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Greetings, welcome to the 7th unit of this course, and we are now into the second half of 

this course, and we shall discuss in this unit potentials, gradients, fields, and some related 

ideas. Our learning goals are to get us very strong handle on methods of vector calculus, 

because you know there is a very intimate relationship between mathematics and physics 

which we exploit for various applications in solving problems in physics. 
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So, we will find rigorous connections between potentials and fields. That, what you have 

over here is a picture of this glacier which is Gomukh, and behind this is the Bhagirath 

peak, and the river Ganga, it originates at the Gomukh, and the question is once this 

glacier starts melting and, you know, Ganga gets form drop by drop [fl] 
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What path does the river take? That is a question we are going to address. There it is 

starts from Gomukh over here, and then, goes through, you know, Gangotri, and then, 



Rishikesh, Haridwar, then runs through parts of, you know, Uttar Pradesh, Kanpur and 

then Prayag, and goes through, you know, Bihar, and then, into the bay of Bengal. 

So, beginning with the melting of the glacier Gomukh, at Gomukh, how does the Ganga 

flow? Why does it take the path that it actually does? When water is flowing and it goes 

in a certain way, why does it go this way and not the other way? 

There is a certain path that the water takes, and it all happens naturally, thank you. So, 

once the river starts flowing, it takes a particular path, and we all know that water goes 

along the path of what we call as the steepest descent. 

If the slope is steeper in this direction compare to any other, this is the path along which 

the water would flow. Now, this is the idea whose rigorous form we shall discuss in this 

unit, because it has to do with slopes; it has to do with tangents; it has to do with 

something changing which makes the water flow from one point to another, what is it 

that changes? And how does this change result in the water flowing in a particular 

direction? So, all of these ideas are related to the notion of potentials, gradient, steepest 

descent, and so on. 
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So, we do know that when an object in a state is in a state of equilibrium, it will maintain 

its uniform motion, and along a region of flat space, as you see over here, an object at 

rest will remain at rest; if it is moving at a constant speed, it will keep moving at a 



constant speed; its state of equilibrium will remain undisturbed, determine completely by 

the initial condition, but if it is rolling, if you have got a marble which is rolling from 

right to left over here, and it comes over here with where the potential is dropping, then 

the marble is going to pick up speed; it is going to get accelerated. 

So, this is what is going to happen when the potential changes, and at what rate this 

potential changes will determine how much acceleration will result in the marble. 

So, we have some sort of intuitive idea about these issues and we will try to develop it 

quantitative estimate of these connections, because as we can see, they have clear 

applications in various branches of mechanics, and in fact, all branch of physics and 

engineering. 
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So, what needs for acceleration to result, this is acceleration, is that the potential must 

change as long as the potential is constant? There will be no acceleration, potential must 

change with the x; this is the simple one dimensional illustration. So, unless there is a 

rate of change of potential dU by dx, there will be no acceleration, and in the Newtonian 

idea of F equal to ma, this acceleration will result whenever the potential changes with 

respect to x, and the quantitative relationship is given by this F equal to minus dU by dx. 

So, here is the slope which is going to determine how acceleration will result. 



Now, the slope is obviously fundamental and how steep the slope is will determine the 

actual quantitative estimate of the acceleration. So, for example, over here, you see that 

there is a certain slope. On the other side of this, unstable equilibrium, in on this side, 

this slope is steeper. 

So, if there is a marble at the top, at the point of equilibrium, whether you move it to the 

left or right is going to determine whether it moves into a region where the slope changes 

less rapidly or more rapidly, and it will gain that much more speed, the acceleration will 

be higher, if the slope is higher. 

So, these are the physical ideas which go into our consideration, and we are familiar with 

this relationship between the force and the potential in 1 dimension, and now, we ask the 

question, what is this relationship in 3 dimensions? In 3 dimensions, you will need to 

deal with vectors, because any physical quantity which has got directional attributes 

could have components along any one of three linearly independent directions. 

So, you can have a three dimensional space, and in this three dimensional space, we must 

generalize this expression, and this generalization is achieved through an idea which is 

very similar to this. You have the primary idea is that of derivative; this is derivative 

with respect to a space coordinate. 

So, this idea of derivative with respect to space coordinate d by dx is what we must 

extent to 3 dimensions, and when we do so, we come into an operator which is known as 

a gradient. So, the 3 dimensional analog of this expression F equal to minus dU by dx is 

this force which is now a vector which is equal to the negative gradient of U. 

