technology. In our own context, we have Doctor Vikram 

Sarabhai, who is regarded as the father of India’s space program. 

(Refer Slide Time: 05:32) 
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This is especially important for us. ISRO has a large number of space related projects, in 

which we fired rockets and satellites into space. It is obviously very important for 

fundamental physics as well as for high technology. We will study these topics in detail. 

(Refer Slide Time: 05:58) 

 

Of course, gravity plays the most important role in all of this. So, we will begin our 

discussion with the two-Body Kepler problem, in which the two bodies have a 

gravitational interaction between them. As one study this subject further, one will need to 

adapt the formalism to study satellite, orbits and other things. 

(Refer Slide Time: 06:26) 
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We begin this discussion by raising a question that in the Kepler problem. Other than the 

energy and angular momentum, what else is conserved? Is there anything else, which is 

conserved in addition to energy and angular momentum? We also ask a question that for 

a given physical of nature and you know what the physical law is and then can you 

determine what quantities will be conserved? How do you determine this? What is the 

mechanism of discovering the conserved quantities, if the law of nature the physical law 

is already known? 

We can also ask the inverse question that if you observe what physical quantities are 

conserved, then from this, can you deduce what the law of nature is. It is the inverse 

question and ultimately one of the major goals of physics is to discover the laws of 

nature. You could propose it and you could discover it through observation. We use the 

laws of nature to find what physical quantities will be conserved. All ask an inverse 

question from the observation about the conservation of physical quantities, how do you 

get a law of nature? So, we will discuss some of these issues in this unit. 

(Refer Slide Time: 08:10) 

 

We begin by asking this question, how did Kepler deduce that planetary orbits are 

ellipses around the sun? Looking at this Kepler’s picture, what bothers me more is not 

how and why the planetary orbits go around the sun, but why this piece goes around his 

neck. This is something, which bothers me and it worries me about Kepler, even though I 

know that he died in 1630. This is the question and I think you can try to answer it first 
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by asking yourself how would you find what is that trajectory of a planet, if it is known 

that the interaction between the planet and the sun is given by the law of gravity, which 

is G m 1 m 2 by R square and that is the force of attraction between two masses. 

So, how would you solve this problem? I think what you might do is set up the equation 

of motion, which is f a equal to m a. You know F, which is G into m 1 m 2 by R square. 

You know the force, magnitude, direction and differential equation. So, you will solve it. 

From the solution of the differential equation, you will get the trajectory and that is all 

you will solve. 

Now, Kepler did not know differential equations and Kepler did not know that the force 

of attraction between two masses is G m 1 m 2 by R square and that is the reason the 

question that is raised at the top of this slide is how did Kepler deduce the planetary 

orbits or ellipse around the sun so obviously he did not use the technique which you 

would use today 

(Refer Slide Time: 10:25) 

 

What Kepler did was to make use of observation, which was tabulated by Tycho Brahe. 

Tycho Brahe was a brilliant astronomer. He recorded the positions of various planets and 

told how these positions change with time during the course of year. From these 

positions, what Kepler did was a very clever curve fitting. He deduced that if the 

positions of the planets have to be what they were reported in Tycho Brahe’s very careful 
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observations, then the orbits would have to be ellipses. This was a conclusion deduced 

based on very accurate and careful observations recorded by Tycho Brahe. 

(Refer Slide Time: 11:25) 

 

Now, Tycho Brahe was a very brilliant astronomer and he was from Denmark. In fact, he 

had his own Tychonian module of the planetary motion. We mentioned the Copernican 

system Toulmin system in one of our earlier units. What Brahe did was to come with the 

planetary system, which was his own, in which he presume that the planets goes around 

the sun. He had the sun and moon going around the earth, just like Toulmin’s system. So, 

it was a combination of the Copernican and the Toulmin system. 

