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Dynamical Symmetry in the Kepler Problem (ii) 

We will continue our discussion. What we did in the previous class was we began with 

the equation of motion, played with it and discovered various conservation laws. 

 (Refer Slide Time: 00:34) 

 

One of the quantities that were conserved was Laplace-Runge-Lenz vector. What we will 

do now is use this to get the equation to the orbit. Again, there is a novelty in this process 

because whenever you solve an equation of motion, which is the purpose of the goal of a 

problem in classical mechanics. It is to find what characterizes the mechanical state of a 

system and how does the system evolve with time. When you solve this problem, you get 

the trajectory of the particle or the system in the phase space or in the configuration 

space, you get the trajectory or you get the orbit. It means a closed trajectory, which is an 

orbit, but essentially you are looking for the solution. You are looking for the trajectory 

and you have to find that the problem in mechanics is to find this trajectory. The method 
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to get this trajectory is by solving differential equations, either the Newton’s equation or 

the Lagrange’s equation or the Hamilton’s equation. 

What we will do is just play with this Laplace-Runge-Lenz vector. We will not solve the 

differential equation and we will not solve the equation of motion, but still we get the 

trajectory. It is not that fun and let us see how we do that. We will get it by simply taking 

the scalar product of the Laplace-Runge-Lenz vector with the position vector and that is 

all you do. By taking this scalar product, we will get the orbit equation, which is 

completely different process and solving the differential equation to get a trajectory. 

(Refer Slide Time: 02:57) 

 

Let us take the dot product with the vector r and you have two terms. Here, r is the radial 

vector. So, the dot product of kappa times e rho with r gives you kappa r. On right hand 

side, you got the dot product of the Laplace-Runge-Lenz vector A with the position 

vector. 

Now, let us reverse the signs in this equation. Instead of v cross H, I have H cross v in 

the first term and instead of this minus sign, I have got a plus sign over here. On the right 

hand side, I get a minus sign over here. So, I just do a sign reversal and have got triple 

product. I can always interchange the cross and the dot and let us do that. It is H dot v 

cross r plus kappa r. We have met this quantity earlier as v cross r, it is the negative of 

the specific angular momentum. Here, r cross v is the specific angular momentum and v 

cross r is the negative of the specific angular momentum. 
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Now, we have the dot product of H with the negative of H, so that gives us minus H 

square and you have kappa r. Thus, this is equal to minus A dot r, which is A r cosine 

phi, where phi is the angle between the Laplace-Runge-Lenz vector and the position 

vector. 

(Refer Slide Time: 04:46) 

 

If we look at this equation, this already gives us the orbit equation. It tells you the 

relationship between r and phi, which is what an orbit equation is. Some of you will 

recognize what this equation is, but we will rewrite this in a form, which is more familiar 

to us. So, we will just carry out some transformations. 
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(Refer Slide Time: 05:59) 

 

I take r as common between this term and this term and bring H square to the other side 

of the equation. It is r times kappa plus a cos phi equal to H square, which essentially 

means that r is equal to p over 1 plus epsilon cosine phi, which is an equation for the 

ellipse. This is in a very familiar form in polar coordinates. The equation to the ellipse is 

essentially p over 1 plus epsilon cos phi, epsilon being the eccentricity. So, this equation 

and this equation is no different. It is just a rearrangement of that equation. We got it 

simply by constructing the scalar product of the Laplace-Runge-Lenz vector with the 

position vector. We did not solve any differential equation and we did not integrate the 

equation of motion, but we got the trajectory. Is it wonderful or not? 
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(Refer Slide Time: 06:25) 

 

Here, we got this as the equation to the ellipse and this is the kind of geometry we are 

working with. We need to find what this eccentricity is and this eccentricity e or epsilon 

is coming as a ratio of the magnitude of the Laplace-Runge-Lenz vector with kappa, but 

this is in our own units. In some other units, some of the constants will be cancelled, 

when you take this ratio. 

(Refer Slide Time: 06:55) 

 

We need to get that eccentricity and to get that what we do is to take the scalar product of 

the Laplace-Runge-Lenz vector with itself. So, we take the scalar product on the left 
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hand side with itself and the scalar product of the right hand side with itself. So, A dot A 

will give us a square on the right hand side. On the left hand side, we have got v cross H, 

which is nothing but H v times the unit vector because H is obviously orthogonal to v . 

