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Greetings and welcome to the 9th lecture in this course. This is continuation of unit 2 on 
oscillators. 

(Refer Slide Time: 00:17) 

 

We have already had a discussion on oscillators. We studied the simple harmonic 

oscillator, the free oscillator which oscillates at a certain frequency when it is not 

subjected to any other impediments such as friction, or to any other additional external 

force, so which is oscillating under routs - its own intrinsic parameters like the restoring 

force, which a spring has. 
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Today, we will subject this oscillator to an external force and we will talk about forced 

oscillations. This is the classic picture of, coming right after the mother’s day I think this 

the wonderful picture to look at, with Yashoda rocking the cradle of Krishna and it is a 

tribute to the mothers; that the hand that rocks the cradle is the hand that rules the world; 

this is a wonderful poem that some of you may have read, written by William ross 

Wallace. 

Now, here, you have an oscillator which would oscillate under its own internal 

parameters, but then, there is also some friction at this support; It means other than the 

fact that you know the air and the atmosphere in which it is rocking would also impede 

the free movement, but more than anything else, it is the friction at the supports which 

will cause the damping. So, this is the damped oscillator. Then, addition to that, there is 

an external force which can be applied; just once in a way you just tap it or you tap it at a 

regular frequency. We will consider such forces which are periodic. 
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So, we will setup an equation of motion in which the net mass time acceleration for the 

object which is mx double dot for a one dimensional oscillator is equal to the restoring 

force which is minus kx. Then there is a damping term which is minus cx dot; this is the 

term that we discussed yesterday. In addition, there is a driving force F dr. So, your 

equation of motion is this: F mx double dot is equal to minus kx minus cx dot plus F, 

driving force. 

So, in the free oscillating, you have only the first term. Then in the damped oscillator, 

you have the first and the second term and then this is the forced damped oscillator. You 

can divide it by the inertia and you get the equation for the acceleration. This would be 

the case for any kind of damped driven oscillator. It does not have to be just a mass 

spring oscillator. It can be the simple pendulum with damping which is subjected to a 

periodic force or it can be an electrical oscillator in which it is the resistance which 

introduces damping. 

A pure LC circuit will have no damping; damping is caused by the resistance. So, these 

are the electromechanical analogs and you can have an exactly identical set of equations 

whether you are dealing with the mass spring oscillator or a simple pendulum in a 

gravitational field, or in electrical circuit with in inductance, capacitance, and a 

resistance. Then, you have a source for the electrical voltage which is an alternating 



electrical voltage. So, you can have a complete electrical analog of a mass spring 

oscillator. 
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So, we need to look at the solutions for this equation. The actual form of the solution will 

actually depend on what kind of driving force you are applying; of course, it depends on 

what kind of the damping force exists in the system. The damping force - I already 

discussed it in our previous class that the damping force minus cx dot, is not a term 

which comes from first principles. But it is some approximation to the total net effect of 

the unspecified degrees of freedom that you have not taken into account in setting up the 

equation of motions. So, it is the net result of all of that, but we will stay with that form 

for the damping force which is minus c times x dot. 

Now, we have to worry about what form of the driving force are we going to consider 

and like I mentioned, we will be considering a periodic damping force; this periodic 

driving force. So, this driven driving force F dr has got a periodicity which is indicated 

by this omega. Now, this omega looks like the omega one uses to represent the ohm, as it 

is used to write the electrical resistance. So, it is that omega; this is the upper case of 

omega that I am using here.  

Actually, there are three frequencies that we have been talking about: one is the intrinsic 

natural frequency of the oscillator which is omega 0; then, there is the frequency omega 

which is the frequency of the damped oscillator, which is different from the natural 



frequency; if you remember, it is the square root of omega 0 square minus gamma square 

where gamma is the damping coefficient; now, there is the third frequency for which I 

need a different symbol. So, I am using omega again, but an upper case omega, as is used 

in the ohm. So, this upper case omega is the frequency of the driving force. So, this 

represents the periodicity with which the cradle is rocked if you have that picture in your 

mind. So, this is the frequency of the driving force.  

In addition, there could be an angle theta because mind you, if this t goes to 0, this phase 

will be e to the power i theta (Refer Slide Time: 07:06). So, it will insert some kind of 

phase and depending on when you actually start the periodic force, means you can start 

rocking the cradle when it is moving away from you or when it is coming towards you, 

or any time in between. So, depending on that, there will be a certain phase consideration 

and that is taken care of by this angle theta. So, these are the intrinsic parameters. 