Although, this has nothing to do with the topic, it is something, which I thought I would 

ask you. If you are asked, what Tycho Brahe’s nose was made of? May be some of you 

know that answer. It was made of gold and the reason it was made a gold is because he 

lost it in sword duel with another student. They wanted to decide between them that who 

was a better mathematician? You are very competitive, but please use some other ways 

of settling, who is the better mathematician. 
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He discovered the core supernova in 1572, in the consolation Cassiopeia. Kepler needs 

access to Brahe’s observations because it was by doing clever curve fitting to Tycho 

Brahe’s data that Kepler finally got the ellipse. It was not easy because Brahe would 

refuse to share his data with Kepler, he was very possessive of his data. He did not want 

to share it with anybody. They quarreled and only on Tycho Brahe’s death bed, he finally 

gave his data to Kepler saying that let me not seem to have lived in vain. Saying this, he 

finally handed over the data to Kepler and then Keplar was able to deduced that the 

planetary trajectories will have to be ellipse. 

(Refer Slide Time: 13:46) 
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Now, the solution you would get by solving the differential equation and plugging F 

equal to G into m 1 m 2 by R square would also be correct. This is dynamics, but this 

came well after Kepler. It came though the development of equations of motions through 

Galileo's law of inertia followed by Newton’s laws of motion, but then also it required 

the knowledge of gravity. 

(Refer Slide Time: 14:25) 

 

This is something for which the two-body problem has to be solved. So, let us quickly go 

through this. You have two masses m 1 and m 2 and these refer to some coordinate 

system. With respect to this coordinate system, you have the respective position vectors 

R 1 and R 2. You have a relatively different vector, which is R 2 minus R 1. There is a 

direction, along which the interaction between m 1 and m 2 takes place. This unit vector 

- r vector divided by its length, gives this direction. So, you get only direction. 

The force by the mass 1 on the mass 2 is given by mass times acceleration. This is the 

force and this is gravity G m 1 m 2 by R square. Likewise, force by 2 on 1 is again mass 

times acceleration for the object one. I have defined the unit vector along the direction, in 

which I have shown from m 1 m 2. This is why this force is along plus u and whereas 

this force is along minus u because they are towards each other. 
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(Refer Slide Time: 15:44) 

 

It also useful to find the centre of mass, which is given by the weighted position vectors 

and weighted by their respective masses. You define a centre of mass, which is in 

between and closer to the larger mass. We develop in approximation, when one of the 

masses is must larger than the other for the solar system, for any planet in the solar 

system or for any satellite of any planet in the solar system. It holds further for moon, the 

earth system and for artificial satellites, which you will launch in due course of time. 

This is the basic algebra, which defines the center of mass coordinate system and it is 

nothing very special about it. 

(Refer Slide Time: 16:41) 
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From this, you can get an expression for the acceleration. So, you can develop any 

equation of motion for the planet in the field of the centre of mass by determining 

acceleration. Since this relative coordinate is just the difference of these two position 

vectors, it is second derivative and it will give you the corresponding accelerations. From 

these two equations, you can just subtract this R 1 double dot from R 2 double dot and 

get the equation of motion. So, this is very simple and straightforward equation of 

motion. This has a magnitude of the distance between that two and this is the cube of the 

distance. So, essentially you are getting an inverse square of force. 

This is your equation of motion and from this equation of motion you can get this 

solution. How will you get the orbit? You have to solve the differential equation and 

from the solution of the differential equation, you will get the actual trajectory - the orbit. 

We have to set it up under the assumption that one of the two masses is much larger than 

the other. It is a perfectly good approximation in the context, which we are discussing 

this. Notice that the constant kappa is determined by the irreversible constant G and the 

two masses are approximated to G times m 1. Here, m 1 is much larger than m 2 and so 

this is the constant. It is determined completely by the irreversible constant and the mass 

of the object 1 has the dimensions of L cube T to the minus 2 and keep track of this. In 

some books and papers, you will find that some other units have been used. Sometimes, 

these terms have been scaled by some other mass constants. So, you may see slightly 

different expression. Kappa has the dimension as L cube T to the minus 2 

(Refer Slide Time: 19:16) 
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Now, this is the equation of motion and what will now do is to take the dot product of the 

equation of motion with velocity. Now, why do we do that? What are you going to learn 

by playing with the equation of motion by carrying out simple straightforward algebra? 