The angle between H and v will have to be 90 degrees because H is defined r cross v, so 

it has to be orthogonal to v. 

There is no angle between H and v, other than 90 degrees. It is always phi by 2 and this 

dot product of v cross H will give us the square of H v. The dot product of this quantity 

with itself will give us kappa square. This is just the unit vector dotted with it, which 

give you the number 1. So, the dot product of this quantity with itself give us kappa 

square and you have got the cross terms between these. Since the scalar product is 

commutative, you get a factor of 2 over here. You should have a minus sign, but I have 

written it with the plus sign because instead of v cross H, I have written an H cross v 

over here. 

This is the result that we get and we now have this H cross v sticking over here. We 

expand this because H itself is the specific angular momentum as r cross v. We will carry 

out this expansion, so this is the dot product of this outer vector with v times; the middle 

vector v minus the dot product of this vector v with the adjacent vector v gives us v 

square times the remote vector, which is r. This is again the bac cab rule, which I have 

used. We have got this H cross v and now what we need over here is H cross v dot r. We 

got H cross v and we take its scalar product with the position vector r. We take the scalar 

product of this right hand side with the position vector r. So, you are already have a v dot 

r and from the projection of v on r, we get another v dot r over here. From the second 

term, we have minus v square and then the dot product or the scalar product of this 

position vector with r. So, this is minus v square r dot r and if the angle between v and r 

is xi, then v dot r is v r cosine xi. So, you get the square of this because there are two of 

these terms. 

It is v r cosine xi square and you have a v square over here. So, you can take the v square 

r square as common and recognize that 1 minus sin square theta. You get the minus sign 

common and the result is v square r square sin square xi. This is what we get for this 

term over here. So, let us simplify this and this equation, which has H v square in the 

first term. In the second term, you have 2 kappa over r; there is a plus sign, but this box 

H cross v dot r has got a minus sign over here. So, the result is minus 2 kappa over r, 
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which is this coefficient here and then the v square r square sine square xi. This kappa 

square comes here and you have the square on the right hand side. So, there is no new 

analysis, it is just a rearrangement of terms. Now, this is a very nice form because you 

can recognize this v r sin xi to be the magnitude of the specific angular momentum 

because that is r cross v. 

(Refer Slide Time: 11:21) 

 

I take H cross square and H square as common in the first two terms. It is already sitting 

there explicitly in the first term. Since I have taken it as common, I must divide the 

second term by H square. I leave alone the third term as kappa square. I can cancel this 

denominator, H square with this v square r square sine square xi because H is r cross v. 

So, it is r v sin xi and that is the magnitude of H. The square of it, in the numerator 

cancels the square of it at the denominator. 

Now, you have a rather simpler form, in which the sin of the angle disappears; the sin xi 

disappears, v square minus twice kappa r is twice the energy. This is in units of mass 

because this is the specific mechanical energy - m v square by 2. This is what we will 

interpret as the kinetic energy and this is v square, so it is twice the kinetic energy and 

this is twice the potential energy, twice the specific kinetic energy plus twice the specific 

potential energy because that how we have defined kappa. So, this is nothing but twice 

the energy. So, H square twice the energy or specific mechanical energy plus kappa 

square equal to A square. Rearrange these terms, in which you can divide this entire 
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equation by kappa square. It gives us A over kappa and we needed that A over kappa to 

get the eccentricity. If you remember, we got the equation to the ellipse. We had the 

eccentricity, but the eccentricity was in terms of A over kappa. Now, we have in terms of 

known quantities, which are the energy and the angular momentum. A over kappa is this 

quantity, it is the square root of the left hand side. So, it is the square root of 2 EH square 

over kappa square plus 1. 

(Refer Slide Time: 13:49) 

 

This is the complete orbit equation in polar coordinate. So, this is the equation to the 

ellipse. We have achieved a lot by playing with the equation of motion. We discovered 

various conserved quantities. 
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(Refer Slide Time: 14:09) 

 

We connected these conserved quantities with symmetries. These are obviously 

extremely important relations in rocket technology, in satellite trajectories and so on. 

