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Greetings. So, we will continue our discussion on classical electrodynamics. In the 

previous class, we did the Gauss’s law, and now, we will do the Oersted-Ampere- 

Maxwell law and we will formulate the Maxwell’s equations. And you will find, there 

we will exploit the machinery in vector calculus that we have developed in the previous 

units. In fact, part of a reason we spent considerable time developing this machinery, part 

of the motivation came from this anticipation of the application of those tools in 

developing the laws of electrodynamics. 
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So, we will see that all of it will come together; the first thing we will do is to express the 

electric field due to a point charge as gradient of a scalar function. So, this is an idea that 

we have used earlier as well that field is often expressed as the gradient of a potential in 



the case of conservative fields. So, this is the field that we want to express, electric 

intensity and this is expressed as gradient of this 1 over distance potential, which is the 

coulomb potential. 
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So, let us get this gradient explicitly; this is the 1 over distance. So, I write the 

expressions of the gradient in the Cartesian geometry, in the Cartesian coordinate system 

and this is the 1 over distance, this is the operand on which the gradient operator will 

operate and this 1 over distance, this distance is a square root of the distance square and 

the distance square is r, the inner product of r minus r prime with itself or the scalar 

product of r minus r prime with itself. 

So, it will be x minus x prime square plus y minus y prime square plus z minus z prime 

square; so this gives you the square and then the square root will give you the distance 

itself; the minus sign will put it in the denominator where we wanted. So, let us now, 

take this derivative; there are three operators here, the e x del by del x and then you have 

got the e y del by del y; so there are three partial derivative operators and they come as a 

sum of these three operators. So, we will carry out this process of determining these 

derivatives term by term; so the first term is e x del by del x, and then you have got the 1 

over distance plus e y del over del y operating on the 1 over distance, and the e z del by 

del z operating on 1 over distance. So, these are the three terms and now, it is the simple 

process of getting this derivative. 



So, this is something that you can do very easily and you just do it term by term; so del 

over del x of this whole term will give you minus half coming from here and then this is 

to the power minus half minus 1, which is minus 3 by 2 and then you must take the 

derivative of this term over here, which is 2 times x minus x prime and there are similar 

contributions from the derivative with respect to y and the derivative with respect to z. 

So, here is the minus sign; this is coming from here; here is the r minus r prime, because 

this x minus x prime times, this unit vector e x will give you the x component of r minus 

r prime and there are similar contributions from the y and the z terms. So, you get the r 

minus r prime in the numerator and you get the 1 over distance square to the power 3 by 

2 coming from here; this is now, written in the denominator, because of this minus sign 

and here you have the result, which is minus of this ratio and this is distance square to 

the power 3 by 2; so this will be distance cube. So, essentially you have got 1 over 

distance square law, which is a Coulomb’s law. 
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So, we have essentially succeeded in writing the field as a negative gradient of potential 

and expressed it in Cartesian geometry, Cartesian coordinate frame of reference one 

could do so in any other coordinate system which just as match is much ease. Now, the 

curl of a gradient is identically 0; the electric field is conservative, because we have 

expressed the electric field as gradient of a potential and it is irrotational and therefore, it 

corresponds to a conservative field; we have discuss these ideas earlier as well. 
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So, this is expression for the irrotational electric field. Let me quickly recapitulate a 

consequence of the Gauss’s law, which we discussed in the previous class. You have got 

the divergence of E, as the charge density divided by the permittivity of free space; you 

also have the curl of E to be the null vector. So, essentially you have expressed both the 

divergence of E as well as the curl of E and you need these two quantities to express and 

E vector field. In addition to this, you need certain boundary condition and this is really 

the statement of the Helmholtz theorem, that to express any vector field, you must 

specify the divergence as well as the curl, and that is the reason in Maxwell’s equations 

what you do find or the divergence and the curl of the electric field and also the 

divergence and the curl of the magnetic field, because both need to be specified. 

So, here, further electric field, we already have the results for divergence and curl of the 

electric field and then if you express this first equation, which is the divergence of the 

electric field, but the electric field itself is the negative gradient of the potential. So, you 

can write this as minus of del square phi equal to rho over epsilon 0 or del square phi 

equal to minus of rho over epsilon 0 and this relation is known as Poisson’s equation. 

