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Today’s theme is related to a model of yarn hairiness. You know, principally, that on the 

yarn surface is something, which we call as a hairiness sphere. It is this sphere in which 

our fibers have very probabilistic character of their shapes. Therefore, also the model of 

this sphere must be a stochastic model, it will be, may be little difficult for you, but I 

want to speak slowly and please concentrate your mind to logical operations, logical 

sense of the steps, which we will together to do. 
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In hairiness sphere between some to radii r 1 and r 2 are different shapes of fibers, it is 

symbolically something in cross section. There are fibers, type 1 for example, as here, 

some free ends; then, fiber type 2 like some loop; also, the fibers type 3, some protruding 

segments, fiber segments, type 3; there are existing also fibers type 4 and 5 here, fibers 

type 4 are reversal ends and fibers type 5 are reversal loop. 

We can assume, that the number of such, such shapes, reversal ends and reversal loops 

are not too high and therefore, we neglect this, I can say, atypical fiber shapes. So, we 

have only fiber shapes number 1, 2 and 3. The loop type 2, we can, hypothetically of 

course, no, really we have not knife for such fibers in the moment. Only hypothetically, 

we can divide based on such line, so that we obtain from 1 loop, 2 ends, 2 a and 2 b, 

yeah. So, then, we will solve the structure in hairiness sphere, where free, free ends and 

protruding segments are only. 
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This is the scheme of some yarn and its hairiness sphere. Radius of yarn body is our 

known yarn diameter D, this here, yeah. We will often use also one half of this. So, yarn 

radius r D. All quantities, which are related to this radius r D, we will have subscript 

capital D on the yarn body surface on the diameter D, yeah. Well, r, some higher radius, 

radius r is a general radius, evidently high than r D, r D, this smallest radius for hairiness 

sphere and the fibers are going to the maximum of radius r max, which is radius of end 

of longest fiber segment, so that in the hairiness sphere in reality, the radius is going 

from r D through general r to the r max, yeah. A number of protruding fibers at the 

radius r D, it is surface on, of yarn body, compact part of yarn body, on this the number 

of protruding fibers is m D. 

I can say number of our red points is m D, is it shown on the general radius r, number of 

protruding fibers is called s m and this quantity m based on radius r. Intuitively, we can 

say, that (( )) increasing of radius, the number of protruding fiber fibers are decreased, is 

not it, number of our, of our green points in our scheme, acceptable, understandable, 

well. 

On the, in the differential layer on the radius r D on the yarn surface is some value of 

packing density. This packing density, we call mu D, is a packing density on this, in 

vicinity on this cylinder surface having radius r D, yeah. On general, in a general radius 



r, the corresponding fiber packing density is mu. You can imagine that this mu is smaller 

than mu D because some fibers are, have end between these radius r D and r. 

So, packing density mu r is also some function of a radius, decreasing function of radius, 

is not it. Yes, terminologically, I will speak about the fibers, but in each case, I mean the 

segment of fibers, which is lying in hairiness sphere. So, under the fiber, in this, in this 

lecture, please understand, fiber hair in hairiness sphere, yeah, ok. 
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What about number of protruding fibers? It is m at the radius r, is not it? And generally, 

say m plus dm at the radius r plus dr because number is with radius decreasing, this dr 

dm must be in negative. So, minus dm is, elemental increasing is dm, this is negative. So, 

minus dm, it is higher than zero, is not it, well. The probability, that the end of fiber, 

which is passing through radius r lies within the differential layer between r and r plus dr, 

differential layer is known, known imaginationery, know it from, from helical model (( 

)), is not it and so on. 

So, the probability that the end of fiber, which is passing through radius r, lies within the 

differential layer r. From r to r plus dr is some elemental quantity phi r dr, where the 

positive function phi r is a suitable function of radius r. What it means, it is shown on 

this, on this picture. 



Let us imagine a fiber, which is protruding some general radius r, this black fiber, yeah. 

How is the probability, that it, its end will be immediately after its protruding, its 

protruding to, to, to radius r in a differential layer, from r to r plus dr. Schematically, 

high is the probability, that this end of this fiber is lying in this yellow, this, this red 

point, yeah end point is lying in this yellow differential layer. How is the probability is 

differentially small probability, is not it? So, it is something, which is, which related to dr 

and we can call this probability as phi r dr, where phi r is some real function and dr is 

differentially small quantity of radius. 