Depending on the eccentricity, you will get different kinds of orbits. So, you may have 

an open trajectory, you may have an hyperbola. If the eccentricity is greater than one, 

you may have a parabola. If the eccentricity is exactly equal to 1, you may have closed 

orbits. If the eccentricity is less than 1, it is the ellipse. It is degenerate with the major 

axis and the minor axis. If they are equal, you get a circle. So that is what will happen, if 

the eccentricity is 0. These are of course very important in rocket technology, satellite 

shaping, orbit shaping and so on. 
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(Refer Slide Time: 15:05) 

 

You have to really maneuver these eccentricities. If you have a deep space probe, for 

example, you need to launch the object and let it go outside the earth’s gravitational pull 

in closed orbits. You might have to send it in hyperbolic orbit and this is what is called as 

orbit shaping. One really has to adjust these parameters to get decided trajectories. 

(Refer Slide Time: 15:40) 

 

Here you can see that these eccentricities can be easily adjusted by changing the ratio of 

the major axis to the minor axis or vice versa. 
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(Refer Slide Time: 15:56) 

 

These are the essential parameter and this distance is the minimum distance. Let us deal 

with the ellipses because these are the closed orbits that we have to work with, for 

satellite trajectories or for orbits of planets in the solar system. The closest approach is 

what is called as the perigee and this is the point of perigee. The minimum distance will 

be given by this term, when the denominator is the largest. This will happen, when the 

cosine is the largest and this will happen, when the angle is 0 because for phi equal to 0 

cosine phi becomes plus 1, which is the largest value that it can take. 

(Refer Slide Time: 16:58) 
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The minimum distance to the perigee is p over 1 plus epsilon. The apogee is the 

maximum distance, which is p over 1 minus epsilon. You can see that if you just add 

these distances r and r prime from the 2a to foci, then this 2a is a constant. You can get it 

simply by adding the minimum distance and the maximum distance. This allows us to 

write the numerator p, in terms of the eccentricity and half the major axis. So, this is a 

familiar form, in which you write the orbit equation. For a degenerate ellipse, 

eccentricity is 0 and so this will be minus kappa over 2a. 

(Refer Slide Time: 17:55) 

 

These are just rewriting these relations in known forms and in more familiar forms. Of 

course, these are important for various technology applications. It means I do not know if 

you are listening to my lecture or under the desk, you are using your cell phone to send 

sms or joke to your friends. These cell phones require GPS system and all of these GPS 

systems are monitored by various satellites. 

At any given time, there have to be a certain minimum number of satellites, which are 

visible from a point in space. You can see that all of these orbit equations and all the 

properties, which govern the orbit equations are the conserved quantities. These are 

changed is by firing rockets, if you want to do some orbit shaping. these are essential 

elements of modern technology. 
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(Refer Slide Time: 19:01) 

 

Now, what I will be doing is to use the polar coordinate systems and we have discussed 

this unit 3. So, I will not spend any time in developing the polar coordinate system. I will 

use it and I will just remind you that in the polar coordinate systems, we could do with 

the plain polar coordinate system, but we also have dealt with the angular momentum, 

which is perpendicular to the plane of the orbit. If you want, you can think of the 

cylindrical polar coordinate system. 

Motion is confined to a plane because angular momentum is conserved. This is the 

specific angular momentum rho square phi dot. The angular momentum is in the 

direction e z, which is perpendicular to the plane of the orbit. In this coordinate system, 

we will work with the Laplace-Runge-Lenz vector, which is v cross H minus kappa 

times e rho and e rho being the polar unit vector along the radius in the plane. 
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(Refer Slide Time: 20:04) 

 

Now, let us have a look at the direction of the Laplace-Runge-Lenz vector. This direction 

is given by v cross H minus kappa e rho. So, this is the direction of e rho, this is the 

direction of the velocity of this planet going round the sun. The angular momentum is 

out of the plane in this figure and it is towards us. This is the manner, in which this 

ellipse is going that is the manner, in which this planet is going in this plane. So, this is 

the direction of the angular momentum, which is seen by an arrow that is perpendicular 

to the plane of the screen pointed towards us. So that is the direction of angular 

momentum. Therefore, you can determine the direction of v cross H. 