You can actually discover what physical quantities are conserved. So, you do not have to 

learn conservation principles at different postulate. They come from the equation of 

motion. Given the law of nature, you can find what physical quantities will be conserved. 

You could ask inverse question that if you know what physical quantities are conserved, 

can you get the law of nature. 

So, we will first acquaint ourselves or reacquaint ourselves with how you get the 

conserved quantities from the laws of nature. So, the law of nature is built into the 

equation of motion because we have plugged in the gravitational law. That is the law of 

nature that we have plugged in. There is a physical law that we have invoked. We have 

plugged it in and from that we get the equation of motion. What we do now is to play 

with this equation of motion. So, what we do is to write the equation of motion and 

compose this scale of product or the dot product of the velocity with the equation of 

motion. This is exactly what we have done. We have this equation of motion and take the 

projection of this on the velocity. It is r dot dot r double dot and this is a scalar product. 

Likewise, this is r dot dot r from the second term. On the right hand side, you will get the 

number 0. So, this is the dot product of the velocity vector with the equation of motion. 

We know what the velocity is. The velocity is the time derivative of the position vector. 

On the position vector, it has the magnitude and the direction of the position vector, but 

the direction of the position vector is not a constant quantity. So, you must take into 

account that time derivative of the direction is u dot. So, u is the unit vector giving the 

direction. It is time derivative, which is indicated by u dot. It is the rate of change of the 

unit vectors and we will need this, when we deal with the velocity. 

Now, this term r dot dot r is the scalar product of velocity. In the position vector, you can 

easily see that it is nothing but rr dot. You will need the dot product of u dot with u, but 

we have already discussed this, when we studied the plane polar or the cylindrical polar 

or the spherical polar of coordinate system and the changes in the unit vectors. Change 

will always be orthogonal to the unit vector itself, which is why it changes. Otherwise, if 

it has a component, how would that be a change? We have shown this explicitly in the 

case of the polar unit vectors and we do change from point to point. 
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So, this scalar product is given by the product of these two scalars r and r dot. Likewise, 

we need this one also and this one is the scalar product; this is velocity and this is the rate 

of change of velocity, which is acceleration. This is the scalar product of the velocity 

with acceleration. 

In this case, it turns out to be rr dot and this will turn out to be vv dot for the same 

reason. So, you have a simpler form and you can rewrite this to get vv dot for the first 

term and the kappa over r cube times r r dot for the second term. This has come straight 

out of the equation by motion by taking its projection on the velocity. Now, what you get 

out of it is an extremely important quantity in physics. You will recognize that vv dot is 

v times this derivative of velocity with respect to time on the right hand side. Move these 

terms to the right with the minus sin and so it is rr dot over r cube. I have got r over r 

square r over r cube, it gives me 1 over r square. I have r dot, which is delta r by delta t 

and I am changing the limit as delta t going to 0. 

(Refer Slide Time: 24:40) 

 

Having got this, if you now integrate this equation with respect to time, you will easily 

get the integral of the left hand side; it is v square over 2. The integral on the right hand 

side is kappa over r. It is straight one-step integration and of course, there will be an 

constant of integration. I merge the two constants of integration coming from integration 

of this. Integration of this into a single constant of integration is written as E. 
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Now, this is an amazing quantity because what you have discovered from this is the 

conservation of energy. This is the constant of integration; it is the constant and 

therefore, a conserved quantity. We have got this E by integrating this quantity over here. 

If you differentiate this, you go back to this. These are inverse processes and the 

dimensions of E come from the dimensions of that. We have chosen for kappa, which is 

L square T to the power minus 2. It is the dimension of energy that we normally talk 

about. It also has a mass and so m L square T to the minus 2 is the usual dimension of 

energy. 

Here, I have written the dimension of energy as L square T to the minus 2. This is what I 

will be calling as the specific energy per unit mass. So, mass has been taken out and that 

is a reason you do not see m explicitly over here. That is the reason I alerted you to the 

fact that keep track of the dimensions because in some of the box, you will read E equal 

to m v square by 2, which is the kinetic energy. The potential energy will be kappa over 

… All have the dimensions of m L square T to the minus 2 and that will give it different 

dimensions for kappa and keep track of that. So, this is what is called as specific 

mechanical energy, which is energy per unit mass rather than the energy itself. I will be 

dealing with what I shall refer to as the specific mechanical energy. For those who do the 

rocket science, this is a more common term to use. 