So, here you have an operator this triangle with an arrow on top; this is an operator just 

the way d by dx is the differential operator. So, this operator, this triangle, let have which 

is read as a gradient; this is an operator, this operates on the potential which is a scalar 

function, and the result of this operation to get with this negative sign will give you the 

force. So, this is our definition of a gradient. 

Mind you, it is an operator, and it is a vector operator which is why you put an arrow on 

top of it. It is not however a vector, it is a vector operator and operator must seek an 



operand on which it would act, and once it completes that operation, you get a result 

which is amenable for interpretation. 

So, this is an operator, this is a vector operator, it is also called as nabla or sometimes 

just as Del operator, and all of these are used synonymously in this context. 
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So, we are going to discuss the gradients of a potential, and let us discuss the idea for 

potential further. What is the potential? Potential is, you know, when your dad says that 

you have tremendous potential, they talking about a capability. A certain ability which 

out of their love, they hope you have, maybe there are other reasons also which are 

equally good or even better, but certainly the love is perhaps one of the strong reasons. 

And it is some kind of a capability, and this capability would manifest when you 

perform, until then it is just a property that you have, and only when you perform, the 

result of this capability becomes manifest. 

So, potential in the context of physics is a somewhat similar idea, and what it tells us is 

that as long as a body is in a state of uniform motion, when it is in a state of inertial 

motion, this is what Galileo recognized as the law of inertia that in an inertial frame of 

reference motion of an object is self-sustaining. 



And this is what happens when you have to look for no cause to explain this, because it 

is completely determined by initial conditions, and this is what happens as long as an 

object has its motion beat one of rest all of uniform motion. In a region where there is 

some property which remains constant, this property is a potential. 

As long as the potential is constant, its equilibrium will not be disturbed, and the 

equilibrium will be disturbed, if either you apply an external force on this object, or 

during this motion, the object finds that it has reached a point where the potential 

certainly changes. For example, if this bottle were rolling and on a frictionless table, 

then, can you get this on the camera? If this bottle is rolling and it keeps rolling on a 

frictionless table right up to the point added meets the edge, but here the potential 

changes and it would drop off. So, that is when you will see that the uniform motion is 

disturbed. 

So, as long as the object moves in a region of constant potential, there will be no 

acceleration, and what causes the equilibrium to be disturbed is an interaction, or what in 

physics, we call as a force or a field. 

So, these are all related ideas. In a particular context, they acquire more precise meaning 

and the context will reveal this meaning to us, but these are all related ideas, that these 

are the ideas of force and interaction of field will be necessary to cause acceleration; in 

the absence of this, it is only uniform motion which will be sustained. 
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So, this is field is then the agency that disturbs equilibrium. Now, the interesting thing is 

that there is a very rigorous quantitative relationship between force and a field. So, let 

see some of the common examples which you are certainly familiar with. The 

gravitational potential, for example, the electromagnetic potential, then there is 

something that you might call as the elastic potential, chemical potential, torsion 

potential, these are various forms of potentials that one comes with across. 
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We learning to this idea even in the alternative formulation of mechanics which is not the 

Newtonian formulation but one that is based on the principle of variation, and in the 

principle of variation, the evolution of a mechanical system is not explained in terms of 

the principle of causality and determinism, then Newtonian idea of force is not used, but 

when explains the evolution of a mechanical system by saying that the system evolves in 

such a way that the action which is this integral of a quantity that we call as Lagrangian 

is an extremum, and we have discussed this in unit 1, so, I will not spend any time 

discussing it in details but just remind you that this is an alternative formulation of 

mechanics which also leads us automatically to the notion of potential. 

So, not just from the point of view of potential whose negative gradient gives you the 

force, the Newtonian force, but also the potential which appears in the Lagrangian. Now, 

the Lagrangian is one whose time integral which is an action give is an extremum 

between the initial state and the final state, and the principle of extremum action leads us 

to the equation of motion which is Lagrange’s equation or one can also go further and 

get the Hamilton’s equations. 