You need the direction of v cross H and from this v cross H, you must subtract kappa e 

rho to get the Laplace-Runge-Lenz vector A. Now, we have got v, we have got v cross H 

and from this, you must subtract kappa times e rho. Here, e rho is from the sun to the 

planet in the direction of the position vector. So, this is the direction of e rho. This black 

arrow over here is minus e rho. It has a direction opposite to it, but parallel to it and 

scaled by the factor kappa. 

So, minus kappa e rho will be anti-parallel to e rho. So, this is minus kappa e rho, if you 

take v cross H minus kappa e rho. You have to take this vector as v cross H minus kappa 

e rho. So, the Laplace-Runge-Lenz vector will be this red vector and this is the direction 

of Laplace-Runge-Lenz vector. 
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Let us have a look at the time derivative. We already know it is a conserved quantity and 

so its time derivative must vanish. Let us confirm that its time derivative actually 

vanishes because we have not done that. We got the conserved quantity by playing with 

the equation of motion. Now, we reassure ourselves that its time derivative vanishes. So, 

let us take the time derivative of the Laplace-Runge-Lenz vector. 

The time derivative of the Laplace-Runge-Lenz vector will be dv by dt cross H plus v 

cross dH by dt from the time derivative of this term. Kappa is a constant and then you 

have the time derivative of the unit vector. These unit vectors change from point to point 

and from time to time though the time derivative of the angular momentum. Of course, 

they vanish because angular momentum is conserved in the central field. So, dH by dt 

will go to 0. Now, you are left with these two terms - dv by dt cross H minus kappa time 

d by dt of e rho, but this we know from our knowledge of the plane polar coordinate 

systems. 

We had done this is in unit 3 that the time derivative of the unit vector e rho is equal to 

phi dot times e phi. The change in any unit vector is always orthogonal to that. So, the 

change in unit vector e rho will be along e phi. Its magnitude is something that we 

determined explicitly in the previous unit 3. We found that de rho by dt is equal to e phi 

times phi dot. This is the term, which will go here. So, de rho by dt will be replaced by 

phi dot times e phi, so let us do that. 
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(Refer Slide Time: 24:27) 

 

We have dA by dt, which is the rate of change of the Laplace-Runge-Lenz vector equal 

to dv by dt cross H minus kappa times this quantity, which is phi dot e phi. That is the 

relation that we have on the screen as dA by dt is dv by dt cross H minus kappa phi dot e 

phi. 

Now, what do we need we need? It is dv by dt and that is acceleration. Acceleration is 

the force per unit mass, so it is the specific force. We are defining; we are developing 

this entire analysis for these quantities, which are qualified by the term specific. We dealt 

with the specific mechanical energy, we dealt with the specific angular momentum and 

now, we deal with the specific force, which is the force per unit mass. It is acceleration 

because F is equal to ma, so per unit mass and it is dv by dt. 

What we now need is dv by dt or in other words, we need the force and we need the 

interaction. What is this interaction? This interaction must be plugged to find what dA by 

dt is. Unless we know the interaction, we cannot proceed. We must write the explicit 

value for dv by dt, so we need the force. 
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(Refer Slide Time: 25:45) 

 

Now, this force is the potential energy minus kappa over r. The force is the negative 

gradient of the potential. So, we know that this force is minus kappa over rho square. It is 

the negative gradient of the potential. So, we put dv by dt equal to minus kappa over rho 

square times e rho. Instead of this quantity - d dv by dt, we have this minus kappa over 

rho square e rho. Now, everything is written in terms of these polar quantities rho, phi 

and the constant kappa. You already know that in the cylindrical polar coordinate 

system, e rho e phi e z constitute right hand side of unit vectors. So, the cross product of 

e rho and e z is equal to minus e phi. So, minus e rho cross e z is what you have over 

here. This minus sign e rho cross e z is equal to e phi itself. 

You find that the first term is exactly equal to the second term. You got a phi kappa phi 

dot scaling the unit vector. The first term and the second are exactly equal and they 

cancel each other. The time derivative of the Laplace-Runge-Lenz vector vanishes. We 

have reassured ourselves that the Laplace-Runge-Lenz vector is a constant, not 

surprisingly because we got it as a conserved quantity. 

