Orientation of Fibers

Prof. Bohuslev Neckar
Department of Textile Technologies
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Lecture No. # 05
Pores Among Fibers

We start as set of information, set of lectures about the yarns about the yarns. Yarns are
very important objects in textile and very old objects in textile practices. Around 25000
years, the people of society know to produce some yarns. So, it is very old and very very
original type of fibers assembly. In my speech, | want first to introduce some general
vision about the possibility, how to model the structure of the yarn, then we will speak
about the special type of models, so called helical models of the yarn, then something
about the alternative to helical helical model, which is called as a migration model of the

yarn.
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Let us start let us start this general introduction part, on your picture, you is a scheme of
some some some general yarn is one that fiber inside. The fiber in the yarn is very, have
the very complicated shape and we must use some coordinates for description of this of



this shape, usually it is a cylindrical coordinates r, may be this is some general point on
the fiber, r is a reduced and phi and the lengths zeta, the shape of the fiber in the yarn
have the same moment random character as well as the general deterministic trend. You

know intuitively that this, this the general trend is your to helical trend, is it not?
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Fiber elements

The position of fiber elements is determined by the coordi-
nates ». ¢. C; length by d/; direction by the elementary
increments of the coordinates, i.e. dr.dp.dZ.
Conventionally:

a) the increment dz is defined always as positive and

b) the positive value of the incrementdg corresponds to
the sense of direction of yarn twist.
We define:

e
1. Angles « [i.v using equations |
dr rchp dr dg |
tance=—. tanP= , tany = |
dZ dg rdp

and itis valid tano = tanf tany

? : Evidently, the angle f relates &
L=< to the yarn twist intensity.

Let us think character about this one fiber element inside the yarn, this is yarn axis and
this is a red part is some general fiber element, the distance is a here fromrto r plusd r
this angle is d phi so that these lines is r times d phi and they have this d zeta. Using this
this analysis, we can define free angles which are here; angle alpha on the green wall
angle beta on the yellow wall and angle gamma on this violet wall, it is evident that these
three equations are valid and from this three, it is evident that also we saw that tangents
alpha is tangents beta times tangents gamma yes sums more no it is evident that this

angle beta relate it, relates to the yarn twist intensity, we will speak about it later.
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2. Angles 5 5 9 using equations -—

—

d 1l d& ST
cosd =—, cosd, = tp. cosd, =—, 4 !
d

E
g

r

dl dl di

where d/ = {l'!'!2+|f'L]lp]l+(L|\;}E ’\Tﬁthr‘ Sl
Then €
(dijdi)= N dr/dl) +(rde/dl) +(dz/dl)

RN

I =cos 8, +cos” 8, +cos” 3, (rule of direction cosines)
The following relations are evident from earlier equations:

| [tance=cos 8 [cosH, , tanfi=cos 9, [/cosH, . tany=cosd, [cosH,

fﬂ(* l‘:‘j‘ﬂ'ﬁ + :EP;{\_E."} +ik_|-:,;":l¥2- dl = yftan’ oo+ tan’ p+1 dg

tan o =ta 1

It takes it also our second possibility, second triplet of angles which can characterize our
element there are the angles theta a to axial direction theta r to radial direction and theta t
to some tangent direction. From this picture, you can see what is theta, theta r theta t and
theta a and evidently based on the Pythagorean theorem in three dimensional space, this
equation must be valid after dividing by d | we obtain this, so that we obtain this

equation which is very known rule of direction cosines.

From definition of all angles, it is evident that following expressions are right, we can

also refine lines of our red fiber element which is this here, d zeta times this here.
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(Contmt"ll:atlon) dr tan o
csd =—= = s [co88, = ————
d Jtem‘ o+ tan’ p+1 dg tan® o+ tan" P+ 1
cos 8! - f‘(kP = rdlp1 lcos St = ¢
d \fll:ul'2 ot tan” f+1 dZ Jtan® o+ tan’ p+1
e dg 1
cos &, =— =

L] T 7 . |COS 33 b -—
dl Jtan? o+ tan’ p+1 dg Jtan® o+ tan® P+

Evidently, two independent values define the direction
of fiber element. Those are the two ratios of increments of
| | coordinates: dp/dZ and dr/dZ . (Conventionally d< - 0))

1. Twist of element. We define
< where: -...twist of element (Not generall
=2nz identical with yarn twist Z; in m
details see later.)