This is one of the very important equations to be solved, if you are interested in 

determining the potential at a given point due to a certain charge density, which is 

smeared out in space. 

What you must add to this information is of course the boundary conditions, because 

without the boundary conditions you cannot solve a second order differential equation or 

any differential equation; you must specify the boundary conditions. So, you need the 

differential equation and here, you have it and you can get the potentials from different 

charge distributions and this is the matter of detail, but once you have this relationship in 

front of you, you could in principle get the electric potential due to any charge 

distribution. 

Let me quote points over here – “the life is good for only two things, discovering 

mathematics and teaching mathematics”. So, yesterday, we had one of the Bernoulli say 

that it would be much better for physics, if they were to be no mathematicians. And now, 

we find Poisson saying, the life is good only for two things one has to discover 

mathematics and the other is teach mathematics, other than that life is useless. 



So, anyhow, mathematics of course is very intimately connected with our studies of 

physics and it plays an extremely important role, is a very language of physics in a 

certain sense and it is important to get the concepts in physics, but it is equally important 

to formulate them; extremely rigorously and if there any approximations involve, then 

one must know exactly what these approximations are. 
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Because approximations are an important integral part of the development of almost 

every physical theory, but then one must know what these approximations. So, the regard 

in mathematics is very important and I do like a few things other than mathematics, 

rather than, I will not discovered any mathematics, but teaching mathematics is an 

important and fun part of teaching physics, but I like a few other things as well. 

Special even it comes to things that I should not be eating. So, anyhow, let us also 

consider now, the magnetic fields and at these points we are talking about magnetic field 

as if it is different from an electric field, but let us do it for a while. Subsequently, we 

will learn the unity of electricity and magnetism, which is what Maxwell’s theory really 

teaches us. So, this point we will consider that magnetic field, which does not quite 

originate from anything, which has any analogy with electrical charges, the analog is 

sometimes called as a magnetic pole, but then these magnetic poles really do not exist, 

because there are no isolated magnetic poles. 



But magnetism results from the electric charges, when these are in motion. Now, this is 

classical electrodynamics mind you. In quantum mechanics, magnetism could originate 

from the spin angle of momentum for example; so these are different situations. So, we 

will keep ourselves within the domain of classical electrodynamics; wherein we would 

have magnetic fields generated by electric charges in motion, which is what an electric 

current is. An electric current is essentially a charge in motion and its generates a 

magnetic field and we will now discuss in this context, an empirical law very similar to 

the Coulomb’s law very similar, but formulated for influences generated by flowing 

charges, by currents. 

So, suppose, you have a current and there is a certain wire and no matter what the shape 

of the wire is and there is a current, which is flowing in this wire from bottom to the top 

as suggested by this arrow. So, you can consider the length of this wire as made up of 

tiny pieces and you have a tiny piece over here, from the bottom of this arrow to the top 

of this arrow and this little tiny arrow is in the direction of the current; it has got a certain 

direction, which will change from point to point on this wire. Because over here, this 

direction is over here, in the direction in which this pointer is suggesting; there is 

whereas over here, it is pointing toward the right with this screen; whereas over here it is 

pointing toward the left of this screen. So, this direction will change from point to point 

depending on how the wire is bent or wiggled or circled. And you think of this wire to be 

made up of infinitesimally tiny pieces, one after the other place in a series along which 

the charge moves, thereby generating the current through the wire. 

Now, an empirical law is one which is based on experimental observations; it has no 

theoretical foundation that such a current generates a certain influence. So, the cause is 

here, the effect is around it that is the influence that I am referring to. The influence it 

generates is at the field point; the cause of this influence is the current flowing in the 

wire, which is where the source of this influences. So, each element, when it size 

becomes infinitesimally small is located about a certain point, which is called as a source 

point. So, the source point we denote by the primed vectors and the field point by the 

unprimed vectors. And the influence we are talking about, which is an empirical law is 

known as the Biot-Savart law, which was formulated in 1820. 
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What is this law? That the existence of a current I, and it is this I, the existence of a 

current in this piece of element, generates a certain magnetic field which is the influence 

it generates and this influence is the magnetic field, at the field point B of r and this is 

equal to the properties of the sources. What is the property of the source? It depends on 

the current; it also depends on the properties of the medium. So, the medium in question 

over here is free space; so, it is a magnetic permeability of the free space, which appears 

in this expression, then there are constants likes 1 over 4 pi. 