In ensuring that it is a conserved quantity, we did make use of the fact that the force is 

one over r square. This one over r square has been used in assuring that the Laplace-

Runge-Lenz vector is a constant. If we had not used this, we would not have been able to 

convince ourselves that A is a constant of motion. 
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(Refer Slide Time: 28:17) 

 

If you have this ellipse and there is a certain quantity, which is conserved quantity. In the 

previous figure, you saw that it was from the focus to the perigee and the constancy of 

this vector is what that really prevents this ellipse from précising that you have an ellipse 

like this. The reason that it is not precise and goes to another orbit is the conservation of 

energy or conservation of angular momentum. They does not guaranty that the ellipse 

will not precese what guaranties that this direction from the focus to the perigee is fixed. 

If that direction is fixed, the ellipse itself is fixed. So, this is the reason that there is no 

Rosette motion because if you look at these precesion from a distance, it would look like 

the petals of a lovely rose, The motion is still beautiful, even if it is not Rosette. 

In this Rosette motion, the angular momentum is conserved; the energy is conserved, but 

the orbit is not fixed. So, the fact that the two body Kepler problem is the same thing 

with the Bohr problem in quantum mechanics. If you look at the hydrogen atom, you 

have an electron, which is going around the proton and the potential is 1 over r. The 

force is 1 over r square is the coulomb force in this case. It is a great wonder of nature 

that gravitational force and the coulomb force are 1 over r square forces. 
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(Refer Slide Time: 30:38) 

 

Now, this potential for the associated orbit, we can find that the orbit remains fixed. The 

fact that the force is 1 over r square was an integral factor in proving in our previous 

slide. As you see here, this dv by dt is the force equal to 1 over r square. Force is an 

essential part of the proof that the Laplace-Runge-Lenz vector is a constant. If this were 

not there, the first term would not have cancelled the second term to give 0. These two 

terms - the first term and the second term, they had to kill each other exactly and then 

only Laplace-Runge-Lenz vector will be a constant. 

(Refer Slide Time: 31:19) 
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We need to know the force and let us have a look at the geometry once again. You can 

immediately see that the Laplace-Runge-Lenz vector must be orthogonal to the angular 

momentum. If you take the dot product of the Laplace-Runge-Lenz vector with H, the 

first term is a triple product with H appearing twice, so it would vanish. The angular 

momentum is orthogonal to the position vector, so this scalar product goes to 0. That 

tells us the angular momentum, the Laplace-Runge-Lenz vector is on the plane of the 

orbit, but in which direction is in the plane. 

You can draw a number of vectors in this plane, so let us draw it. We know that it is in 

the plane of the orbit. Let us find what its direction will be and let us do it for just one 

point. Let us determine it at the perigee and this is the perigee. What is the direction of v 

cross H at this point? V is from bottom to top, H is from the plane of the paper to (.) So, 

what is the direction of v cross H? V cross H minus kappa e rho. Here, e rho is from the 

focus to the perigee minus e rho. It is like this. You can find that the direction of the 

Laplace-Runge-Lenz vector is from the focus to the perigee. What is going to happen, if 

this is the direction of the Laplace-Runge-Lenz vector for the point at the perigee? It will 

have to be the same, no matter where the planet is because it is a constant of motion and 

it is a conserved quantity. 

Throughout the orbit, the planet is in the direction of the Laplace-Runge-Lenz vector. 

We will always be this and we now know that if the direction is always from the focus to 

the perigee, then the direction of the major axis itself becomes fixed. The ellipse gets 

fixed and the ellipse cannot precese. So, there will be no Rosette motion and the fact that 

there is no Rosette motion is because of the conserved quantity that the Laplace-Runge-

Lenz vector is the constant of motion and it is a conserved quantity. Now, we ask the 

question that we know what fixes the orbit; it is the constancy of the Laplace-Runge-

Lenz vector. 
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(Refer Slide Time: 34:22) 

 

We have used the fact that the force is 1 over r square. Now, we know 1 over r square is 

the force between two masses because Newton told us. You and I did not discover the 

law of gravitation, I certainly did not and I do not know about you. We got it from 

Newton and in fact, the first person to know about it was Halley. After whom, Halley’s 

comet is famous and this is very interesting because you know that we discussed earlier, 

how Kepler deduced that the orbits are ellipses. 