After you arrange, you obtain this equation derivation between, so that derivation
between angles theta, theta t and theta a are given by this triplet of functions. Now, too
difficult it is only the describing of geometry of fibers element. It is evident that two
independent values they find the direction of fiber element, we use one value d phi by d
zeta and the second d r by d zeta to, let us define d phi d phi by d zeta for one fiber
element, let us call as a value two times pi times z where z is, we can call as a twist of
element. We will explain it more precisely, why it is this twist of element can that need

not be identical this yarn list which we know from technological terminology.
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It is also valid - LI

z=(de/dz)/(2nr)=(rde/dC)/(2nr), ==tanp/(2nr)
2. Characteristic of radial migration. We also define
& where: ... characteristic of radial migration

=)

e n ey
dg Evidently also m=dr/dZ. m=tanw

Types of elements: ® . dr
1 dr =0, de =0, Jﬁ:r:_—ﬁ,—?'; —
= >0 s de | lp,i: :
k T — A
dr< 0, do =0, Gl
= m<0, =35>0
D dr>0, dp<0, e
m=0, z<0  qef=dp
=l (1)

dr <0, dp<0, L=
m-< 0, < =




So, from so defined equation, z is d phi by d zeta by two times pi, we can multiply and
divide by here blue value r, and this was tangents beta. So, z is tangents beta by 2 pi r.
The second characteristic is the characteristic of the first one, is characteristic of twist for
our fiber element, the second characteristic is the d r by d zeta which is m is a

characteristic of radial migration.

Evidently going back to our equations about angles, we can also write about this m is sin
than tangents alpha, this couple of two here, | must say that we conventionally use d zeta.
So, increasing of vertical coordinates as a positive as a positive value, elemental but
positive, we we assume that that our zeta coordinate is increasing when we go, when we
have some like a microbe and when we go through this fiber path, inside of the yarn then
our zeta coordinate is higher and higher and higher and higher. So, using these two
parameters z and n for possible characters of fibers element can be can be defined, it is

shown here.
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In a given yarn the parameters - and » of the ele-
ments are random variables whose distributions
depend on the coordinates » and (most generally) .

Fiber paths
Along the fiber trajectory the coor-
dinate ( increases, but generally it -
can also decrease — see = in the
first C—r diagram. Usually we can
neglect these parts and/or (imagi-
natively) cut.

Assumption (simplification):
Alopg the fiber trajectory the coordinate _ only increases.
( [Ias corresponds with the convention, stated before.)

UET)

| say that we assume that all that that zeta coordinates must every times increase in our,

this is the graph reduce of fiber for the points and zeta direction.

It is possible that the, generally that the fiber is can go also back some loop inside of the
yarn. So, how to explain it when we say that we want zeta, where you have zeta
increasing coordinate, it is easy, let us imagine that we divide our fiber so that we obtain

this part, this blue part, this red part and that this blue part to some segments and on each



such segments, we can imagine that the zeta coordinate is increasing so that that our
assumption about the increasing value of coordinate zeta is possible to accept also for

generally for each fibers.
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Three-dimensional path of a general ;-th fiber (fiber seg-
ment) in yarn can be determined by two differential
equations do/dC=2nz (L), dr/dC=m, (L), or

do=2nz (§)dC, dr=m, (L)dC

= (C). m(£)... = and m as functions of and the boundary
conditions having sense of starting point.

FIBER PATHS AS A STOCHASTIC PROCESS

The functions =, (£ ) and m, () are speclflc for each fiber in

yarn. The set |- (Z)} of functions =, () can be usually

mterpreted as a set bf realizations of a stochastic process
i Slmilarly,,m )i can be interpreted as a stochastic
ess m(L). Hence, t'he paths of fibers in yarn can

| be lnterpreted as a stochastic process.