And how is it related to the geometry? It is generated by these elements over here, then 

to the next element, then to the next element and to the next element. So, it is given by a 

super position of the influences generated by all of these elements spread over the entire 

length of the wire; so you must integrate over the length of the wire. 

So, here is an integral over the length of the wire and this element has got a length dl, 

which comes over here and it is given by a certain integrant, which is made up of the 

cross product of the direction u at r prime. This is the unit vector, which is pointed from 

left to right; it is also pointing right toward and toward the top, bottom to the top. So, 

those are the two orientations; you can always specify it in a given coordinate system by 

expressing it in any convenient coordinate system, Cartesian, cylindrical polar, spherical 

polar no matter what does a matter of detail. 



But it depends on the cross product of this unit vector and then, here you have a term 

which has got an appearance just like the inverse square. Because you have got r minus r 

prime, which is r, is this vector, which is the field point and this is the source point; so r 

minus r prime is this direction from the source to the field. 

So, this is the cube of that distance of the denominator and the vector r minus r prime in 

the numerator say, if you consider the direction alone, it would be like 1 over distance 

square. So, to that extent it is very similar to the Coulomb’s law and you construct this 

integral and what you get out of it, is the magnetic field at the field point generated by 

this entire conductor. You must integrate over the entire loop; I have shown only a 

segment of this wire, it should of course at some point in somewhere and perhaps, close 

down and comeback to itself, it could have a source of you know, there should be a 

source current like, battery for example or power supply whatever. 

Now, this electric current could also be a volume current not just going along a linear 

dimension, but it may have a certain cross section. There could be a beam of particles, 

which are in motion; you normally talk about the electric current as something in which a 

conventional positive charge would move, physically what moves inside? Metals are 

really the electrons, of course, in semiconductors there are also these absence of 

electrons which hope, which is the moment of the whole; so that is a matter of detail. But 

you have a certain conventional direction of an electric current and that is the one I am 

referring to, physically it could come from the motion of electrons, it could come from 

the motion of the absence of electrons, the way these holds up, and so on. 

And these could take place over a volume, rather than, just a line and which case there 

would be a volume charge density, which is denoted by J at a source point r prime. So, 

the same expression, which is given as a single integral over the entire length; if it is 

coming from a cross section of charges; so if you have got charges spread out over here, 

and this whole thing is propagating; so you have got a certain surface of distribution of 

charges, which is travelling. 

Then you have got a triple integral of this kind over a volume and it is essentially the 

same law, which is written over here with the difference that, this is in high dimensions 

in which you have got a cross section of charges, which is propagating. And this is how 



you calculate, how you determine the influence or magnetic influence at the field point 

due to a current source. So, this is the magnetic field given by the Biot-Savart law. 
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So, this is the primary definition of a magnetic field and if you just, use this definition 

and use the vector algebra, the vector calculus that we have already developed and you 

already know how to get the divergence of a vector and how to get the curl of a vector. 

You must keep track of what the gradient operator is? The differentiation in the gradient 

operator must take derivatives with respect to the field points not the source points; one 

can very easily make a mistake there. 

So, if you avoid those mistakes find the gradient find the gradient operator, write it down 

explicitly, no matter what coordinate system you are using, and all you do is use the 

primary definition as a magnetic field, which is given by a law, which has got some 

resemblance to the Coulomb’s law. The resemblance is essentially in terms of the fact 

that both are based on the principle of super position, but since this is due to a current 

which is extended in space, you must carry out the integration over the entire current 

loop, but it is essentially a principle of super position. 

So, you go ahead and get the divergence of this quantity and it will turn out to be 0. I 

leave it as an exercise for you to work it out. So, write down this expression, which 

comes from Biot-Savart law, get this divergence you will find that is 0, and gets its curve 



and you will find it that it’s exactly mu 0 J. The process of getting the divergence and 

curl of magnetic field from the Biot-Savart law does not involve any new law of 

electrodynamics; it is just using vector calculus. You know how to get the divergence, 

you know how to get a vector, how to get the curl of a vector and we have already 

discuss that in previous units; in fact, this was part of the reason, part of the motivation 

that we did it. So, all you do is to get the divergence of the magnetic field, get the curl 

and you already have the Maxwell’s equations. And just as once, you have Newton’s 

equations, you can solve any problem in classical mechanics; once you have Maxwell’s 

equations, you can solve any problems in electromagnetic theory, you do have to add the 

Lorentz force law and a few other things and the boundary conditions for example that is 

the matter of small detail. 