Kepler said that the orbits are ellipses because he did curve fitting to his experimental 

data. Halley later asked this question to Newton, what would be the orbits? What will be 

the equations to the orbit? What will be the trajectory like? Newton said it would be an 

ellipse, but Newton’s basis was different. He did not say it on the basis of Kepler's laws 

nor on the basis Tycho Brahe of data. Newton had invented calculus at the age of 22 or 

23. There was no idea of function limit etc. So, he invented calculus and set up the 

differential equations. He deduced and he discovered the law of gravity. So, he was able 

to plug in that force in F equal to ma and then integrate it to get the ellipse. It was a 

totally different ball game. 

Now, we again invert the question that given the constancy related to conservation of 

Laplace-Runge-Lenz vector, could you have discovered the law of gravity? You know 

that the law of gravity is essential to the demonstration of the fact that the Laplace-

Runge-Lenz vector is a constant and 1 over r square was essential. Now, if you did not 
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know that 1 over r square is the nature of gravitation force, could you have discovered it, 

if you had known that the Laplace-Runge-Lenz vector is constant. So, this is the moral of 

the story that you can invert these questions and discover the laws of nature by looking at 

these constant quantities. You have a conservation principle and from this conservation 

principle, you can deduce what the law of nature is. 

(Refer Slide Time: 37:30) 

 

There is one question that remains to be answered, what is the nature of the symmetry? 

You got a conserved quantity, which is the Laplace-Runge-Lenz vector. What is the 

symmetry associated with this? When we encountered the conservation of energy, we 

discovered the symmetry, which is symmetry with respect to changes in time evolution 

with respect to time. When we met the conservation of angular momentum, we 

connected with the symmetry with respect to rotations. 

As I pointed out, I want to repeat this point that Eugene Wigner elucidated to us that it is 

natural for us to try to derive laws of nature. Test their validity by means of the law of 

invariance rather than derive the laws of invariance that we believe to be the laws of 

nature. This is invert thinking, which can lead us to new physics. We can discover new 

laws of physics using this technique. 
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(Refer Slide Time: 38:48) 

 

The symmetry associated with the constancy of the Laplace-Runge-Lenz vector is the 

fact that the force must be 1 over r square that the potential must be 1 over r. It is not a 

geometrical symmetry, it is not like something like rotation and it does not changes. It is 

not like translational symmetry, like taking an object from here to here in homogeneous 

space or it is not like taking an object and rotating it in isotropic space, in which the 

properties of space are the same in all directions. So, this is the different kind of 

symmetry. You can call it as an accidental symmetry, if you like. In fact, this was called 

as accidental symmetry, but a more appropriate term for this is dynamical symmetry. The 

reason it is called as dynamical symmetry because it comes from dynamics. 

It comes from the cause effect relationships; it comes from the nature of the interaction. 

The nature of the interaction between these two masses is given by the 1 over r potential 

gm and m 2 by r. The force is given by the corresponding 1 over r square law and it is 

this dynamics; it is this nature of the physical interaction, which goes in to the heart of 

the constancy of the Laplace-Runge-Lenz vector. This is connected with the 

conservation principle and this conservation principle has a corresponding symmetry as 

one would get from Noether’s theorem. This symmetry is therefore called as dynamical 

symmetry and this is known as the Laplace-Runge-Lenz vector. Lenz name is also 

associated with this and this is not the same Lenz, who we meet in the Faraday Lenz law. 

This is the Lenz Wilhelm, who dealt with the quantum mechanics of the hydrogen atom. 
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You also have 1 over r potential and there is a similar feature, which was studied by 

Wilhelm Lenz. 

(Refer Slide Time: 40:55) 

 

We basically conclude this topic over here. I will suggest a little bit of further reading 

because the ideas have very deep and profound consequences in physics. Symmetry and 

conservation principles govern fundamental laws in physics. These connections and the 

implications are used to test the standard model of physics to explore, if there is physics 

beyond the standard model. I will strongly encourage you to listen to Feynman’s lecture. 