Free dimensional path of a general i th fiber, some fiber; one fiber in yarns rapture, let us
call it i th fiber, general i th fiber we determine by two differential equations, we because
d phi by d zeta is 2 pi z by d z for i th fiber is changed from point to point, from the fiber
from element to element of our i th fiber. So, this z i is some function of zeta from this,

of this we obtain d phi is 2 pi z i zeta times d zeta.

Similarly, also the quantity m i is changed on the path of our i th fiber therefore, it must
be a function of zeta. So, from that d r is the function m i zeta times d zeta, this couple of
two formally very easy, but both are a differential equations, is it not? This couple of two
differential equations, they find three dimensional path of a general i th fiber and now we
have two possibilities; how to create a model of the yarn, the first is to interpret a fiber
path as a stochastic process.

Let us imagine to set a fibers inside of yarn, exist a set of functions z i zeta over o i for
first fiber, for second fiber, for third fiber and so on. Each such function is (()) order, it is
individual to fiber. So, with a set of such functions can be usually interpreted as a set of
realization of a stochastic process. And similarly, also the set of functions and i zeta over

0 i can be interpreted as a stochastic process and the path of fibers in yarn can be



interpreted as a stochastic process, so that each fiber is a not is a bit larger random

oriented, now then now sin 1 as the order.
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fiber configuration (fiber paths) are based on theory of
stochastic processes (e.g. "fiber mean position”, "r.m.s.
deviation” and “mean migration intensity” like
J.W.5.Hearle, correlograms etc.) Example:
Period and frequency of radial migration.
On a giving radius in the .- diagram

the values p,. p.. ... represent local peri-
ods (wave lengths) of fiber. Arithmetic
mean of these values over all fibers is the
period p of radial migration and reci-
procal of this is the frequency 1 of ra-
%}Ilal migration. (Generally, p and / are

- _finctions of r.)

XTEL

RIE

If it is so, then we need to use for evaluation of the yarns structure, the tools relate it to
stochastic processes; it is for example, correlograms or maybe you heard about the
parameters from professor Hero, fiber mean position deviation and mean migration in
terms so on and so on. These all are tools how to evaluate the random process, also of

(O) of migration and so on.
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FIBER PATHS AS A DETERMINISTIC PROCESS

Individual fiber paths have usually a random character,

but their dominant trend is commonly deterministic (e.g.

helical). Therefore, we often substitute the real fibers by

an ideal (representative) fiber trajectory (round

which the real fiber paths “are oscillated”). In this

case functions -, (£ ). m, (£ ) are deterministic.

The following terms are used:

1. m, ()= 0.. radial migration of fibers

2. z,(L)= const ... twisted migration of fibers

3. m,(L)=0 and at the same time - ()= const ... gene-
ral migration of fibers

*ﬁge: If at the same time m, (£ )=0and =, (£ ) = const , we

m‘ﬁ;ﬂak about non-migrating or helical fibers.




It is one way, one way now too easy in our lectures we were not to more discuss this
direction; second, the second concept is to interpret a fiber fiber paths as a deterministic
process. Individual fiber paths have usually a random character, but a dominant trend is
commonly deterministic, for example, helical. Therefore, we often substitute the real
fibers by an ideal, represent the fiber trajectory around which the real fiber paths are, we
can say intuitively ask to write it, then this from on the, on our function z i zeta m i zeta
and this this couple of this fibers must be deterministic, now probabilistic. If m i zeta is
not equals O for all fibers, for all i, what is it m was d r 2 d zeta, if it is not equal 0, then

the radials of fibers path is changed, is it not?