How did we get it? We started with equation of motion. We just played with that and we 

just did algebra. We took the projection of equation of the motion on the velocity and 

then we did calculus, we did integration. From the integration, we discovered a 

conserved quantity; namely the energy. Essentially, we got the conservation of energy 

from the equation of motion. We also see that as we arrived at this conservation 

principle, which is the conservation of energy. It is the integration with respect to time 

and differentiation with respect to time, which are inverse process. These were 

intrinsically built for an analysis. 

This should remind us that we are meeting a conservation principle, which obviously 

comes from the fact that the derivative of this energy is with respect to time. It goes to 0 

and there is a symmetry with respect to temporal evolution that as time changes from 

yesterday to today to tomorrow or from t 1 to t 2, the law has not changed. So, there is 

asymmetry with respect to time and it is this symmetry, which is connected with the 

conservation principles. So, this is a theme that we have carried in our discussion in 



 16 

some of these unit, especially in unit 1. Again in unit 4, there is an intimate connection 

between symmetry and conservation laws. 

Here, we see that by doing this integration with respect to time. We discover the law of 

conservation of energy. We have actually deduced it from the equation of motion by just 

doing algebra. All we did was to take the projection of the equation of motion on the 

velocity and then integrated this. 

(Refer Slide Time: 29:43) 

 

Now, let us see if this method really works. Can we get other conservation laws just by 

playing with the equation of motion? Look at the equation of motion, in the previous 

case; we have taken the dot product of the equation of motion with velocity. It leads us to 

a conserved quantity, namely the specific mechanical energy. We saw this in the context 

of the connection between symmetry and conservation law, in the context of the 

Lagrangian or the Hamiltonian formulation that we discussed in unit 1. We recognize 

that the conserved quantity energy is canonical conjugate to the variable t, which really 

does not appear in the Lagrangian. So, there is a symmetry with respect to time and that 

results in the conservation of energy. 
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Now, instead of taking the dot product, let us take the cross product and play with it. We 

have the equation of motion and I am taking the cross product. We will find yet another 

conservation law with this wonderful technique. All we have done here is to take the 

cross product not with velocity, but with the position vector. 

In the previous case, we constructed this scalar product and the dot product with the 

velocity. Now, we take position vector and compose the cross product with equation of 

motion. So, equation of motion has two terms. I take the cross product of each of those 

terms with position vector and get a vector equation. Now, if you see the second term, it 

is the cross product of r with r. So, cross product of two co-linear vector will vanish. It 

means that the first term vanishes. So, r cross the acceleration will go to 0. 

Acceleration is along the direction of the force. Force has a radial symmetry and there is 

the symmetry, which have become manifest. These are the beautiful things in physics 

that the symmetry of the force become manifest in this particular context and that the 

force is radial force. As the result of this, we are going to discover another conserved 

quantity. So, we have got the cross product of the position vector with acceleration, 

which becomes the null vector. 

Now, we use a simple algebraic identity, which is the time derivative of a cross product 

of position. The velocity vector will be the time derivative of the first vector. It is the 

cross product with the second vector plus the first vector and the cross product with the 
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time derivative of the second vector. So, this is just an identity that we have made use of 

and this obviously vanishes. This is the cross product of velocity with itself and now you 

have this, which is the same thing as the force being radium. So, this is the identity, 

which is completely consistent with the fact the forces are the radial vector. 

Now, if this is true, then r cross velocity. If this is the time derivative of the position 

vector, this is the time derivative of a cross product. What is the cross product of this? 

This is the cross product of the position vector r with the velocity of r dot and the time 

derivative of the cross product of the position and velocity. This time derivative goes to 0 

and if a time derivative of any quantity goes to 0, then that quantity is conserved. 