And we shall deal with those situations in which the Lagrangian is independent time, and 

in this case, the Lagrangian is a function of position q and velocity q dot. Position is what 

I denote by q and the velocity is q dot. 
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And you will remember that in unit 1 we discuss that in a space which is homogenous 

and isotropic, the Lagrangian can only be a quadratic function of the velocity; its must 

depend on the velocity; L must be a function of q and q dot, but in isotropic space, it 

cannot depend on any direction, now, velocity is a vector. 

So, you need a quantity which depends on the velocity but not on its direction. So, it 

must depend on V dot V rather than on V itself, because V dot V will depend on V, but 

V dot V is a scalar and it is independent of the direction. 

So, the Lagrangian must be only a quadratic function. So, it must be a function of q dot 

square, and when you write this Lagrangian as the simplest combination of a function of 

q dot square and q, then a direct interpretation of this function as the kinetic energy and f 

2 q as the negative of the potential energy so that the Lagrangian turns out to be T minus 

V. This interpretation gives direct connection between the Lagrangian formulation of 

mechanics and the Newtonian formulation of mechanics. 
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Because these cannot be independent of each other; they cannot give you two different 

results, they must give you results which completely correspond with each other, and that 

correspondence is easily seen, because the moment you recognize your generalized 

momentum as the partial derivative of the Lagrangian with respect to the velocity. 



Then you find that the partial derivative of the Lagrangian with respect to q del L by del 

q. From this relation del L by del q will be minus del V by del q, this is the Newtonian 

idea of the force, and del L by del q dot which is here, which is the momentum itself, 

which is mass times velocity, and its time derivative d p by dt will be equal to the force. 

So, this comes from the Langrage’s equation because del L by del q is minus del V by 

del q, so, this is the force, and this becomes mass times acceleration, because this is the 

momentum and the rate of change of momentum gives you the force. 

So, this gives you the direct correspondence between the Langrage’s formulation of 

mechanics and the Newtonian formulation of mechanics, and the potential appears in the 

Lagrangian as T minus V, so, L equal to T minus V gives you the correct form of the 

Lagrangian which you can relate to Newtonian formulation of mechanics. 
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Now in three dimensions I have pointed out that the force turns out to be the negative 

gradient of the potential, and we analyze the physical universe around us as made up of 

particles and fields. The particles are constitute the material world around us. 

And the fields provide us some mechanism to deal with action at a distance. Now, this is 

really a very involved concept, it is used very easily in physics, but it is a very involved 

concept. It has very intricate applications in classical mechanics, and one there by talks 

about the gravitational field, the electromagnetic field in classical mechanics, and 



essentially what it does is the presence of a field enables an object which generates the 

field to perform action at a distance. So, this is the idea in classical mechanics, like 

gravity for example. 

So, the earth generates a gravitational field and this field is able to influence other 

objects which have got masses wherever they are, whether it is over here or here, so, the 

gravitational field of the earth operates at different points in space. So, it is the point 

function we changes from point to point. 

And there are similar ideas in the in electromagnetic fields which are generated by 

charges and currents, and the idea has even more certain applications and quantum 

mechanics, because there is this idea of non-locality which was contained in the EPR 

paradox and so on, and I will certainly not go into these issues at this point, but the 

action at a distance is a very settle idea and it has got many connotations in physics, in 

classical mechanics, and quantum theory, and so on. 

Now, what is interesting is that there is a very rigorous mathematical quantitative 

relationship between potential and field. 

Now why mathematics play such a strong role is a question one might ask and I am not 

sure that there are easy answers, but you can go from the potentials to the fields through 

mathematical operations by carrying out differential calculus. 

So, you take the derivatives of the potential. If, once you use the derivative operator, now 

this operation in the middle differentiation is a mathematical process which connects two 

physical entities. This is a physical entity field and potential is a physical entity and these 

two physical ideas are connected to each other by mathematics. Others are part of the 

region; Galileo said that mathematics is the language of physics. 

So, these are two completely physical ideas and they are rigorously quantitatively exactly 

connected by a mathematical operation which is differentiation, which is to carry out the 

derivative of a function. 
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Likewise, if you carry the inverse process of integration, solve it is a boundary value 

problem, plug in the constant of integration; from the field you can get the potential. So, 

these two are rigorously related by mathematical formulations and its seems almost 

unreasonable that mathematics is so effective in natural sciences, and I will draw your 

attention to a very exciting article by Eugene Wigner which was published in 

communications in pure and applied mathematics in 1960. 