We speak about a radial migration of fibers, if zeta is different from constant z was d phi
by d z. And now, increase of angle by zeta coordinates, if this value is not constant, then
learn to twist, the twist of fibers elements is from point to point another so that we must
speak about our twisted migration of fiber. And if both both (()), then we must speak
about a general migration of fibers in yarn. In opposite, if each m i zeta is equal 0, if each
zeta zeta is the same constant, we speak about non migrate non migrating or helical

model.
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Classification of yarn models
______Stochastic models _

Different types, based on experimental

experiences use different assumptions
Deterministic models

Functions | m(c)=0 m(5)=0
=(£)=0 Parallel fiber| Entangled
i bundle bundle
z (£ )= const HELICAL RADIAL
' MODEL MIGRATION
z,( &)= const General
migration

7.y Note: Partial models of twisted migration see
Neckar,B.: Yarns. Prague 1990, (in Czech)

It brings us to this table which can in short to classify the lot of different types of models
of yarn structure through some, in some system. For its group of this stochastic models,
we do not want more to divide this possibility.



The second group is the deterministic models, and it base on the character of functions z
i zeta and m i zeta. If both are equal, what it means reduce reduces stable for fiber, for
each fiber d r is now different from 0 and d phi by d zeta is also 0. So, it is bundle of
parallel fibers, parallel fiber bundle. If z function is equal 0, but m is different from 0 that

fiber have not twist, but the fiber is on different rally then the (()).

If z is constant and m is O, it is our non helical model; if z is constant and m is not O, then
it is the traditional radial migration model. For example, like if z if z is not constant and
m is constant, then the fibers are lying on some imaginary cylinder every times. But on
the cylinder, they are, do not create helices, then some other curve. We can speak about a
twisted migration and the last position is if all is possible and this is the general

migration.

We will speak, we will in more details are the speak about this free, about this is not
necessary more speak bundle of parallel fibers was in our earlier lecture so that to
important for helical model utmost, and when also the radial migration.
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HELICAL MODEL OF YARN

In a helical model 2 differential equations (stated before)
characterize path of each fiber, as shown here:
1. dp=2nz (;)d;, where -, ({)=Z = const. and

2. dr =m(€)dC, where m, (L)=0

Let us assume, the fiber passes trough the "starting point”

1,-9,.Z, (boundary conditions). Than we obtain

1 a) by mtegratlon P
J‘mlcp— I i de. p—op,=2nZ(L-C, ).

’g}rn twrst has a sense of constant Z. ... 5
ght of one fiber coil is 1 ' Z, same for all f:bers

(4 VA 2m)
(o-W)/A2%) _,

So, it was an slow introduction to how to general, in general to divide different types of
models of yarns structure. Now, let us speak about the helical model of the yarn, we said
the helical, each model is given by two differential equations; this is the first and this is
the second. It is the same as first, in helical model, this functions z i zeta is constant for

each fibers and each point, each segments, each elements on each fiber. This constant



have named Z, it is constant and | have to some one or two slides to show that it is the
twist of the yarn and the second and the second equation, this function m m zeta m i zeta

is equal 0.

What we obtain, what we obtain from this first equation, when this function is equal Z.
Let us integrate this equation so that integral over phi from some starting point
coordinates phi 0 zeta O r 0 from phi 0 to phi, is equal to the integral from zeta O to zeta
on right hand side that is function z is constant. Therefore, we obtain this here and then
these here, what it there, what is it zeta minus zeta 0 is an increase of zeta coordinates,
actual coordinated in the yarn, 55 minus 5 is 0, is increase of angle phi divided by 2 pi, 2
pi is one times round. So, it is number of coils, is it not? Number of coils number of coils
by corresponding coils is definition of twist, is it so? So, the such constant Z have the

sense as a yarn twist so that also the height height per one coil must be 1 by Z evidently.
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b) by rearrangement vl ”
dp=2n2ds, rde/ds=2mrZ, tanf =2mrZ
The angle [} is constant at a given radius /.
2. By integration:
dr —}; m, (& Idn_ r—r, =0, |r=r. const
Fiber lies on the same radlus (cyhndncal surface)
Note: Same conclusions can be obtamed from the picture.