It is available on the web; you do not have to write down this link. You just Google as 

Feynman’s lectures online or Feynman’s messenger lectures online or this Tuva project 

Feynman’s has a wonderful lecture on these topics. I will strongly encourage you to read 

it and listen to that lecture. 

(Refer Slide Time: 42:06) 
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There are other symmetries in physics, which are important. You have continuous 

symmetries, the translation and the rotation that we have already discussed. We have 

discussed these dynamical symmetries. The dynamical symmetry is the Laplace-Runge-

Lenz vector in the context of the quantum mechanics of the hydrogen atom. It is known 

as the Fock symmetry or the SO 4 symmetry. There are discrete symmetries like parity, 

charge conjugation and time reversal. 

(Refer Slide Time: 42:40) 

 

There is a very famous Lorentz symmetry, which is connected with the PCT theorem 

through the… This is known as the PCT theorems. It is proved by Pauli and there is no 

experiment in physics that has ever been done, in which the PCT symmetry has been 
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violated. So, this becomes a prediction of the standard model of the particle physics. Any 

departure from this will be a test on the standard model. It will be a suggestion of 

whether or not there is any physics beyond the standard model. 

(Refer Slide Time: 43:13) 

 

These are some of the issues, which people are working with. These are the essential 

elements of the standard model of physics, but there are certain number of elementary 

particles like what are the forces? What are the known forces at least? This standard 

model requires the Higgs Boson for its completion, which is one of the main objectives 

of the experiment at Large Hadron Collider. These are very exciting issues, which come 

out of these consideration symmetries. Conservation laws discrete symmetries that is 

Lorentz symmetry, if there is any physics beyond it and so on. 
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In fact, quite recently, just the year before last, the Nobel Prize went for the spontaneous 

breakdown of symmetry. There is another kind of symmetry that you normally expect, 

which is the symmetry between matter and anti-matter. If the symmetry is seen to be 

broken, then what are the reasons for it? How does one understand it? The Nobel Prize 

for 2008 went to Nambu Kobayashi and Maskawa for throwing some light on these 

issues. These are clearly beyond the scope of this course, but these are some suggestions 

for further reading for some of you. 

(Refer Slide Time: 44:29) 
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They all come from the basic idea that we have discussed. We can understand even in 

terms of two body Kepler problem. For every symmetry principle, there is a conservation 

law and for every conservation law, there is an underlying symmetry. This whole 

thinking of going to the physical law from the symmetry principles, it is something that 

we began with Einstein. We will keep showing you this picture of Einstein, smoking and 

this will keep on reminding you, not to smoke. I think at the end of this course, if I can 

discourage smoking, it will be an achievement and I would think that is the real message. 

(Refer Slide Time: 45:17) 

 

I would like to conclude by quoting from Einstein’s tribute to Noether, who very sadly 

died rather young. Einstein wrote in the obituary, which was published in new york times 

in 1935. What Einstein says about Noether is that in the judgment of most competent 

living mathematicians, Fraulein Noether was the most significant creative mathematical 

genius, thus far produced, since the higher education of women began. 

In the realm of algebra, she discovered methods, which have proved to be of enormous 

importance. Her unselfish, significant work over a period of many years was rewarded 

by the new rulers of Germany with a dismissal, which cost her means of maintaining her 

simple life and the opportunity to carry on her mathematical studies. She went through a 

lot of injustice in Germany at her time. With that I conclude this particular unit. 
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If there are any questions, I will be happy to take. In the next unit, we will discuss 

inertial and non-inertial reference frames. We will try to understand causality and if there 

are, what is behind the principle of causality? What kind of effects do these generate? Do 

all effects that we see come from known causes? Are they results of causes, which do not 

exist? This is a fictitious cause, but that is for unit 5, so that is what we will discuss in the 

next unit. If there are any questions, I will be happy to take 

Since, we have discussed the merit of Lagrangian mechanics, it is easy to identify the 

conserved quantities. So, even in the Newtonian regime also, I think now it is easy to 

recognize conserved quantities. 