So, the cross product of position and velocity is a constant of motion and that is angular 

momentum, rather it is the specific angular momentum. Angular momentum is r cross p. 

P is momentum and it is mass times velocity, but we are developing these equations in 

units of mass. So, angular momentum is r cross p. Thus, specific angle of momentum is r 

cross v. So, the specific angular momentum is conserved. If you multiply this by mass, 

you have the conservation of angular moment. 

Angular momentum conservation has again come from the equation of motion by simply 

composing its cross product with the position vector and doing simple algebra. This is 

really very interesting. We are dealing with the specific angular momentum rather than 

the angular momentum itself. So, once again we make a connection between 

conservation and symmetry. The quantity, which is conserved is the angular momentum 

or the specific angular momentum. The symmetry is a radial or the central force 

symmetry on the force, so that is this connection between symmetry and conservation 

law that we meet again. 
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We discussed this at some length in unit 1 that the homogeneity of time temporal 

evolution. If it leads to homogeneous equations of motion, we do not change with time. 

You get the conservation of energy and homogeneity of space, in which translational 

symmetry is evolved. It leads to conservation of linear momentum, isotropy of space, 

rotational symmetry and central field symmetry. You get conservation of angular 

momentum and this is the essential content of the Noether’s theorem, which we 

discussed in unit 1 to some extent. 

(Refer Slide Time: 36:55) 
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Now, let me remind you, as it is a very important feature - the invariance of the 

Lagrangian with respect to time. The Lagrangian and Hamiltonian formulation lead to 

the conservation of energy. 

(Refer Slide Time: 37:13) 

 

Likewise, if you consider displacements in space and this again, we discussed at some 

length in unit 1. So, I will not spend any time in discussing this any further, but I will just 

remind you. You have seen these slides and equations in unit 1. I would not spend my 

time on that. I will just remind you that because the space is homogeneous; from the 

Lagrangian’s equation, you find that the conservational momentum comes from the 

homogeneity of space. 
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We also studied in unit 1 that if you consider virtual displacement of a system of 

particles, which is interacting within itself, then the net virtual work done is 0. If this 

displacement is arbitrary, then the sum of these internal forces must vanish. It let us to 

recognize that the linear momentum is the conserved quantity, which again comes from 

the homogeneity of space. So, this came from the discovery of Newton’s third law. 

Instead of learning it as a law of nature, we could actually get it from the properties of 

translational invariance in homogeneous space. 

(Refer Slide Time: 38:45) 
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We discussed the possibility that given the symmetry related to translation in 

homogeneous space, could we discover Newton’s third law? The answer is yes. So, this 

is one way of getting to the… We have discussed how to get conservation principles 

from the equation of motion, for which you need the law of nature and the physical law. 

Giving the physical law, you find the conservation principles. are what quantities are 

conserved or you could ask if you know what quantity is are conserved how would you 

find the law of nature what is the physical law 

(Refer Slide Time: 39:27) 

 

So, this question is very nicely framed in this particular fashion. Are the conservation 

principles consequences of the laws of nature? Or, are the laws of nature the 

consequences of the symmetry principles that govern them? The thinking in the physics 

community has changed with Einstein. Until Einstein came up with the special theory of 

relativity, one believed that the conservation principles are the result of the laws of 

nature, which is what we did in the previous two cases. 

We began with the equation of motion. From that we deduced what quantities are 

conserved, but Einstein began to look at the conservation principles as consequence of 

the underlying symmetry. Using this connection, they learnt to discover what are the 

physical laws, which govern them. So, this suggest a recipe of discovering laws of 

nature, which is one of the primary goals of physics. 
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I illustrated this in the case of the Newton’s third law, which we did in detail in unit 1. 

We will quickly recapitulate that we deduced Newton’s third law from symmetry and 

invariance, rather than the other way around. This approach places symmetry ahead of 

the laws of nature. The people who contributed to this process began with Einstein and 

this is contained in a very famous theorem known as the Noether’s theorem. Next, 

Eugene Wigner, who seriously illustrated these ideas using group theoretical methods, 

but those are obviously beyond the scope of this course. 