So, this is coming straight out of vector calculus and some of the properties which you 

will find, rather useful in this context is this expression, that if you take the divergence of 

this vector, it will generate at delta function. I have already introduced the delta function 

in the previous class; so some of these things are left as exercises. But this is something 

that one would do; one would actually prove this, if this were to be a full course on 

electromagnetic theory, which it is not. 
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Now, you have got the curl of B, which is given by mu 0 J. Now, let us take the surface 

integral of J dot Ds, but the mu 0 J is nothing but the curl of B, this comes from the Biot-



Savart’s law; no new physics added to it, no new law added to that. So, you get the 

surface integral of the curl of B given by this expression, but from the Stokes theorem, 

we know that the surface integral of the curl of the vector is given by the circulation of 

that vector about the close loop. But there is a relationship, which the direction of 

orientation of the surface must maintain with the direction in which the circulation is 

evaluated; mind you, it is a right hand screw rule convention that we had discussed. 

Because if you carry out that circulation, which is the line integral of B dot dl, that line 

integral can be carried over a close path by traversing a that close path along one way or 

in the opposite way. 

So, then, you will obviously get an opposite sign; but if you do not make that mistake, if 

you carry out that circulation, if you determine that circulation using the right hand screw 

rule, so that if you turn a right hand screw in the direction along which the circulation is 

determined, then the forward motion of that right hand screw will be in the direction of 

the infinitesimal vector area, which goes into the left hand side of the Stokes theorem. 

So, these two directions, direction of dS and direction of dl are connected by the right 

hand screw convention. So, we have discussed this earlier; this is just a gentle reminder 

that you do not forget that. And now, having exploited the Stokes theorem, we can now 

write this, J dot dS, this will give you the integration. This integration will generate the 

net current, because this is the current density which is integrated out; you get the net 

current. So, you get mu 0 times the net current equal to the circulation of B dot dl and 

this is known as the Oersted-Ampere’s law. 

So, this came from, this was recognized by Oersted, who did various experiments. It was 

recognized by Ampere also and this was obtained, this was this rule was formulated on 

the basis of empirical observations carried out by Oersted and Ampere; so this is known 

as the Oersted Ampere’s law. 
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Now, one of the things what are the things that can have an influence on an electric 

charge? One charge The existences of a charge, which will generate some sort of an 

influence. So, this will be expressed in terms of an electric field, which is generated by 

another charge. But you can also have an influence generated by a changing magnetic 

field; if you change the magnetic field in a certain region, you can generate an influence 

on an electric charge. So, let us discuss this idea little bit further. 
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So, we take this certain loop, this is an electric conducting material, this is a loop, which 

is placed in a region in which there exist some magnetic field, which is a vector field and 

this magnetic field, in this figure that I am using is pointed into the plane of the screen; it 

is orthogonal to the plane of the screen and into the plane of the screen; so it is shown by 

this cross which is like the tail of an arrow, which you would see if you were to have 

short an arrow into this screen, do not do that. 

Now, let us ask this question, that if you have a certain region of space and which you 

have got a magnetic field, which is orthogonal to the plane of the figure into the plane of 

the figure that is the direction, and in this field you have an electric loop a conducting 

loop, which is l static, it is not moving, then will there be any current in the loop? If so, 

will the current to be clockwise or will it be anticlockwise, and the directions clock wise 

and anti-clockwise are with reference to, how this loop appears to you; so, will there be 

any current at all? No, so that is the correct answer. 

Now, let us do the same thing, but this time, we drag the loop to the right, we physically 

pull it from left to right. And now, let us ask the same question what will be the direction 

of the current in the loop? If there will be any current in the electric, if there will be any 

electric current at all in the loop? 

In the first example that we consider, we already agreed that there will be no current, but 

this time the difference is that we are dragging the loop from the left to the right; so will 

there be a current now? Yes, and what will be the direction of the current? It will be 

clockwise and why will it be clockwise? Clockwise is correct. If you were to think of a 

positive charge over here, then this charge would gain a velocity from left to the right. 