So, probability, that the, this fiber have its end immediately after protruding the radius r 

is phi r dr. The number of fiber ends in the differential layer, in such differential layer is 

minus dm because to have the positive quantity, yeah, minus d m, what is it all? Total 

number of, total number of protruding fibers on radius r, we called m. 

So, m times probability, no all fibers have the end in our differential layer, lot of fibers 

are having end in some higher radius, so total number m times probability phi r dr from 

this equation, it is possible to arrange to the such form and integrate it from, on left hand 

side from over m, from m D to m, from starting position on the radius r D to the general 

position on the radius r. 

And the right hand side, from r D to r because do not have the same symbol for 

integrating variable and upper limit of our integrals, we use an other, other alphabets, but 

it is only integrating, name of integrating variable here. So, on the place of r, here I also 

use w because, sorry, on, on the place of m, I use w because m is now the upper limit of 

our integral and the same is here. 

After integration of this both side we obtain then, logarithm m minus logarithm m D is 

minus integral from r D to r of the function phi t dt or m by m D is e power to, you know, 

that often, we often use graphically, if the exponent is too, too, too, too special, large and 

complicated, we do not write e an exponent, we usually write x and in brackets is this 

value of exponent. So, I hope, you, you all know this convention. So, m by m D is e 

power to minus this integral or the number of protruding fibers m on general radius r is 

m D, starting number of fibers, our earlier red points times e power to minus this minus 

such integral. 
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The total number of fiber ends in the hairiness sphere is m D. Now, evidently, each fibers 

is starting in yarn body surface must also end it in our space, yeah, so that total number 

of fiber ends in whole hairiness sphere is m D. 

The number of fiber ends in the interval from r minus r D, it means from the minimum 

radius r D to our generally radius r, how many fiber ends is in this in this layer? From r D 

to r it must be m D minus m; m D is the maximum value on the radius r D; m is the 

number of total ring fibers on the radius r; the difference is, must be the, must be the 

fibers, which are finished earlier, then is coming the general radius r. 

Well, let us call psi r as a ratio m D minus m number of fiber ends in interval from r D to 

r by total number, by total number of all fiber ends in hairiness sphere. So, this 1 minus 

m by m D using for this ratio earlier derived equation, we obtain psi r is 1 minus e power 

to minus this integral. 

Well, when you think about the sense of this function capital psi, you must say, that psi 

is also the distribution function of number of fiber ends. Intuitively, on the radius r D, the 

value is 0, yeah, because from r D to r D is 0, fiber ends on r max in maximum possible 

radius, this value is 1 because all fibers had its ends before the maximum radius r max, 

yeah. 



Well, so psi has the, the sense of the function psi is the distribution function of number of 

fiber ends. How this on the radius is r, formally when we write it, it is, if r is r D, the 

minimum radius, I must on the place of r write r D, so that I obtain this here, but integral 

from r D to r D is equal 0, evidently, yeah, so that it is this one minus 1 e 0. 

Well, it corresponds to our intuitive theory. This function is equal 0 for r equal r D; for r 

equal r max, it must be equal 1. From point of view of logic, as far as formally we know, 

what is it the distribution function? It must be equal 1 and so it must be valid, that this 

one, one is now, it is 1; one is 1 minus e power to this integral, this integral, so is from r 

D to r max. So, that 1 is on the left hand side, 1 is on the right hand side, we can write 0 

because 1 minus 1, yeah, is equal 0; 0 is minus 1 by e power to this integral. And what is 

going out, that this integral must limited to infinity because this ratio be 0, we will need 

it later. 
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Well, (( )) we must prepare set of general equations, it will be our 1st part of our activity, 

then we will introduce is some assumptions and we were more precise our general 

equations. Now, we are in the 1st part of our activity, we formulate general equations. 

Let us imagine one element, elemental part, one element of fiber in hairiness sphere, 

which is on the radius r and this protruding some elemental layer thickness dr, yeah, 

imaginable, ok. This is some fiber element length dl, we can speak about the local 

Cartesian coordinates x, which is radial y, which is tangential and z, which is axial 



direction to our, in relation to our fiber element. Well, this fiber element have 3 angles to 

our local axis, to the axis s, to, sorry, to the axis x, it is the angle theta r; to the axis y, it 

is the angle theta t; tangents, theta direction and to the axis z to the axial direction, it is 

angle, tangent a. 