(Refer Slide Time: 41:52) 
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Now, let us play with the equation of motion a little bit further. We have already 

discovered very nice feature out of it. Now, we have this specific angular momentum, 

which is the conserved quantity. Now, what we will do is construct the cross product of 

the specific angular momentum with the equation of motion. Again, we are playing the 

equation of motion. 

We will begin with the equation of motion. It took its projection of velocity and got the 

conservation of energy. We began with equation of motion and took the cross product 

with the position vector. We discovered the conservation of energy, conservation angle 

of momentum. Now, we began with the equation of motion. We constructed the cross 

product of the equation of motion with the specific angle of momentum and ask 

ourselves- is this going to lead to any new conserved quantity? If it does, what is the 

associated symmetry and that is the question that we will now address. We are used to 

the fact that if there is conserved quantity, there will be an associated symmetry and vice 

versa. 

We also got use to the idea that given the equation of motion, we can discover new 

conserved quantities. So, we play some more and think about constructing the cross 

product of the equation of motion with H, which is the specific angular momentum. Will 

it lead us to another conserved quantity? Yes or maybe, no. Let us do this and find out, 

but let us also keep this in mind that if we do run into another conserved quantity, what 

kind of symmetry will be associated with this. That is the another question that we shall 

need to deal with. 

Let us construct the cross product of the equation of motions. So, this is the equation of 

motion. We construct the cross product of this equation of motion with the specific 

angular momentum, which I write as H. H cross r double dot is the first term and H cross 

r multiplied by this kappa over r cube coming from the second term equal to a null vector 

is a result that we get. This is just algebra and this is the vector algebra 
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This is what we have. We have composed the cross product of the equation of motion 

with the specific angular momentum H itself. I only use the definition of H, which is the 

angular momentum, rather than the specific angular momentum, which is r cross v. I 

have read it in this, instead of H. I have used r cross v over here and now, I got the cross 

product of r cross v with another vector - r cross v cross r. So, this is the famous bac-cab 

rule. 

You can expand this cross product, in which there are three vectors and this cross 

product will give you the r dot r coming from the outer product. This is the one, which is 

in the middle and comes here as minus the dot product of this outer vector with the 

adjacent vector, which is r dot v times the remote vector, which is r. So, this is the 

famous bac-cab rule, which I have used over here. I have simply rewritten this, after 

expanding this vector product. 

Now, what we need is this r dot v r dot r. Of course, we already know r square and we 

need r dot v. So, let us determine this and v is the time derivative of the position vector, 

which is the magnitude times direction and this will be rr dot. As we have seen in the 

previous case, this is rr dot dr by dt, which is the rate of change of the magnitude of the 

position vector. Now, what if you combine these results, you have H cross acceleration 

coming from the first term. In the second term, you have kappa over r cube and what you 
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have in this bracket is r square v minus r dot v is this rr dot and this position vector r. So, 

this is just a simplification of this algebraic relationship that we have been dealing with. 

(Refer Slide Time: 47:10) 

 

Let us play with this further. We recognize the fact that if you take the time derivative of 

this cross product of H with v, this will give you d H by dt cross v plus H cross d v by dt. 

Here, d by dt of H cross v will give you d H by dt cross v plus H cross d v by dt, but d H 

by dt is the rate of change of the angular momentum. We already know that the angular 

momentum is conserved. So, d H by dt will vanish and you have the second term, which 

should go to 0. So, you get the time derivative of H cross velocity, which must be equal 

to H cross r double dot. This is the quantity, which is appearing in the first term over 

here. So, for the first term, we can write the time derivative of H cross v. I written the 

time derivative of H cross v and the remaining terms. I have written as r and the whole 

thing equal to 0. 

I now take this 1 over r cube inside this bracket. So, r square 1 over r cube gives me 1 

over r. The first term become v over r and the second term gives me r dot over r square. 

This r square will cancel r square and will give me only 1 over r, but there is a unit vector 

over here. So, I write it as r over r square. Remember that all we have done is to use 

equation of motion played with it. You take the cross product with this specific angular 

momentum. Everything else is the consequence of the vector algebra and no new 

principles are inserted in our analysis. 
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Now, what we have, if you look at this quantity here, v over r minus r dot over r square. 