The reason is, this charge is bound to the wire and you are physically dragging the wire 

from left to the right and other than Maxwell’s equations, I have to I had mentioned 

earlier, that you must add the Lorentz force. 

So, the Lorentz force will generate this q into v cross B force on discharge; so now, the 

velocity of discharge is to the right, the magnetic field is into the plane of this screen. So, 

v cross B would be a force, which is pointing up ward in this figure and therefore, 

discharge will be accelerated from the bottom to the top setting up a current in the 

clockwise direction in this loop. 
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So, the source of current in this case is the Lorentz force, which is v cross B and is a 

result of this v cross B force, this is the question I raised earlier. Let me go back to that 

slide one more time, because this really is extremely important consideration. What is it 

that can have an influence on an electric charge? It is not the electric field generated by 

another charge in this case, of course, if you have another electric charge, you can 

generate that influence. But here, you are making a charge move, not by bringing in 

another charge from somewhere and making it influence discharge generating a force on 

it as a result of which discharge would be accelerated, but by dragging this loop to the 

right; so this is the origin of the influence you have generated. 
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So, this is I putting it in some sort of and influence, which you can say is due to some 

electromotive force which is making it move. 
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So, now, you will have a clockwise current, if you physically drag this current loop to the 

right. Now, let us do this experiment again, this time you hold the loop constant, but 

what you do is drag the magnetic field itself to the left, how do you do that? If you are 

generating that magnetic field by keeping this thing in a north pole and a south pole or 



between two poles of a horseshoe magnet and you take that horseshoe magnet and move 

it to the left. 
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So, what you are moving now? Not the loop, but the magnetic field and if you are not 

dragging the current loop, this charge which had a quiet of velocity v, why did it acquire 

that velocity v? Because this loop was drag to the right, if this loop were not drag to the 

right it would not have any velocity. So, if that loop is static, there cannot be any v cross 

beta, because the velocity of the charge is 0. 
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Now, there cannot be any Lorentz force; watch out this is very critical. You will 

nevertheless have a similar current, you have exactly the same current in the clockwise 

direction, but it is not because the charge is moved physically to the right, the charge 

velocity 0, you have not moved, it is stationary. 

Now, you move neither you do not move the current loop nor you do not move the 

magnetic field, but what you do is change the strength of the magnetic field; you can do 

that. For example, you can generate the magnetic field by some, you know changing 

current and that would change the magnetic field. So, if it changes the magnetic field, 

then you have got a current, which is proportional to dB by dt and as a result of this 

change in the magnetic field once again, you could have a current set up in the loop. 
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And I will like to invite you to read this article, which has been written by two, rather 

four of my former students in particular by Satish and Venkatesh, who wrote very nice 

software to demonstrate some very fascinating experiments in which you have charge 

particles in electromagnetic fields and you will find this is very closely connected to the 

special theory of relativity which is what I am getting down. 

And this articles has been published resonance in several years ago in 2004 and the 

program they wrote was rather old in fact, they did it many years ago, but never 

published it and then Chaitanya das and Srinivasa Murthy read it that work and 



developed a new software and they have also contributed to this and we are going to 

demonstrate this software in the next class. 
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But that is something, so I will come into little bit more about this in the next class. But 

for the time being, let me once again invoke this idea, that you have got the electric field 

which is expressed as a gradient of the potential; this idea we are quite familiar with 

already. But now, as a result of the changing magnetic field, we can get a curl of the E. 

So, this is a new kind of a source of generating and influence on electrical charges. 

So, if you change this relationship and this is this also appears as an important element in 

Maxwell’s formulation of electromagnetic theory, if you now take this relation and 

construct the surface integrals of both sides of this relationship, the curl of E is minus del 

B by del t it is coming because of the rate of change of the magnetic field, which can 

have a similar influence certain charges and these two surface integrals will therefore, 

become equal, but then through the Stokes theorem the left hand side which is the curl of 

the vector, you take the surface integral of the curl of the vector which we know from 

Stokes theorem is equal to the circulation of that vector about a close path once again, 

the direction of the circulation is connected with the direction of the surface element 

through the right hand screw rule and what you essentially have is the surface integral of 

this time derivative. 