The title is the unreasonable effectiveness of mathematics in natural sciences, or whether 

it is unreasonable or not matter of, you know, semantics and you know that is what 

Wigner called it in his title. 

But it is not exactly unreasonable; perhaps, there are good reasons for it. There are, there 

was another article by Maxborn, in which, he points out why mathematics and physics 

are really interrelated and it is really not separable in some sense. 

And in this article, what Wigner says and he quote Schrodinger in this article. He says 

that it is a miracle that in spite of the baffling complexity of the world, certain 

regularities in the events could be discovered. 

That when you observe, (( )) almost everything is unpredictable means, you cannot 

predict really the future, and I think that is good. But the fact is that you cannot predict 



the future, and one knows it, one accepts it. Despite that, there are certain things you can 

predict. 

For example, I can hold this bottle in my hand and let go, and before I let it go, I can 

predict that it is going to fall; I can also predict that its speed will increase, that it will get 

accelerated, I can also tell you how much the acceleration will be it will be 9.8 meters 

per second per second. 

That there are certain things which can be predicted, these are what you call as the laws 

of nature; this is what one means by laws of nature that, there are, these are certain 

regularities which come out and these regularities which come out which are the laws of 

nature can be predicted not just qualitatively but quantitatively using precise and 

rigorous mathematics and that is what this unit is about. 

(Refer Slide Time: 26:35) 

 

Because, it will tell us how the potential is connected rigorously, quantitatively with 

fields and how do you determine these quantities. In the same article, Wigner goes on to 

say that the miracle of the appropriateness of the language of mathematics for the 

formulation of the laws of physics is a wonderful gift which we neither understand nor 

deserve, but the good thing is that we should be grateful for it, because we can use it 

constructively and that is what we will go about to do now. 
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So, this is the connection. That from the potential by carrying out differentiation, you can 

get fields by carrying out the inverse process of integration; you can get potential from 

the fields; you have to set up the boundary values, and these are certain functions which 

are called as point function. So, the potential is the scalar quantity. We know what a 

scalar is? It is a scalar point function and a field is a vector point function, so, we need to 

introduce these ideas now rigorously. 
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Now, what is a scalar point function? Let us consider what is called as SST? The sea 

surface temperature and you can takes the satellite pictures and map the surface 

temperature at various points on the sea, and here is a satellite map which was taken two 

days ago on twenty first June by the Indian satellite known after Kalpana Chawla. So, 

these are images taken by Kalpana satellite. 

And what it does is it maps this sea temperature, you see the Indian Ocean here, and 

there is a temperature gradient, so, these are you know regions which are at a slightly 

warmer temperatures like 304 kelvin; this is the temperature color code. 

So, this is about 303, 304 degrees Kelvin. If you go to the south and this being summer 

in India, it is winter in the southern hemisphere. So, you go south of equator on the 

southern hemisphere, the temperatures are somewhat lower, and these are called a 

temperatures. 

Essentially what you have is a property, namely the temperature which changes from 

point to point; it is one thing over here, another over here, another over here, and as you 

go further down it changes. 

It may remain in variant over a certain extended region of space that is a different issue, 

but it has got a certain quality, a certain property, which changes from point to point. 

When it is dependent on the particular point that you are talking about, it becomes what 

is called as the point function. The quantity itself is an invariant with respect to rotation 

of any coordinate system and it is therefore a scalar. So, this is what you call as a scalar 

point function. 
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Let us consider some other examples and we are going to describe these points in various 

coordinate systems. We could describe a point on a flat space by its Cartesian 

coordinates x and y; we could do it in terms of the polar coordinates like cylindrical 

polar or plane polar coordinates rho and phi, and when we use this coordinate system, the 

unit vectors are not constant vectors, so, we have to remember that. We discuss these 

things when we did unit 3, so, again I will not spend any time, you know, deriving these 

relations but I will use these results. 

So, I will quickly remind you that you can describe a point in space either in Cartesian 

coordinates or in polar coordinates, cylindrical polar, spherical polar, or any coordinate 

system, it say irrelevant. 

When we talk about scalar point functions, the coordinate system is not of important. So, 

what is of importance is the fact that you are talking about a physical property which 

dependence on a particular point. 