Well, length of the fiber, of this fiber element is dr by cosine theta r as it is evident from 

this scheme. m was number of fiber elements inside the differential layer, inside this 

differential layer. These elements we can have some numbers 1, 2, 3, 4, generally 

subscript I, which is 1, 2 and so on to the last number m because m fiber elements is 

protruding our, our layer, it will be index subscript. How is the mean length of the fiber 

element? 

Now, we must sum all fiber elements from 1st to the last, from 1 to m and divide by m as 

each, as each mean values. So, this is mean lengths of fiber element. We can also write it 

in this form, why not, because dl is this here and also is possible to write it formally in 

the, in the expression dr times lambda r, where lambda r is this expression, is the same. 

What is sense of lambda r? It is a mean value of all reciproc values of cosine theta from 

all fibers in our differential layer. Well, and it need not be same in each radius. 

Therefore, generally, this, this lambda is a function of radius, in another radius, such 

value is, have another, is another quantity. 
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Well, let us, similar, similarly define also another function sigma r. It is similar than 

earlier, derived earlier, postulate equation, but here is this angle theta a. So, it is 

arithmetical mean from all reciproc values of angles theta a, over all fibers in our 

differential layer. 

The total length of all fiber elements in our layer, what is it? d capital L, yeah, well it is 

sum of all all portions, which are elemental portions, which are lying in our differential 

layer, is it all imaginable. So, it is also number of such protruding elements times mean 

lengths per 1 element, is not it and this is based on earlier equation, and is this here and 

this is lambda r dr, yeah. 

So, if the lengths of yarns segment is called zeta, it means, let us imagine, we analyze 

some yarn portion, yarn segment lengths zeta, lengths of our yarn is zeta, zeta. The 

volume of differential layer, what is the volume of differential layer? Our known 

differential annulus times lengths, differential annulus have the the area 2 pi r dr times 1, 

I know zeta lengths of yarn is zeta. 

So, 2 pi r dr times lengths of the yarn zeta, this is, this is the, the volume of differential 

layer, whole volume, total volume of this differential layer. The fiber volume inside this 

layer is total lengths of fiber elements, which are protruding our differential layer d 

capital L, we derived it, yeah, times fiber cross-section s. So, dV is s times dL. 



And using known definition, what is it, fiber packing density? It is every times fiber 

volume by total volume there. Now, it is fiber volume in our differential layer by total 

volume in our differential layer. So, we obtain, sL by 2 pi r dr zeta; on the place of dV 

use this equation and then, after rearranging we obtain this expression for packing 

density in hairiness sphere on general radius r, yeah. 
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The packing density of fibers on the radius r equal r D is the starting packing density mu 

D, starting, I mean on the surface of yarn body. How is this packing density? Now, the, 

on the place of r here, here and here, we need to give quantity r D, it is here, this is 0, so 

that we obtain mu d is equal to this expression, or we can write from mu D is equal to 

this also, that mu D times r D by lambda r D is s times m D by 2 pi z, it is already 

arranged. 

The ratio mu D times r D by lambda r D, mu D r D by lambda r D, let us call as some 

parameter C dash, yeah. It is the function of radius; it is some parameter of this hairiness 

sphere of this yarn. Then, the packing density can be expressed as shown, can be 

expressed through this equation, no more. 
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Well, what the mean section area of i-th fiber? i-th fiber, general fiber had some green 

section area s star, which is no first time in set of our lecture. We know it, which is cross-

sectional area of fiber s by cosine of corresponding angle. In this case, it is an angle theta 

a, is it? You, yeah, this is the theta a, yeah, we are right. 

So, it is cosine theta a, means sectional area of fibers at radius r is which, yeah, we must 

make the, we must make the, the, the, the mean value or average value, which is some of 

all sectional, this green sectional areas by number. How many other m, so that it is this? 

Here, we can write it because s star is s, so we obtain this here and because we earlier 

postulate the, the function sigma, sigma r we can write it also in the form s times sigma r. 