But this integration is over space, this is differentiation over time and you consider these 

two be independent of each other. So, you can take this as the time derivative of the 

surface integral B dot Ds, which you identify as the magnetic flux crossing that area. 

So, you got this circulation E dot dl to be given by minus del by del t of phi B, which is 

the magnetic flux. This is known as the Faraday-Lenz law and this was arrived at by 

Faraday and Lenz from the observations. They did a variety of experiments of the kind 

that I suggested, that you have currents and you have got magnetic fields, you move one 

you change the other and use some experiments of this kind; they did a number of 

experiments of this kind and they actually arrived at this law that the circulation of E dot 

dl is equal to the negative time derivative of the magnetic flux. 
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So, let us compile what we have learnt so far and these are all empirical laws. So, you 

have got the Coulomb’s law corresponding to which using simple geometry, we got the 

Gauss’s law. So, this is the coulomb Gauss law, then we have the Faraday-Lenz law, 

then we had the fact from the Biot-Savart law, we found that the divergence of the and 

the curl of the magnetic field is given by these two relationships and whenever the 

divergence is 0, the field is called solenoidal and the magnetic field in this is solenoidal, 

which is the statement of the fact that there are no monopoles, because there is no point 

in space from where you can have a divergence either positive or negative. 



So, there is no analog of positive and negative charges in magnetism and its integral 

expression is B dot Ds. So, the expressions on the right hand side written in this red are 

completely equivalent to the expressions on the left written in blue. These are the points 

forms, these are the globally forms, these are differential forms in which you take the key 

mathematical operator is the differential operator, which is sitting in this gradient and 

over here this formulation is called as the integral form. Because these are global forms 

in which you have to carry out the integrations, but mathematically they are completely 

equivalent. 

(Refer Slide Time: 42:07) 

 

So, these are all empirical laws of classical electrodynamics or they are due to Charles 

Coulomb, Gauss, Andre Ampere and Michel Faraday, brilliant experimentalist;  the basis 

for these laws is completely experimental, there is no theory. 
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Now, what James Clerk Maxwell did, was to synthesis the electric and the magnetic 

phenomena with each other and also with light; so we will see how that happens. So, let 

us consider the Oersted Ampere law and the Faraday Lenze law; what Maxwell did was 

to added term corresponding to changing electric flux, that over here you have got 

changing magnetic flux. Nobody had ever considered a term involving changing electric 

flux, Maxwell did that. What Maxwell did was to take the Faraday-Lenz law and added a 



term, similar to the term that you find in the Faraday-Lenz law and he stuck it in this 

Oersted Ampere’s law. 

So, he draw his inspiration from here; so this circulation B dot dl, which is equal to mu 0 

I, he added a term corresponding to the time derivative of the electric flux. How did he 

get it? Intuition? Possibly, yes. Symmetry, he started recognizing this symmetry in the 

electric phenomena and the magnetic phenomena; he started recognizing in fact, the 

unity of the two; he came pretty close, but not quite to discover this special theory of 

relativity, that had to wait Einstein and that is an extremely important and an integral part 

of our story and classical electrodynamics. 

So, this is the term that Maxwell added and now, we will call this as the Oersted, 

Ampere - Maxwell equation. This was not based directly on any experimental 

observations, but on what Maxwell proposed as a theory of electromagnetic phenomena, 

which integrated electric phenomena with magnetic phenomena and with light and it 

went in a few steps, we will see those steps very quickly. 

So, this is the integral form and the corresponding differential form which you can get by 

manipulating these terms using the vector calculus you already know, you do not use 

anything other than the divergence theorem or the Stokes theorems, the Gauss’s 

divergence theorem or the Stokes theorem and what you essentially get is that the curl of 

B is given by mu 0 J plus mu 0 epsilon 0 del E by del t. So, this term, which is similar a 

Faraday-Lenz term, this was added by Maxwell. 
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So, now, we have Maxwell’s equations already, you have got the divergence of E equal 

to rho 1 epsilon 0, you have got the curl of E which goes is minus del B by del t, you get 

the divergence of B is equal to 0 and now, this Ampere, Oerstead- Ampere law is 

modified to include this term and when you do that, you already have Maxwell’s 

equations. 