So, these unit vectors of the coordinate system of the plane polar or cylindrical polar 

coordinate system, these unit vectors change from point to point, and you can determine 

at what rate these unit vectors change with angles. Now we have derived these 

relationships in some detail in unit 3. Are we know how the unit vectors change with the 

angles? They do not change with distance from the origin we know that as well. 



And the upshot of this that a scalar point function which is a scalar has a particular point 

whose position vector is r as its argument, but this position vector can be expressed 

either in Cartesian coordinates x, y, z, or in spherical polar coordinates r theta phi, or in 

cylindrical polar coordinates r phi and z, and we will use all of these coordinate systems, 

because depending on the convenience, that is offered in a given situation. We can then 

exploit the convenience of any coordinate system and work out our relationships 

accordingly. So, we need to develop the expressions for the gradient in all of these 

coordinate systems. So, that is the idea. 
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This is to remind you the spherical polar coordinate system. So, here the unit vectors are 

e r, e theta, and e phi, and the spherical polar coordinates are r theta and this azimuthal 

angle phi and this also we have done in some details in unit 3. So, I will quickly only 

remind you of the primary relationships which we shall use. 

And we have agreed that we can describe a point in space, in any coordinate system, and 

we can talk about any kind of physical property. Here, we talk about the literacy rate in 

India, which is different in different parts of the country. So, it is very high here in 

Kerala and it is rather low in some other parts of the country; there is a color code also 

associated with this. 

What is significant over here is here again we are talking about a property; we changes 

from point to point; we changes from one region to another. So, it is some sort of a point 

function. Nevertheless, this point function is really not continuous, because there will be 

region in between like forest and mountains, where there is no habitation at all. So, the 

question of having any literacy over there does not really arise. 

So, this is a point function in a certain sense but it is not a continuous point function and 

we have to, we can describe it in terms of coordinates, and we can write the coordinates 

either as x and y or we can give it in terms of the longitudes and the latitude, it does not 



matter. Anyway, which is convenient, we can describe a point in space and we have 

these point function. 

So, now, I believe, I hope that the idea of a point function is going home, and these point 

functions, you know, properties of this kind are not continuous, whereas, some other 

properties are continuous. 
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Look at this this is a picture of the Gemini flyover in here in Chennai and some of you 

would have met the traffic chaos over here, so, you are familiar with this picture very 

much. This is obviously a photograph, so, it is taken at a particular instant of time when 

the photograph is taken. 

So, if you talk about the velocity at a given point in space, and we can talk about x, y, z, 

because there is a flyover. So, at the same x y coordinate, you could have a vehicle 

moving at a certain velocity on the lower plane and another vehicle moving at another 

velocity at the higher plane on the flyover. 

Now the velocity is a vector quantity and it can depend on x and y and z, all of that, or 

you can describe the position vector in spherical polar coordinates r theta phi or in 

cylindrical polar coordinates r phi and z. 



Now, here is an example of a velocity vector point function which changes from point to 

point. The velocity of a pedestrian here is obviously not as much as the velocity of this 

curve over here. The motorcycle is perhaps want to be at the highest speed, and 

furthermore, the velocity may depend not just on the position but also on time, because 

this is a snapshot taken at a particular time. So, if you took a movie it certainly going to 

change from time to time. 

Here, again we must ask the question about discrete versus continuous functions, 

because we talk about the velocity of a vehicle or of a person or of a car or a motorbike, 

if and when, the vehicle is there at that point. 

But then there are regions of the road. Here, for example, there is no vehicle at all in this 

part, at this particular instant of time, which is a rare thing to happen in Chennai that 

there is any part of the road where there is no vehicle that usually does not happen. 

But here, you have a region of the road whether there is no vehicle at all, and obviously 

this is not a continuous function, and in the absence of continuity, the function will not 

be analytical and you cannot take its derivatives. 
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So, these are involved ideas. If you talk however about the velocity of water, and here 

you have got water which is flowing along a certain path, and you can actually map the 



horizontal velocity which in certain units is mapped and given a certain color code in this 

picture and you can map it at every point in this space. 

So, this is not like the rare incidence of a road in Chennai where you do not have a 

vehicle at all, because in this region through which water is flowing, you always have 

water everywhere. Here, again, this will be a function not only of the point but also of 

time, because this is the snapshot at a different instant of time, this map will change. 