Well, so far, the underlying physics in concerned, it is not different for Newtonian 

mechanics or Lagrangian mechanics. The foundations of the two schemes are completely 

different. The foundation of Newtonian mechanics is in the principle of causality that 

there is a cause effect relationship that a stimulus, which is the physical interaction 

generates a response. The response is linearly proportional to the force to the stimulus F 

equal to ma and that is the heart of Newtonian mechanics. So, this stimulus response 

connection is the linear response of a system to a stimulus. It is the basis of Newtonian 

formulation and the cause effect relationship is not invoked at all in the Lagrangian or 

the Hamiltonian formulation. 
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The Lagrangian formulation and the Hamiltonian formulation make no reference to the 

cause. It does not talk about the effects; it only talks about how a system evolves as a 

function of time, which is the main goal of solving a mechanical problem. It tackles that 

problem by not invoking the stimulus response relationship. By saying that any system 

evolves in such a way that the action, which is the integral l d t. Here, l being the 

Lagrangian and that this action is an extremum. It is the principle of variation, which is 

at the foundation of Lagrangian mechanics. 

The consequences or the results of these two schemes are not different at all. It is for this 

reason, the connections between symmetry and conservation laws can be seen in either 

scheme. Physics is not different, the foundations are different, the platforms are different 

and the Newtonian mechanics rest on the cause effect relationship on the principle of 

causality. The Lagrangian and the Hamiltonian schemes depend on stem from the 

principle of variation. These are the fundamental foundations and these are two different 

platforms to give you the trajectories. 

Both tell you, how a system evolves as a function of time. The important thing to keep 

track of is that in solving any problem in physics. Essentially, what you are solving? 

How do you characterize the state of a system? How does the system change with time? 

If you answer this question, your problem is solved. You do it using either Newtonian 

mechanics or you know Lagrangian or Hamiltonian mechanics. When you cannot do it, 

you come to terms with the fact that the position and momentum cannot be known 

simultaneously. Accurately, you need quantum mechanics and then you say that the 

system is described by the state vector or the wave function. How does this evolve with 

time that is the Schrodinger equation. 

Again the problem is the same that the system is characterized by the wave function and 

its time derivative. Its evolution with time is what will solve the problem for you. So, 

both the variational methods and the cause effect principle of causality or determinism 

give you the solutions to the mechanical problem, but the platforms are different. Physics 

is the same and details are different. Of course, in this case, you are able to deal with 

constraints and so on in a much easier way in Newtonian mechanics. If you keep track of 

every constraint, you can set up a detailed equation of motion. Taking into account, 

every constraint, we will still get the same connection between symmetry and 

conservation laws because that is where the physics is. 
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I heard that mercury has some problem with these equations, which was later solved by 

Einstein. Can you brief me about the problem with mercury and these equations? 

Well, it is a very interesting question. Its answer has very far reaching consequences in 

physics. Now, we have seen that if the force is strictly 1 over r square, it describes the 

force and the orbit would be an ellipse. Its major axis will be fixed, so the orbit will not 

precese. Now, careful observations on mercury tell us that mercury orbit actually does 

precese. What is the reason that is preceses? There can be a variety of reasons - one is 

that the solar system is not just a two-body system. Only if you solve the two-body 

Kepler problem, you will have ellipse as the solution. 

There are perturbations that are not just the earth and the sun, but there is a Jupiter, there 

is a Saturn, there is a Moon. All of these will influence certain perturbations, but these 

perturbations are not the reason why the orbit of mercury preceses. The orbit of mercury 

preceses because Newton’s law itself is an approximation and Newton’s law presumes 

certain things. Newton’s law is formulated in the domain of mechanics, which is 

essentially Galilean relativity, whereas the laws of mechanics are relativistic and Einstein 

discovered this. 

It is these relativistic consequences, which are responsible for the precision of the orbit 

of mercury. So, you have to get into field equations, which comes from Einstein’s theory 

of relativity and those give you the correct orbit for mercury. It is rather remarkable that 

this was one of the first test of Einstein's theory. So, it comes from the non-constancy of 

the Laplace-Runge-Lenz vector and so on. The basic origin of that is the fact Newton’s 

law of gravity is only approximate. It is a non-relativistic approximation to the correct 

law, which has to come from the theory of relativity. So, we will stop here for this unit. 