Omega 0 square - this is the natural frequency. This is determined completely by the 

intrinsic parameters of the system; k belongs to the system; so, does the inertia. These are 

the internal properties of the system you are talking about all the corresponding 

electromechanical analogs. Gamma is the damping coefficient. Now, this is some net 

packaging of the unspecified degrees of freedom which we have chosen to have this 

particular form. In terms of gamma in omega 0 square, this equation for the acceleration 

turns out to be x double dot plus twice gamma x dot plus omega 0 square x. Then, you 

have got the driving term on the right hand side. So, this is the differential equation for 

which we must find the solutions. 

Now, if there were no damping, if gamma were 0, and this would be an ideal oscillator 

which experiences no damping, no friction, but it is subjected to an external periodic 

force. So, you can always develop an approximation; all special cases in which you can 

ignore damping. Notice that, if you look at this particular term in which there is no 

damping, then the driving force has got an amplitude; means, if this term e to the power i 

omega t represents the periodicity, then the corresponding amplitude contains a phase 

factor; along with this phase factor, the amplitude itself which is F 0 e to the power i 

theta becomes a complex number. 
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So, the manner in which we are using this algebra of complex numbers, the amplitude is 

complex. What it is doing is, it is allowing us to deal with this phase factor. It is not that 

the maximum amplitude itself has got any imaginary part; it is keeping track of the 

phase; means I just want to emphasis this point again, which we already discussed in our 

previous class; when we deal with complex numbers that is nothing imaginary that we 

are confronted with. We are dealing with physical observations; we are interested in the 

physical state of a system which is given by its position, by its velocity. We are going to 

see how this position and velocity changes with time, track the evolution of the system in 

the phase space, or whatever be the form in which you solving the differential equations. 

Then, what you observe is a real number; is a real parameter. It is a real physical 

observable and this is just a mathematical tool which allows you to deal with two real 

numbers at the same time or keep track of some factors like the phases and so on. So, the 

algebra complex numbers is very useful in dealing with pairs of real numbers. 
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So, corresponding to this, we have a solution which will include a complex number, 

which will include the phase factor and this will be a solution of the differential equation 

for the damped and forced vibration. So, the algebra is very straightforward. 

The reason to use the exponential form which I mentioned earlier as well is that, 

whenever you take differential equations and you deal with the velocity which is x dot, 

we deal with the acceleration which is x double dot. So, you have to differentiate with 

respect to time once and twice. Every time you differentiate with the operated d by dt, 

the result is a multiplication by the factor i omega. So, the process of carrying out 

derivatives is a very straightforward one, when you deal with this particular complex 

form or exponential form of the function that you are working with. So, here you go. The 

first dot d by dt of x which is x dot, this is i omega time x; when you do it twice, it will 

be multiplication by i omega twice. So, that gives you an i omega square x. 

Now, this differential equation translates to an algebraic form and then you can get for it 

solution, a form in which you have a complex amplitude, in which the phase theta is 

included. If you look at this form, you might expect that when the denominator goes to 0, 

the amplitude will go to infinity. Does it mean that the physical pendulum will actually 

go away to infinity? Is that what you going to expect? Now, this really does not happen 

because damping is always present. So, do not worry too much about it. This is the 

mathematical form we dealt with the special case, in which we presumed that there is no 



damping; but damping is always present. That is one factor to keep track of. The other 

thing is that, as the system stretches away from the equilibrium point, it could cross its 

elastic limit. When it stretches beyond this certain point, then it is going to snap and then 

it is not that goes to any arbitrary distance away from the equilibrium. The restoring 

force will retain the form of minus kx, that it will bring it back to the equilibrium; no. It 

will at some point snap. So, it is not that you have oscillations of infinite amplitude so 

that that is not physical and it does not happen. 
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So, this is our differential equation now, inclusive of damping. This is the term that we 

had ignored in the part of the discussion we just had. So, we will now insert damping 

gamma. So, the complete differential equation has got three terms in the left hand side. 

We shall try a solution in this form with a complex amplitude and we can use the same 

trick that, when you take the first time derivative, you must multiply the function x by i 

omega; when you take the second time derivative, you must multiply by i omega twice. 