We must again ask this question because if we have to take derivatives, we know that the 

function must be analytical and it must be continuous, and at what level is it continuous 

is an interesting question because after all water is made of these water molecules H 2 O 

and they do not really are single molecules, they existence states of dimmers, may be 

trimmers, they are tumbling, they are bonded, these molecules are bonded by the 

hydrogen bond. 

And this may be breaking, this may, there may be a dynamic process, or what happens if 

you, a, because whenever you take derivatives, you take, you know, limits of quantities 

when they become infinitesimally small like dy by dx is the ratio delta y by delta x in the 

limit delta x is going to 0. 

So, when delta x is goes to 0 you need to make that quantity infinitesimally small, and 

what happens when this distance becomes smaller than the size of a molecule. A 

molecule has got two atoms of hydrogen and an atom of oxygen and as delta x goes to 0, 

this can become smaller than the size of a molecule. 
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Do you really still have a continuous model over there, and what we, in the context, in 

which, we will be doing this analysis, we use what is called is the continuum model of 

fluids, and in this limit, we do not worry about the delta x going to 0 limit. 

So, we take small distances which go to 0 which become infinitesimally small, and this is 

the continuum limit, but it will be large enough so that we do not have to look at the 

internal structure of molecules and atoms. 

So, regions will be considered to be small enough so that we can use the continuum 

model of fluids, but which are not even so small that we really have to look at the 

internal structure of molecules and atoms. So, that is not the scale on which we shall 

discuss these situations. So, this is the continuum model of fluids. 

And in this continuum model, you can have the velocity of fluid at any given point in 

space, in the region through which water is flowing, or any liquid is flowing, and you can 

define the velocity as a point function. So, this gives us the idea of a vector point 

function. So, now we know both what a scalar point function is and what a vector point 

function is. So, they must have continuous derivatives and it is in the continuum limit 

that we shall regard these functions. 
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So, both, there are two kinds of point functions: the scalar point function and the vector 

point function. So, psi is an example of a scalar point function; the vector A is an 

example of a vector point function. Both are functions of specific points, so, the 

argument of the position vector of that point appears as an argument of these functions 

the scalar and the vector point function. 

But the coordinates can be expressed either in Cartesian coordinates or spherical polar 

coordinates or the cylindrical polar coordinates, it does not matter, and our formulation 

must be able to exploit the convenience of using either the Cartesian geometry. If that is 

appropriate or the spherical polar, if that is more convenient and we must develop a 

formulation which is independent of all the coordinate systems. 

So, familiar examples of the scalar point functions are temperature that we considered, 

the gravitational and the electrostatic potentials. The pressure in a liquid, now pressure is 

force for unit volume. So, force, of course, is a vector, but when you talk about pressure, 

you normally refer to it as a scalar because, you know, through Pascal’s laws the same 

no matter in which direction it is considered. 

So, it is in the limits of these approximations that we talk about these quantities and 

various examples of vector point functions of the velocity fields that we just discussed, 



and then, there can be electromagnetic fields, right. So, these are other examples of the 

vector point functions. 
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These we have noticed our functions of space which is what make them as point 

functions, but they may also depend on time or they may not depend on time. So, the 

gravitational field generated by the earth is not going to change from today to tomorrow 

unless the earth loses some of its mass which vanishes into the outer space. 

So, by enlarge, these will not be functions of time but there may be functions which 

change with time. For example, if you have an electrostatic charges distribution which 

generates an electrostatic potential, if you either add or remove the charges in that region 

or change the charge density in that region, then, of course, it will change from time to 

time. 
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So, these functions by enlarge may or may not depend on time but they must depend on 

space which is what qualifies them to become point functions, and let us consider such a 

function here, a here is a function which is a function of x and y, so, as x changes along 

this line and y changes along this line, here is a certain property. Let us say this is the 

height of a certain sheet which is spread over this flat surface and this height changes 

from point to point in space and we ask this question that you consider certain point, let 

us take this one which is here at this red dot and we ask the following question: what is 

the rate of change of this height dh by ds? It is obviously the limit delta h by delta s, as 

delta s goes to 0. 

The question we ask is what is dh by ds at this point. We must ask this question for a 

particular point, because this rate is obviously different for this point and it is different 

over here; I see that from this figure, it is mostly flat. 

So, dh by ds over here is really not changing at all its 0. So, this question must be asked 

in the context of a particular point in space. So, what is this rate and at which point? We 

should also ask and then which direction, because the rate at which this height changes, 

depends on the direction in which you consider this change. 