Well, how is the fiber, number of fibers, in whole hairiness region? The cross-sectional 

area of fibers lying in the differential layer, we have here some differential layer in a 

cross-section, yeah. dS, what was dS? You know it from helical model, for example, 

total area 2 pi r dr times packing density times mu. So, is this, this is the red area in some 

general, general differential layer, yeah, this red area here. 

Number of fibers in such layer is dS by s star bar mean value of mean section area of 

fiber on the radius r, is not it, yeah. Similar, similar, logic was in helical model when we 

derived number of fibers in the yarn based on idea of ideal helical model, similar logic. 

So, the number of fibers in this layer is d n H which is fiber area, this red area d s by a 

star bar, mean value per 1 fiber section. 



So, d n is using equation derived earlier, d n H is given by such expression, i was only on 

the place of a star bar, this here and on the place of dS, where it is, dS, dS, dS is here, 2 

pi r D r mu, yeah. How is the number of fibers in the whole hairiness region in yarn 

cross-section? In one differential layer, in cross-section, we see d n H fibers, but axial 

points of our fibers. 

How is the total number of fibers in yarn cross-section in the sphere of hairiness? Now, it 

is some, it some, is not it, sum of all this numbers over all differential layers starting on 

the radius r D to the maximum possible radius, which is r max, it is clear. I think, I said 

you earlier, how, how was the history of symbol of integral. 

So, from that time, you know, William Leibniz, very known mathematician knew, that 

the give together, sum together, infinity, number of infinity small parts is some special 

type of summation. So, therefore, (( )) used symbol s, capital S as a symbol of such type 

of summation and because was some mistakes, which alphabet S and this operator S, 

then he make this S longer, longer, longer, to today’s integral, you know this history. 

So, what is it the, how we must, to sum the number of fibers over all differential layers 

using integration, we must make integral from d n H, from r equal r d to r max, using 

equation derived earlier, this here, we obtain n H and such expression, yes. 



(Refer Slide Time: 33:08) 

 

And we have, may be all necessary equations for our, for solving of our problem, but 

with the problem, there is some practical side of our model, in our model, we are 3 

unknown functions. 

One is the function phi r, which related to the probability of fiber end on radius r and 

then, the kappa of functions sigma r and, and the 2nd was, was it, one moment, sigma r 

and lambda r, yeah, lambda r, this is the function of radius. Then, sigma r, this is also the 

function of radius and then, phi r; these 3 functions we do not know. 

So, let us accept some assumptions for simplification of whole our problem. Assumption 

1, let us assume, that the probability, that the fiber passing through radius r has its end 

lying in the differential layer, for r to r plus dr does not depend on radius. In each radius, 

if the fiber is protruding this radius, the fiber have same chance to be finished 

independently to value of radius; do we imagine this assumption, yes. 

So, then, the probability, our probability is independent radius, then the general, say 

function phi is based on this assumption constant, the function phi r is a constant, phi 

common constant for each radii, each radii we derived, that integral for r d to, from r d to 

r max phi t dt must be equal infinity or must limited to infinity, be more precise in 

formulation. Now, what is it? Integral of constant phi dt is phi times r max minus rd and 

it shall be equal infinity, must be equal infinity phi because it defines some probability 

and the fibers must finished phi, must be some real quantity, higher than 0. 



Then, then, r max minus r D must be infinity r D is not, is given value, so that r max 

must be equal infinity. In such model when we accept this assumption, there hairiness 

sphere, we have smaller and smaller number of protruding fibers, but it is going to the 

infinity, the maximum radius is going to the infinity. It is not real, but no too difficult 

because the longest fibers are only a few and then, we will, in each case (( )) in long 

distance from yarn body. So, it is possible to accept. 
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Assumption 2, the random orientation of fiber is independent of radius. Our fibers or 

fiber segments theoretically, infinitesimally small fiber portions in this or that radius, 

have very difficult directions, difficult to, to, to, to, to formulate some probability density 

function of orientation of fibers in a, in a sphere of hairiness. Each fiber have another 

direction, it exists some distribution of such directions. 

And we here assume that the distribution of fiber directions is same in each radius. In 

small radius, I speak about the hairiness sphere only, in small radius, relatively small 

radius exist some distribution of directions on higher value of our radius; distribution of 

directions have the same character, is same, yeah. This is logical sense of our assumption 

2. 