So, i square will give you minus 1. So, you get a minus omega square x in this second 

derivative term. 

There are two angles to keep track of: theta and phi. What theta does is to keep track of 

just exactly when you start applying the driving force. Then, phi will give you a measure 

of it further phase lag with respect to the driving force because it cannot be anticipated or 

it cannot be assumed that the oscillation will be completely in phase with that of the 



driving force. So, these phase lags have to be kept track of. So, there could be an 

additional phase factor and these two angles, we will follow them rather closely in our 

discussion. 
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So, here you go. You now have this form of the driving force and in this differential 

equation; you substitute for x dot and x double dot that you have already found over here 

and you get an algebraic equation. Then, we have to solve this algebraic equation so that 

we can understand what is the nature of the solutions. 

So, this is the general case we are now discussing in which damping is kept track of. We 

cancel out the common factors e to the i omega t and we get a solution for the amplitude. 

This amplitude, now we know depends not just on the difference between these two 

frequency terms, but the damping also controls it. Now, this is the point which I had 

hinted earlier; the damping is always present. Just when the upper case omega becomes 

equal to omega 0 square is not going to go to infinity because generally speaking, 

damping is present; we hadt dealt only with the special case earlier. 

So now this is the complex amplitude and I have now written it explicitly. This is written 

with A, with this symbol on top of A. So, wherever I have a complex amplitude, either 

for this driving force or for the amplitude of oscillation, I have used this symbol which 

looks like a hat it is called as a carat. So, this is A carat this is F carat or sometimes in its 

called as F hat or A hat, and this has the phase which is included in this and this got the 



two angles theta and phi on the left side; on the right side, there is this e to the i theta. So, 

this is the complex amplitude in which the phase angles find an explicit expression. 
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 . 

There is an e to the power i theta on both sides of this equation. So, we can cancel this 

out and then we get A 0 e to the power minus i phi because e to the power i theta on the 

left hand side cancels e to the power i theta on the right hand side and we have A 0 e to 

the power minus i phi equal to this term on the right. So, we are now getting some 

specific form for the amplitude function. 

Now, writing this, we want to determine what is this angle phi because this is the phase 

that we wanted to keep track of. We can get the phase by bringing this A 0 to the other 

side of the equation and we get an expression for cosine phi and the sin phi. If you take 

the ratio, you can get the tangent of phi and its tangent will give you the angle phi itself. 

So, we separate the real part in the imaginary part. So, the left hand side is cosine phi 

minus i times sin phi. So, this side also you have to separate into a real part and an 

imaginary part, but here, you have got a complex number in the denominator; say if you 

multiply this right hand side by the complex conjugate of this and divide it also by the 

complex conjugate of it, which is effectively multiplying the right hand side by unity and 

no problem there.  



You can always multiply a factor by any factor by 1 and leave its value unchanged, but 

you resolve this 1 into a ratio of the complex conjugate of the denominator in the 

numerator and the same in the denominator, and then you can clearly separate the real 

part and the imaginary part. Now, once you do that, you equate the corresponding real 

parts so that the cosine phi becomes equal to this quantity over here. Notice that the 

denominator is just a product of this number with its complex conjugate. So, you get the 

real part which is equal to cosine phi and then you get the imaginary part which is equal 

to this part over here. So, you have equated the real parts and the imaginary parts. Now, 

from the ratio of sin phi to cosine phi, you can find by taking that inverse tangent, you 

get the angle phi self which is this ratio and this depends, of course, on damping 
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So, it is this damping which is responsible for the phase lag between the response of the 

damped oscillator to the periodic oscillations. If gamma was 0, this would go to 0. So, it 

is because of this damping that there is an additional phase that steps into your analysis. 

You can also do a squaring and adding because that allows you to determine what this A 

0 is. Because cos square phi plus sin square phi is always equal to unity and you take 

advantage of that; then phi gets eliminated from this and you get an expression for A 0. 

Notice that this amplitude will depend on the frequency of the driving force. So, if you 

apply this driving force, you think of the Yashoda rocking this cradle and if she rocks it 



at a different frequency, this amplitude is going to change. So, this A 0 is dependent on 

omega. So, you write it explicitly as the function of this omega. 