This is nothing but the derivative of this unit vector because this is the derivative of a 

ratio. So, it is 1 over r times d r by dt 1 over r times the rate of change of the position 

vector, which is velocity over r. Then, minus the position vector times the derivative of 1 

over r, which is minus 1 over r square and that is what you see over here. 

This second term can easily been seen as the derivative of this unit vector. Having 

recognized this, we noticed that the two terms involve time derivatives. You can write 

this as a common differential operator and time derivative of the first term. It is H cross v 

plus kappa times this unit vector. What you have here is a conserved quantity because 

the quantity in this bracket must be conserved, since its time derivative vanishes. 

Do you see how we got a conserved quantity? We began with the equation of motion 

played with it. We did some algebra by taking the projection of the equation of motion 

on the velocity. We discovered the conservation of energy, when we constructed the 

cross product of the equation of motion with the position vector. We discovered the 

conservation of angular momentum. 

Conservation of energy is associated with symmetry and with respect to time evolution. 

Conservation angular momentum or specific angular momentum is connected with the 

central field symmetry or the rotational symmetry. Now, we have discovered that by 

composing the cross product of the equation of motion with this specific angular 

momentum. We have discovered that d by dt of this quantity in this square bracket goes 

to 0, which means that the quantity in this square bracket is constant. Therefore, we have 

discovered a conserved quantity and it does not look over. Energy does not look like 

angular momentum. What is it? It is a new physical quantity, which is conserved. 
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This is the conclusion that we get. The time derivative of this combination of vectors 

goes to 0, which means that the vector inside this square bracket is equal to some 

constant vector. I call this constant vector as minus A. It does not matter and minus sin 

has got no specific meaning, you can always write it as b and say that that is the constant 

vector that define negative of that. It does not matter minus A is as constant or A itself 

because minus 1 does not change in physics. 

Here, we discover a conservation principle and it is not one of the usual conserved 

quantities. It is not energy, it is not angular momentum and this is a new conserved 

quantity, which we have arrived. We have arrived at this by playing with the equation of 

motion and this quantity is called as the Laplace Runge Lanze vector. It is got a very nice 

name; this is the Laplace Runge Lenze vector. Depending on what book you are reading, 

you might read this differently. Instead of v cross H, you might read it as p cross l, where 

p is the linear momentum and l is the angular momentum. I am developing it, in terms of 

this specific mechanical energy, this specific angular momentum. So, the mass does not 

appear in this, but it is the same vector and same physics. 

This quantity call is the Laplace Runge Lenz vector and this is the definition of the 

Laplace Runge Lenz vector. It is v cross H in the units, which we are developing in 

algebra. We cross, H minus kappa time 0 and this is the constant of motion. It is the 

conserved quantity and we have discovered a constant of motion, yet again by just 
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playing with the equation of motion. I want remind you that the dimensions of kappa are 

L cube T to the minus 2. The dimension of v cross H will be L cube T to the minus 2 

because if you see p cross L, you will have different dimensions. 
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Now, we will take a break at this point. If there is any question, I will be happy to 

answer. We will continue from this point in the next class. So, these are some reference, 

which I would like to bring to your attention. This is very nice book by Montenbruck and 

Gill on satellite orbits – Models, Methods and Application that you might want to read, 

Francis hale has a book on Introduction to Space Flight and you might to want to read 

that book. We will take a break after this. In the next class, we will discuss the dynamical 

symmetry of the Kepler problem because we have discovered the conservation principle. 

Now, you must ask what associated symmetry is. When we discover the conservation of 

energy, we knew that the symmetry involves a symmetry with respective temporal 

evolution changes in time translation along the time access. When we ran into 

conservation angular momentum, H is the specific angular momentum. We associated it 

with the central field symmetry with the rotational symmetry. Now, we have done into a 

new quantity, which is conserved; namely the conservation of the Laplace Runge Lanze 

vector, which is the constant quantity. We must ask what the associated symmetry is. So, 

we will discuss this question in the next class. Thank you. 