So, if you consider a change in this direction, this rate of change dh by ds is obviously 

different from what it is in some other direction. The rate at which the height changes, 



depends not only on the particular point that you are talking about but also the direction 

in which you are examining this change. If you consider some third direction, again this 

rate will be different, or it may be the same. That it depends on the details of the surface. 
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So, these questions become important and we take a particular example which (( )) 

plotted for may last night. Here is a surface which is mapped as xy square plus x square 

y, so, x changes from 0 to 2.5 and y changes from 0 to 2.5. We evaluate f of x y as xy 

square plus x square y and we ask a related question: what is this rate at which this 

height of the surface changes with distance? What is this rate dh by ds? We must ask at 

which point. So, we say, consider a point such as x equal to 1 and y equal to 2 in the 

Cartesian coordinate system. So, we take this point at x equal to 1 we draw a line and y 

equal to 2 we drawn another line and the intersection gives us this point, right, and now 

we must ask, in which direction are we examining this flow? 

So, just to take a particular example, we will say how about the direction of 45 degrees. 

You can take any angle, it does not matter but just for the sake of discussion and 

illustration, I have chosen this angle to be 45 degrees. So, in this direction, what is the 

rate at which this height of the surface changes with distance? 



Now, obviously you can see that this depends on the direction, in which, you are 

considering this change; it will be different in different directions. If you consider this 

change in different directions, the answer will be different. 

And if you have a drop of water over here, it is going to move along the line of what you 

called as the steepest descent. So, what are we talking about we are talking about the 

derivative. A derivative here which is dh over ds or ratio delta h over delta s. This is a 

ratio of two scalar quantities which is obviously a scalar whose value however depends 

on the direction in which you are measuring it. 

So, a ratio of 2 scalars which must give us a scalar which however has something to do 

with direction, because the direction in which you measure this derivative, whether you 

take consider this derivative along this red arrow or the yellow arrow is going to change 

its value. 

Which is why when we introduce scalars and vectors, we persuaded you, not to define a 

scalar as a quantity which is got magnitude alone, and we persuaded, you to, not to 

define a vector as a quantity which is got a magnitude and direction. 

Here you have a scalar quantity which does have a directional attribute. There is some 

directional property. It is a scalar, but there is some connection that sense of direction is 

not irrelevant to this, because this ratio has will have one value along the red line, along 

this line along 45 degrees and it will have another value along this yellow line. So, there 

is a certain directional attribute. 

So, you must always define scalar as a quantity which remains invariant regardless of the 

rotation of a coordinate system in which you describe it, and a vector as a quantity whose 

components transform according to a given law and that law is different for polar 

vectors, it is different for axial vectors, and these details must go into the definition of a 

scalar and a vector. 
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So, here you are meeting a quantity which is a scalar but which is got at directional 

attribute. This is called as a directional derivative; this is the definition of a directional 

derivative: it is a scalar quantity; it has got a directional attribute; it is a derivative; it is 

delta h by delta s in the limit delta is going to 0 which is dh by ds. So, it is the derivative. 

But its value depends on the direction in which you measure it. This rate which is a 

slope, the derivative is the slope as we know. This depends on the direction in which the 

displacement delta r is considered, and if you have got a scalar function psi, then you 

define its directional derivative as a ratio delta psi by delta s in the limit delta s going to 

0; delta psi is the difference between the value of the scalar at a neighboring point from 

what it has at a given point. So, that is delta psi; that is a numerator. Denominator is the 

distance between them, but the distance, whether it is considered along one direction or 

the other is going to change the value of this ratio. 

Which is why it is called as a directional derivative, and this directional derivative is a 

scalar, it is a ratio of two scalar quantities, it has got a directional attribute, and the 

reason it has a directional attribute comes from fact that the denominator delta s which is 

a scalar. However, the direction of this displacement delta s must be considered. 



So, this delta s is just the modulus of the displacement vector which is a scalar but the 

direction in which it is taken is going to play an important role in determining the 

directional derivative. 
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So, we will have to develop this formalism independent of the coordinate system 

whether Cartesian or a cylindrical polar or spherical polar. This is our primary definition 

of a directional derivative. 