This phase factor of phi also changes not just it is sensitive, not just to this gamma, but 

also to this frequency omega. So, the phase factor changes markedly with the frequency 

of the driving force and its very cause is the presents of damping in the first place. So 

this is now your complete solution in terms of the periodic application of the driving 

force for a damped driven oscillator. This is often called as a steady state solution. I will 

explain the term shortly. 
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This is the solution for the differential equation. This is a steady state solution. In 

addition to this, there will be another solution; I will get to that. 

This oscillation is not in phase with driving force because of damping. It is out of step. 

The difference to the phase is through the angle phi and the amplitude is governed by 

this factor 1 over square root of this quantity that you see which is omega 0 square minus 

this other omega square and then there this damping term over here (Refer Slide Time: 

22:50); of course, the inertia of the system also has to play a role over here. So, that will 

participate in the expression for the amplitude. 

So, the other thing which is going to influence the nature of the solution is this first term 

under the square root sign, over here (Refer Slide Time: 23:16). Depending on how close 



the driving frequency is closed to the intrinsic natural frequency of the oscillation, you 

will expect some very special features to manifest themselves. This will lead us to the 

phenomenon of resonances and physical system. 

You can already expect that because as this upper case omega the frequency of the 

driving force becomes exactly equal to omega 0 which is the natural frequency, this term 

would completely vanish and that will give very special forms to the nature of the 

solutions. This has very important and very fascinating applications in a large number of 

physical systems, whether mechanical, electrical or whatever; but a large number of 

physical phenomena are influenced, including quantum phenomena. 
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So, this is the general solution. Here, all the expressions are combined together with the 

emphasis here that the amplitude itself will depend on the frequency of the driving force. 

We can actually ask this question that if this amplitude is going to depend on the 

frequency of the periodic force, can I control the frequency of the periodic force because 

you know you can rock the cradle once every second, twice every second, 5 times every 

second or 7 times every 2 seconds? You know it can have different kind of frequencies, 

and depending on what frequency, with what frequency you are applying a periodic 

force, the amplitude is going to change. So, if you are seeking maximum amplitude, what 

should be the frequency that should be used for the driving force so that the amplitude 

will be a maximum; now, that is the question that we shall now take on. 
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As the function of the frequency of the driving force, when will the amplitude of 

oscillation be a maximum? So, how would you answer this? Is there a quick guess? What 

you must do is find out when this derivative with respect to frequency vanish because for 

any function to be a maximum, its derivative with respect to the independent parameter 

goes to 0. 

So, you take the function A 0 as the function of omega, take its derivative with respect to 

omega set this derivative to be equal to 0, and then analyze the consequence of this 

condition. Because the condition for a minimum or a maximum is that the derivative of 

the function must vanish. Of course, if you are interested in whether it is a maximum or a 

minimum, you should also look at the second derivative and so on, but here, we are 

interested in this particular condition. 

So, we keep track of the two frequencies: the intrinsic natural frequency and the 

frequency of the driving force. The intrinsic frequency belongs to the system; it is 

determine by the spring constant k and the inertia m for the mass spring oscillator. The 

external frequency, of course, is something that we can control because that is in our 

hands. We can decide how often we want to apply the periodic force. So, if gamma was 

0, then of course, this condition is that this omega must be equal to omega 0. That is 

quite straightforward because that is when the denominator vanishes. The gamma is 

already set equal to 0 as a special case. So, that is quite straightforward; it does not make 



quite mean that the amplitude, you are going to see an oscillation of infinite amplitude; 

that as we have discussed earlier. Thus, the result that we get when damping is present; 

we must look at this particular term carefully and find dA by d omega, set it equal to 0 

and then examine the consequences.  

Some of you have asked me for references; here is a good reference for this part of the 

discussion; there is a very nice book by Fowles called Analytical Mechanics. But the 

notation that we have used is slightly different. So, you cannot use the notation from 

Fowles directly, but Fowles is a good source; the (()) physics course, volume 1 is also a 

good course. You find discussion in some of the other books as well, but Fowles is a 

good source of this. 
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So, anyhow, the condition for resonance which is when we are going to have the 

maximum amplitude is dA by d omega equal to 0. So, this is where you take the 

derivative of the right hand side with respect to omega. So, you just do it carefully 

because you have got a denominator, omega appears in the denominator and that too 

twice; once over here and once over here (Refer Slide Time: 28:48). 