Look at the symmetry of these two terms, they have got exactly the same form; one 

involves the time derivative of the magnetic field, the other has got the time derivative of 

the electric field; this symmetry is crucial, it has got deep consequences. 

The corresponding integral forms, which you can get once again by using the theorems 

in vector calculus, but we now, I have considerable acquaints with, give you Maxwell’s 

equations in the integral form they are essentially the same and once again you find that 

there is a symmetry. But now, here, you talk about the magnetic flux and here you have 

the electric flux, but once again you have essentially symmetry between electricity and 

magnetism. 
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Now, let us play with this a little bit more. You have this expression curl of E equal 

minus del B by del t; now, let us take the curl of this vector, the curl of a vector is a 

vector and you can take its curl; so let us take the curl of this quantity; so you take the 

curl of curl of E. 

So, again you can swap the positions of the gradient operator with the time derivative 

operator. So, you get the negative sign, you preserve and you take the time derivative of 

the curl of B and if you work this out term by term again, which is a matter of doing 

elementary vector calculus. 

And now, we have used the ideas of divergence and curl in discussing fluid mechanics, 

the Bernoulli’s principle in setting up the equation of motion for a fluid, the equation of 

continuity. So, we have done all these; so we have considerable experience with using 

vector calculus; we taking the curl of a vector, we taking the divergence of a vector. 

So, I will not go through the intermediate steps, I leave that as an exercise and you find 

that if you take that curl of the curl of E, the result is the gradient of the divergence of E 

minus this Laplacian the del dot del operating on E. So, here is your result, the curl of E 

is nothing but minus del B by del t. So, you have this result we are all together and now, 

from the earlier expression, we have the curl of B to be given by mu 0 J plus this term 

which Maxwell added. 
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So, this is the term, which was added Maxwell out of symmetry. So, we now, have the 

complete expression for this. So, let us take this equation to the top of the next slide 

which is over here, so that we do not lose any term. And now, we know that the 

divergence of E is rho over epsilon 0 this is the Gauss’s law as we know it. This is the 

Laplacian of E on the left hand side, on the right hand side you have got mu 0 times del J 

by del t and then, the second term is mu 0 epsilon 0, but you have got the first time 

derivative of E operated upon by another time derivative operator del by del t. So, you 

have got the second derivative of E with respect to time. 

So, what you have? If you specialize this equation to vacuum in which there is no charge 

density and no current; so these two terms drop out, you get del square E coming from 

here to be equal to mu 0 epsilon 0 del two E by del t 2, because this minus sign cancels 

this minus sign and rho and J are both 0. So, essentially, what you have is the wave 

equation. 

Now, I have arrived at this for the electric field you can play with the Maxwell’s 

equation, do exactly the same kind of vector calculus which is very elementary and you 

will get as very similar expression for del square B, which is equal to mu 0 epsilon 0 

times del 2 B by del t 2 



Now, this is the second order homogeneous partial differential equation, which connects 

the space derivatives of the electric and magnetic fields with the time derivates of the 

electric and magnetic fields. Essentially it is a wave equation and the wave propagates at 

a certain speed, which depends on properties of vacuum, the speed of propagation and 

this is nothing to do with electromagnetic theory; it has to do with wave theory, no 

matter what wave you are talking about. 

So, these two equations they represent waves and these waves propagate at a speed 

which is determined completely by properties of vacuum and by nothing else, and this is 

amazing. Because whenever you talk about any speed, you always ask speed with respect 

to what, with respect to which observer. And here, no matter which observer you are 

talking about, the speed is the same because it is determined by properties of vacuum mu 

0 and epsilon 0 is square root of 1 over mu 0 epsilon 0. So, if you have got one observer 

who is here and another observer, who is moving with respect to this observer at a 

constant velocity, then the speed of an object like, if this were a car or some other object 

and if this were in motion, then the speed of this car relative to this observer and with 

reference to this observer would be different. Do we all agree that? The speed of a car 

measured to with respect to one observer who is stationary, who is standing on the road 

and another observer, who is moving at a constant velocity, there is no acceleration of 

the second observer and in the absence of any acceleration of the second observer, then 

no Pseudo forces to talk about both are in inertial frames of references. 