If it is so, then the quantities lambda r, the functions lambda r and sigma r are not 

functions, they are constants, so that this is lambda, it is constant and this is also sigma, 

is constant, yeah. It is our 2nd assumption, is understandable, the logically and then, that 



the distribution of fiber orientation is independent to radii. Now, let us, based on such 

assumptions, of this couple of assumptions, let us rearrange our earlier general equations 

to new, new form, number of protruding fibers m, we derived, m is this expression, yeah, 

now phi is constant. 

So, it is going before and after integrating, which is trivial. We obtain, that m is m d 

times e power to minus phi r minus r d. Well, well, on some general radius r and number 

of protruding fibers is m in an, in, in another higher radius, number of, of protruding 

fibers is only one-half of earlier quantity m, yeah. On radius r number of protruding 

fibers is m; in another radius, higher radius, number of protruding fibers is one-half of 

this earlier quantity m, yeah; this longer, higher radius is some radius r plus h. So, h is 

some distance in the radius. 

So, on radius r is m, protruding fibers on the radius r plus h, some higher. I do not know 

in the moment, what is the age? Number of protruding fibers is m by 2, so it is valid, this 

equation is valid. And now, on the radius r plus h, the number of protruding fibers is m 

by 2 left hand side and it is based on this general equation. Here, it is m D times e, but on 

the place of r, I must give r plus h, here mu radius, higher value of radius. 

Well, after rearranging, I obtain this here, but this part, it is earlier m. So, I have the 

equation m by 2 is m times e power to something, minus phi h. So, we obtain one-half is 

e power to minus phi h; after rearranging we obtain, that h is logarithm 2 by phi and 

because phi is constant, h is also constant, yeah, independent to radius, or we will use 

also, that the phi is logarithm 2 by h. So, it is the sense of h. 

Every times, when I increase radius value plus h, radius plus h, I obtain a newer, new 

bigger cylinder, where number of protruding fibers is one-half. Therefore, we can call 

this quantity h as a half-decrease interval of fiber, of protruding fiber, of number of 

protruding fibers. Every times, when I jump from some radius r to the value r plus h, 

number of protruding fibers decreased to one-half. 

Similar situation is in nuclear physics, you know, the half time or how it is in the 

English, yeah, half-decrease interval, using on the place of phi logarithm 2 by h, after 

small rearranging we obtain, that the number of protruding fibers is starting number m d 

times 2 power to r minus d by h, well. 
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How it is now with packing density? For packing density, we derived in general part of 

our derivation this formula, this equation. Now, this is constant, this is constant 2, we can 

use it, rearrange, use on the place of phi, use this here and we obtain this expression, 

where C dash was this here. Now, because lambda is constant, it is mu D r D by lambda. 

We can also introduce, I can say final constant C, which is mu D r D 2 power to r d by h 

r D, so that it is also not function of radius. 

And then, the packing density is mu, is, which is given by this formula because this is C 

we obtained. The formula mu is C by r 2 minus r by h. Of course, when you want to, to 

calculate the packing density on given radius r, you need to know 2 quantities, the 

characteristic h have decrease interval value and the characteristic constant C, yeah. 

Number of fibers in the differential layer, number of fibers in the differential layer d n H, 

it was this here, we derive it on an earlier slide. Sigma r is now constant sigma, so that it 

is this here and on the place of mu here, we use this expression, so that we obtain this 

here, and then, those d n H is equal to this expression. 
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Well, total number of whole fibers in yarn cross-section, but in only in the sphere of 

hairiness, only in the sphere of hairiness is an H, which is integral from r equal r D 2, 

now infinity because r max is now infinity. From d n H, using it after small rearranging, 

we obtain such expression or and the finally, this expression. The derivation, which have 

jump are very trivial, it is only rearranging or as in this case, e power to something 

integrate, this is the toy for you. 

We measure, we can measure, one method, how we can measure hairiness of the yarn is 

that we use some parallel fiber beams, some light and we make some projection of the 

yarn. What we see on the microscope? For example, in the central part we see, but we 

later, we show it more precisely, only intuitively in the central part, we see black, black 

points; then, we see some light windows among the black, black curves of fiber. The 

light windows are larger and larger, this radius and then, only light, is not it, is the typical 

picture of the yarn, one moment, one picture like this here, yeah. 