So, if you take this derivative carefully term by term, you get this particular condition 

and in this condition, you ask - when will this ratio go to 0? Obviously when the 

numerator goes to 0; this is what would happen when omega square is equal to omega 0 

square minus twice gamma square. So, this is the condition which emerges; that omega 



square which is the square of the driving force is equal to this difference - omega 0 

square minus twice gamma square; or, in other words, the corresponding frequency 

which is called as a resonance frequency and I will write it with the subscript r. This 

resonance frequency will be given by this square root of this term which is omega 0 

square minus twice gamma square. 

Now, this is like omega 0 square minus twice gamma square to the power 1 half. If you 

expand this term, then you can develop an approximation, retain the highest order terms, 

and then you get this omega which is the square root of this quantity, which is 

approximated to omega 0 minus gamma square over omega 0 square. So, that is just 

straightforward expansion and which have factored out omega 0 square and then 

expanded the term omega 0 square minus twice gamma square to the power half. 

So, this is the resonance frequency and it gives the condition under which the damped 

driven oscillator will have maximum amplitude oscillation. 
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Now, if you remember, this frequency is different from the frequency omega. This is the 

frequency of what we had called is the under damped oscillator. This was end the class at 

we had yesterday, in which we found that the damped oscillator under goes in the case of 

what we called as the under damped oscillator. It is not periodic motion because 

amplitude diminishes exponentially, but then, it is a periodic motion because the zeros 

are periodic. It goes to the 0; it crosses the equilibrium periodically at the specific time 



interval; that time interval is governed by a frequency and twice phi times 2 phi times are 

frequency is the circular frequency which is omega, which is slightly less than the 

intrinsic natural frequency. The difference is controlled by the damping coefficient, 

gamma. 

So, there are these two frequencies that we already talked about yesterday and there is 

this frequency of the driving force which we can control. If you set this frequency of the 

driving force omega, set it equal to what we will now call as a resonance frequency, 

which is equal to this square root of omega 0 square minus twice gamma square. So, it is 

different; obviously from this omega, which is why we needed three different symbols 

for omega for the frequency, but these are three different frequencies that we are talking 

about. We can now develop is for approximation to this, which makes of a discussion a 

little simpler. 

So, in this square root I factor out omega 0 square. So, the remaining term is 1 minus 

twice gamma square divided by omega 0 square; the square root of the omega 0 square 

gives me omega 0, outside the square root factor. Then, under the square root factor I 

have got 1 minus twice gamma square over omega 0 square. This is nothing, but this 

bracket to the power 1 half which I can expand and retain the leading terms and I 

immediately get and approximation in which I must take half of this factor twice gamma 

square by omega 0 square, which is nothing but gamma square by omega 0 square itself. 

So this omega 0 minus gamma square by omega 0 gives us an excellent approximation to 

the resonance frequency.  

So, here are our results. This is just the frequency of the under damped oscillator. This is 

the square of this term and you can swap the term; so, omega 0 square. You can take 

gamma square on the other side; so, omega 0 square is equal to omega square plus 

gamma square. You have omega r which is this, which is omega r minus gamma square 

over omega 0. 

So, you combine these results and you get omega r to be given by the square root of 

omega square plus gamma square which is actually this omega 0 square, which is you 

can see it clearly from this form here (Refer Slide Time: 34:15 to 34:25). Also, this 

omega 0 square is replaced by omega square by gamma square in this term and you have 

got this minus twice gamma square which is coming over here. Then, if you remove this 



bracket, you can see that you are left with plus gamma square minus twice gamma 

square. So, you will get only one factor of gamma square to be diminished from omega 

square. 

So, anyhow, you have got this omega r and if you approximate this square root factor by 

the usual trick that we have been playing, then you have this form for the resonance 

frequency; in terms of the damping, the frequency of the under damped oscillator. So, 

this is the resonance frequency in terms of the damping coefficient and the natural 

frequency of the oscillator omega 0. Here is an expression for the resonance frequency in 

terms of the damping coefficient and the frequency of the under damped oscillator. So, 

you can write it in either one or the other form. 
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Now, what is the value at the resonance frequency? What is the value of the amplitude at 

the resonance frequency? We already know that the amplitude changes with frequency. 

We are now asking what will be this value when the frequency of the driving force 

omega is equal to the resonance frequency. So, all you have to do is to substitute this 

factor omega by the expression for the resonance frequency and you get the expression 

for the maximum amplitude.  