Because the frame of reference of the second observer is also in inertial frame of 

reference, because it is moving at a constant velocity with respect to another inertial 

frame and it does not matter, what the relative speeds are. Because the property of this 

wave is that this wave propagates at a velocity which is determined completely by 

properties of vacuum and nothing else, it is square root of 1 over mu 0 epsilon 0. Now, 

this is an amazing result. 



(Refer Slide Time: 54:42) 

 

So, here, let us look at this velocity, further this square root of 1 over mu 0 epsilon 0 

which is what gives you the speed of this is given by properties of vacuum. This is what 

we call as the speed of light and if you solve these wave equations and find you the 

solution for E and B these solutions are given by this and you immediately see that the 

propagation direction k is orthogonal to E and B. 

So, if you just study these three relations, which comes straight out of elementary vector 

calculus, you find that the electric field and the magnetic field must be orthogonal to 

each other and the propagation of the wave is orthogonal to the electromagnetic field 

which is why you refer to it as a transverse weigh. 
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What is the value of the weight? This is very nearly equal to 3 into 10 to the power 8 

meters per second and what Maxwell observed is that, this speed agrees, rather well with 

the speed of light, as was known at the time. Today’s measurement give you very precise 

value, but the values which were available at Maxwell time agreed with this and that led 

Maxwell to conclude that light is an electromagnetic disturbance, which propagates 

through the field according to electromagnetic laws, this is how ended up synthesizing 

electricity magnetism and light. 
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And he converges on the view point that the electromagnetic field is a transverse, has got 

transverse properties and it propagates at the speed of light. So, light is no different from 

the electromagnetic phenomenon and this is the electromagnetic spectrum that we now 

know and you are similar with this terminology, then you have got the long wavelengths 

the radio waves, then you have the microwaves infrared visible and they become shorter 

and shorter and they get into the gamma rays and the corresponding frequencies of 

course one increasing, because the product of the frequency and the wavelength is what 

gives you the speed of the wave, which is speed of light. 
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This is the visible range, which is the small part of the electromagnetic spectrum and we 

are able to see colors from violet to red from the shortest wavelength to the longest 

one’s. This is all that we can see, one of you may be able to see one or two extra 

wavelengths on either side of the spectrum or may be more, but there is not particularly 

important. 
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So, at this point we will take a break and in the next class, we will recognize these 

connections. I believe, you already have a hint that the special theory of relativity will 

play a huge role, because this electromagnetic wave is now travelling at a speed which is 

determined completely by the properties of vacuum. 

And in fact, the provocation for Einstein to arrive at the special theory of relativity, 

provocation is perhaps, not a very nice work, the inspiration if you like. It came from the 

symmetry in the electromagnetic phenomena, it came from this amazing symmetry of the 

experiment that we consider, that you have a magnetic field, you have got a conductor; 

you move the conductor, you have got a current certain; you do not move the conduct 

this conducting element, but move the magnetic field even then you have the same 

effect. 

But the sources of these effects seems to be so different and they come from an idea of 

symmetry, which Maxwell recognized. In fact, it was this symmetry which inspired 

Maxwell to plug in that extra term del E by del t similar to del B by del t he just plugged 

it in the formalism. 

So, in the next class, we will discuss this further and we will see how the loss of 

electrodynamics is intimately connected to the special theory of relativity with STR. So, 

you have already have a hint, you already saw that the electromagnetic phenomenon, the 



electromagnetic wave is propagating at the speed of light irrespective of which observer 

in which inertial frame is measuring it. 

So, if you have got one observer, who is stationary and another observer, who is moving 

at a constant velocity with respect to the first observer. Just imagine yourself doing this, 

if you are measuring the speed of a car, you are on a road, you are in traffic and there is a 

car in front you and you measure the speed of the car in front of you with respect to 

yourself and you measure the speed and your friend is also measuring the speed of the 

same car, but he standing on the road and not moving in a any car. 

So, the sum and difference of the relative velocities of you and your friend will come 

into play in the estimation of the velocity of the target car those will be different. But 

here light is propagating at a speed, which is determined not by which observer you are 

talking about in which frame of reference, but only by properties of vacuum. 

So, this goes into the special theory of relativity; we discuss this at some length in unit 6 

and you will now be able to connect all the pieces together and see how it connects to the 

laws of electrodynamics and that will be in our next class. So, until then good bye; if 

there are any questions I will be happy to take otherwise, send me an email. 