What it needs is the determination of delta psi in the numerator and this we can 

determine easily by using what is called as the chain rule, because psi is a function of x y 

and z, so, changes in delta psi come because psi changes with respect to x and that will 

not matter unless there is a corresponding change in delta x. 

So, delta psi equal to the rate of change of psi with respect to x multiplied by the change 

in x will be your one dimensional model, and in three dimensions, you will have two 

other similar terms which is del psi by del y delta y plus del psi by del z delta z. So, this 

is the Cartesian picture, and because there are three independent degrees of freedom I 

make use of partial derivatives rather than total derivatives. 

So, when you consider the derivative with respect to x, you must do so, you must 

determine this derivative while keeping the other two variables fixed at a given point at 

which the derivative is being taken. 



So, this is the chain rule; there is no big mystery over here. In cylindrical polar 

coordinates, the position vector is described in terms of rho phi and z, so, changes in 

delta psi which come in this numerator here. These changes are because of changes in psi 

with respect to rho multiplied by the change in rho itself. 

So, you get del psi by del rho times delta rho which is the first term, and then, there are 

two other similar terms from phi and z. Once again we make use of partial derivatives 

and then you can also write the same in the spherical polar coordinate system. Here, you 

have got the position vector expressed in terms of three coordinates: the radial distance, 

the polar angle, and the azimuthal angle phi. So, changes in psi are because of change in 

psi with respect to r times the change in r itself. 

So, it is del psi by del r times delta r plus del psi by del theta times delta theta plus the 

last component of a, here which is the azimuthal angle because psi can change also with 

respect to the azimuthal angle times the change in the azimuthal angle itself and this sum 

of these three terms will give you the net change which must go in the numerator which 

will determine this directional derivative. 

We have got the expressions for delta psi. We should now get the expression for the 

directional derivative itself. So, what we are going to have to do is to divide this by delta 

s and take the limit, delta s going to 0. Now, that will be a fairly straightforward process. 
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You divide it by delta s and take the limit, delta s going to 0. So, you get derivatives, so, 

delta x by delta s in the limit, delta s going to 0, gives you this derivatives dx by ds. Delta 

y by delta s in the limit delta s going to 0 gives you the derivative dy by ds, and likewise, 

you get dz by ds, and this is the expression for the directional derivative in the Cartesian 

coordinate system. 

Now you do not have to mug up these relations because they are so easily obtainable 

from first principle. So, if you just keep track of the chain rule that what depends on 

what, what is changing with respect to what, why is it changing, and take all the causes 

which contribute to that change. The change we are looking at is the change in the value 

of psi. What is contributing to this change is the consideration that you measure the value 

of psi at one point and compare it with the value of psi at another point. 

And when you go from one point to the other, what is it the changes? x y z changes, or r 

theta phi changes, or rho phi z changes, it depends on what coordinate system you are 

using. So, accordingly, if the changes are because of rho phi and z in the cylindrical polar 

coordinates, then you must take the rate of change of psi with respect to rho times how 

this rho changes with this distance s, but mind you somewhere the directional attribute 

will chase us, that is important. We have to keep that at the back of our mind. 

In spherical polar coordinate system, we have got r theta and phi and you have got an 

exactly similar relation, so, you have got del psi by del r times dr by ds, and then, del psi 

by del theta. This is coming from the changes in psi because when you go from one point 

r to r plus delta r, the radial distance may have changed, but also the polar angle may 

have changed. So, that is the term which is contributing to this, so, no need to by heart 

these relations. Just remember, what are the changes taking place when you go from one 

point to another, which coordinates are changing, and then, use a chain rules with those 

particular coordinates in mind. 
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So, we will proceed to develop expressions in Cartesian cylindrical and spherical polar 

coordinate system, and what is important as we have recognized is this displacement 

delta r which is a vector. Now, this vector will of course have different expressions in 

different coordinate systems, because a position vector itself has got different 

expressions and different coordinate systems. 

So, if you consider the expression for this displacement vector dr or delta r in different 

coordinate systems, it turns out that you can develop very simple expressions for the 

directional derivative, and this is where the expression, mathematical expression for the 

gradient will pop it. 
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So, we will take a break, and in the next class, we will obtain rigorous expressions for 

the directional derivative in which we will introduce the gradient. That will be for the 

next class. If there any questions, I will be happy to take, otherwise, we are ready to take 

a break. 