So, you do not have to write down all these sayings in your notebooks. I think it is 

important to follow the discussion and then try to regenerate these results yourself. So, 

do not worry if you are not able to write fast enough, as I speak through these slides, but 



the important thing is to follow the discussion and then try to work out these relations 

from first principle because there is nothing in it that you cannot do; all we started out 

with is the differential equation for the free oscillator; then we plugged in a damping 

term; then we plugged in at driving term; then we keep track of all the phase factors; we 

recognize the fact that the amplitude of oscillation will be dependent on the frequency of 

the driving term; we ask under what condition will it be a maximum? So, we set dA by d 

omega equal to 0, solve it for that particular condition, and up come the answer; nothing 

else that we have done in this entire analysis. 
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So, this is the maximum amplitude. So, there is no need to write every term down or you 

know check every term. It is something for you to sit down and catch up, and derive for 

yourself. 

You can also turn this expression around and write the ratio F 0 over m in terms of these 

maximum amplitudes. So, instead of writing our parameters in terms of the amplitude 

have 0, we can write it in terms of the maximum amplitude of the oscillation itself. If you 

do that, then this A 0 omega becomes expressible in terms of the maximum amplitude 

which is written as A 0 omega at the maximum value. So, it is just a straightforward 

substitution of the amplitude function at the resonance frequency. 
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Now, we will develop further approximation because we are working in the region which 

is close to the intrinsic frequency of the oscillator. So, this upper case omega is nearly 

equal to omega 0. Now, if you look at this term, omega 0 square minus omega square - 

this is exact, for any difference in the squares like a square minus b square the factors are 

a plus b and a minus b; that is exact. But in the next step, we introduce an approximation. 

we set omega nearly equal to omega 0, which becomes twice omega 0, but you do not do 

it in the first factor. 

Now, does that worry anybody is to why is that that you are putting uppercase omega 

equal to omega 0 in the sum, but, not in the difference? That is always how 

approximations are made, that it is the sum of omega 0 plus omega which is not so 

different from twice omega 0. That difference which is coming is being made in a large 

number. So, you are neglecting a small number compared to a large number. 

So, whenever you ignore any difference, you do not ignore it because of its absolute 

value, but only in comparison to some other parameter. So, this approximation is 

completely valid. You can in fact replace omega 0 plus omega by twice omega 0 because 

the difference between them is a small number compared to a large number. You cannot 

do that when you are dealing with that little tiny difference between omega 0 minus 

omega itself. So, this approximation is perfectly valid 



We will deal further with such cases when the damping is small because in physical 

systems that you work with like either LCR circuits and so on, or in other mechanical 

oscillators, you often try to minimize damping. So, gamma is quite often pretty much 

smaller compared to omega 0. Then, that makes this resonance frequency not too far 

from the natural frequency of the oscillator itself. Under these approximations, you can 

substitute for this term, this approximation which is omega 0 minus omega square and 

twice omega 0 square which is coming over here (Refer Slide Time: 41:11). 

For the second term, this omega square is very nearly equal to the square of this omega 

0, which is the natural frequency. So, here again you do not have to write down 

everything that you see on the screen, but what is important is that you keep track of how 

approximations are made; that you make approximations when you are setting some term 

to be nearly equal to another, then you must ensure that the difference that you are 

ignoring is ignorable, and it can be ignorable only in comparison to a large number; not 

otherwise. 

So, now you have got twice omega 0 in the numerator; you got the square of twice 

omega 0 in this term; you got a squared of twice omega 0 in this term; everything is 

coming under the square root sign; so, twice omega 0 can be happily struck off from the 

numerator and then the denominator; then, the result takes the slightly simpler form in 

which the needless twice omega 0 is not written because it just cancels in the numerator 

and the denominator. 
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We now have a solution, but this is at best, a particular solution. This is not the general 

solution. The general solution will have one more factor. This is how you solve any 

differential, second order differential equation. There will be additional solution and that 

will come from the solution to the homogeneous part of the differential equation. The 

homogeneous part, is of course what we have already dealt with; it is the case of the 

under damped oscillator because that is the under damped oscillator in which there was 

no driving term. This is the discussion we had in yesterday’s class. If you have a 

unforced oscillator, you get essentially the homogeneous equation and that will give you 

the transient solution because the amplitude is damped. So, you will add to this particular 

solution, the transient part. So, this particular solution is the steady state part because it is 

oscillatory. 
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The other part which is the solution to the homogeneous equation is the transient part 

because it is going to die out in a finite amount of time. It hass got the a diminishing 

amplitude of the under damped oscillator. It is going to die out in a certain amount of 

time. So, that is the transient solution.  