From this, this is easy to obtain, it is easy to obtain this picture and evaluate this picture 

using for example, techniques on similar tools, which you know, from laboratory. 

Therefore, therefore, we want to derive, how is the possibility of light beams go beside 

the yarn, so that, let us imagine a set of light beams, orange light beams in our picture, 

which are going beside our yarn on the distance x. Can you imagine it, yeah, they are 

light beams. Some of them, some of them, this light beam, this light beam, this light 



beam, this, this can go beside the yarn without problems. Another, for example, this light 

beam is here, here, here, here, here, are hindered to, to fibers, to hairs, which are on the 

yarn surface, is not it. Symbolically, they are these light blue points in our picture, for the 

arrangement is random, of course. 
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Yes, in this picture is one mistake, it shall be here in reality 2 rings because this is is my 

mistake, I proved yesterday to, to repair it, but because this picture is from older software 

and I have a newer software, it bring me no good result, results. It is typical, their 

relation between theory and practice. The companies, which produce software said, it is 

perfect compatible, but when we have a more sophisticated problem, you can see, that 

perfect is not compatible; excuse me, nobody is perfect. 

And let us imagine, that we have here now only 1 ring, it is scheme of cross-section of 

yarn. We have not here only 1 ring, but 2 rings, with distance dr, elemental distance, so 

that this we have here some differential thing, annulus. Can you imagine it, I hope yes. 

Well, how is the probability, that the center of our randomly chosen fiber, sometimes for 

(( )), that the fiber, I mean, the center of, of fiber, fiber section in this moment, that the 

center of randomly chosen fiber lies inside the differential layer r i-th rise, the dr in this 

differential annulus. How is the probability number of fibers in all protruding fibers, 

which are here, is dn H? All fibers, which are in hairiness sphere, which are lying in 

hairiness sphere are n H. 



So, the probability, that randomly chosen fiber from, from hairiness sphere is lying in our 

differential annulus, must be dn H by n H, is it, well, yeah. Let us imagine, that inside of 

such elemental annulus is more smaller rectangle, dx times dy. This elemental rectangle, 

dx time times dy and let us formulate the probability, that the, the center, center of fiber, 

which surely is lying inside of our differential annulus, is lying also in our elementally 

small rectangle, the x, dx dy, yeah. Let us think only about the fibers, which are lying 

inside of our differential annulus, is sure in the moment. 

And then, how is the probability, then the one chosen fiber, which is lying in our 

differential annulus, is lying, is especially in our rectangle dx dy? In our picture, this is, it 

is area of this rectangle dx dy by total area of differential annulus 2 pi r dr, sure, yes. 

Well, then, we can formulate the probability, that the center, am I say this is the, this is 

the conditional probability, the 2nd, is not it, so called conditional probability. The 

probability, that the center of the randomly chosen fiber lies inside the infinitesimal 

rectangle, this more is what is a probability, that the random chosen fiber is lying in our 

elemental annulus times the probability, that one, it is lying in differential annulus; it is 

lying also in our elemental rectangle. 

Therefore, this, this probability, probability, that the center of the randomly chosen fiber 

lies inside the infinitesimal rectangle dx dy is dn H by n H. This here times this here 

times this, yeah, such probability we will call dq xy. 
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This repetition of our equation from last slide using known equation for dn H n H, we 

need not to explain its possible step by symbol n H. 

But using the the equation for n H, we obtain this here on the place of n H. So, we obtain 

after rearranging this, this expression dq xy, this, this here. By the way, you know, from 

elemental geometry, from our pythagorean theorem, that radius is square root of x square 

plus y square, yeah no Pythagoras, all Mister Pythagoras. 

Well, so that we can write on the place of, earlier r is here and here we can write square 

root of x y plus y x square plus y square, yeah. And so we obtain the probability, that 

random chosen fiber from hairiness area is lying in our elemental rectangle dx dy, this 

probability dq xy is given by such expression, yeah. 

Well, I think time is running in this moment. We break our, our lecture and we will 

continue in the next lecture, we will finish this concept, this model concept and then, we 

will compare our results, these experimental experiences, yes. For this lecture it is all, 

thank you for your attention and see you in your next lecture. 

Thank you. 