The general solution now is superposition of this transient plus the steady state. In the 

steady state, I have ignored the omega part, but not over here because the contribution of 

omega to this whole term is not going to be very significant, whereas over here to the 

transient. It is critical because it is actually going to cause the overall amplitude. You 

remember, the envelope of the under damped oscillation which became dominatingly 

small. You have also talked about the logarithmic decrement factor so that every 

successive cycle, the amplitude of the under damped oscillator diminishes. So, you must 

keep track of the damping term in the transient. 
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Now, this is just to remind you that there are three frequencies that we are talking about: 

One is the natural frequency omega 0; then there this frequency omega of the damped 

oscillator; there is this frequency of the driving term and you can write this for whatever 

oscillator you have in mind; the mass spring oscillator in which omega 0 is root k over 

m, or the simple pendulum in which the natural frequency or root g over l, or the 

electrical oscillator in which the natural frequency is 1 over root LC. 
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So, depending on any kind of oscillator, you can develop the corresponding expressions. 

So, in one go in setting up just one differential equation, you can solve very many 

different kinds of problems in physics. So, that is the advantage of developing these 

electromechanical analogs. You can extend it to many other branches; may be we 

markup fluctuations, but you have to set the corresponding analogs. 

What will be the driving term over there? I think Bill Gates buying something or selling 

something, or periodically over something of this kind Microsoft or whatever, but any 

way, you can do this analysis in principle for any kind of oscillatory behavior for any 

physical parameter. So, there is a certain degree of freedom which has an oscillatory 

behavior and if there is damping present, if there is the periodic force which is applied on 

it, then you can solve, you can take this algebra that we have done and just replace the 

corresponding terms and you have the solution. You do not have to deal with them 

separately. So, that is the advantage of doing this. 

Now, if you look at the behavior near the resonance frequency, so omega 0, the natural 

frequency is the resonant frequency. This is where it is in the vicinity of this, that the 

amplitude would be maximum. We ask that if you go away from this frequency either to 

larger frequencies or to lesser frequencies, the amplitude would diminish, but if you see 

that if you go not too far, but go far through at distance in units of frequency determined 

by the damping coefficient, you have got omega 0 plus gamma on the higher frequency 

side and omega 0 minus gamma on the lower frequency side. 

So, you are looking at a frequency range from the lower end to the upper end which is 

made up of twice the damping coefficient, twice gamma. So, that is the range that you 

are looking at. If you stay within this range, then you can immediately see that close to 

this frequency - to the resonance frequency within this range, the amplitude will be in 

this range at the upper end; at the lower end, it will diminish, but it will not become 

lesser than by a factor of 1 over square root 2; which means that, if you look at the 

corresponding intensity and the intensity goes as square of the amplitude, the intensity 

will diminish away from the resonant frequency, but not by a factor of any more than a 

half. 

So, it will still remain of the same order of magnitude. It will be diminished not by a 

factor which is larger than half. So, in this width of twice omega, the energy which goes 



as a square of the amplitude, the energy will reduce at the most by a factor of 2 and this 

is sometimes called as a resonance width. So, the resonance is not always very sharp 

because the amplitude will increase significantly, not just at the exact frequency of 

resonance, but also somewhat away from it. How far away? Well, if you remain within 

the damping coefficient gamma in units of frequency on either side of the resonance, you 

are guaranteed that your energy will not reduce by anything more than half, although the 

maximum energy transfer will be at the resonance frequency. 

So, this is sometimes called the ratio of the frequency itself to twice gamma, which is the 

resonance width. This ratio is sometimes called as a quality factor. It is a measure of how 

sharp the resonance is, because twice gamma, the smaller it is the larger will be the 

quality factor. 
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So, this is sometimes called as a quality factor and you can see that if you have less 

damping, then the amplitude function has got a sharper profile compared to that when 

you have more damping when it tends to get flattened out. So, this has several important 

applications in mechanical and electrical circuits. 
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So, I will take a break over here. If there are any questions, I will be happy to answer. 

Otherwise, we can certainly resume the discussion after the break. 