Assumptions of helical model
can be formulated also in the )
following way: |
1. Helical paths of fibers
(same sense of rotation).
2. Common axis of all
‘< Belixes is yarn axis. :
3~5ame coil height for all flbers

From the same equation, we can write also if this is what it my Z is constant, is not the
function as a general it is constant after lot application if dividing by r, we obtain this

here now this is tangents beta, so tangents betais 2 pir Z.

From the second equation, from the second differential equation after integrating from r
0 to r here from zeta O to zeta from starting point to some general point, because this is 0

then r minus r 0 must be equal 0. So, r is equal r 0, what it means, the fiber is lying on the



same cylinder by constant, by the given fiber is lying on the cylinder is constant reduced
of course, risiteachrisrO.

There are this two this two equations are dizic equations for helical model that we can
also to interpret this helical model very easy, we can say this is some scheme of the yarn
according helical model on the general cylinder diameter r is lying one red fiber. Once
this length is 1 by z, I know of between the tangent to our fiber and vertical direction is
along a beta, is it not? And after unwiring of this surface of such imaginer cylinder, we
obtain this, from this is also possible to calculate the tangents beta is 2 pi r by 1 by Z, so

2 pirtimes Z.
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The fiber positions in yarn (“starting points”), which are
not determined by the assumptions stated before, can be
characterized by the radial function of packing density
w=p(r). Because it is relatively complicated, the following

assumption are used: " sl
4. Packing density is constant in all places M oy
inside the yarn. iz

Note: If all these 4 assumptions are valid, then we speak
about ideal helical model.

Note: Helical models and their applications are the oldest
concepts of yarn modeling, adherent with the names
__A.Kochlin (1828), E.Miiller (1880), S.Marschik (1904),
" .CH. Gegauff (1907), R. Schwarz (1933), E. Braschler
1935), V.I. Budnikov (1945), L.R.G. Treloar (1956), etc,

The, so we called differential of differential equation every times, some some starting
point or something. So, our starting points from our fibers based on packing density, if
some fiber is starting from some radius then this fiber is lying on this radius and have
path to the packing density on this radius, how is the packing density, so much fibrous
can be on this or that radius r.

Generally, the packing density is a function of radius, in a based on experiment to
experience is, this is radius and this is packing density, then the real curve is something

like this black curve on our small picture.



But it is difficult to obtain such function, we can obtain our experimentally based on now
to easy experimental process or make some mechanical model of the yarn that is one of
the easy. Therefore, we often use some, use a fourth assumption for simplification of our
problems, we assume in that fourth packing density in all places inside of the yarn is

constant like this red line (()).

Also, this assumption is valid, and then we can speak about the ideal helical model.
Helical model is reserved this assumption ideal, in ideal helical model we accept also this
assumption. The helical models and ideal helical models are in lot of publications, some
of known authors, I mention here, from Kochlin I think 1828 to Treloar which which

completed this helical model in a relatively complete concept well.
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_)._.
S s

Number of fibers and shortemng of yarn

Let us create differential -

annulus - “differential layer” -

(Braschler) - at the general .

radius » in a cross-section of [ r

general helical model of !

yarn, |

Area of differential annulus: 2w

Packing density of differential annulus: p = dS/(2nrdr)
where ds...area of fiber sections in diff. annulus (red)
(See lecture 1 - areal interpretation of ;1)

Area of _f_ibg[_SEQigMp differential annulus: )

_ dS=2murdr [

“Araa of oblique section of one fiber: s™ = s/cosp 4‘@

‘(where s...fiber cross-section - see lectuge 1) ( & & "u, s

There are this is the, | can say definition of the, or description what is it a helical model.
In our helical model, let us find the number of fibers and then also the shortening of the
yarn due to twist. The first theme will be number of fibers in cross section of yarn, ideal
yarn, yarn which corresponds to our helical model.

So, let us imagine some cross section of the yarn, the cross section of the yarn is over
here, the grey islands here represents the section islands, islands of individual fibers. We
create two circles, here two green circles here; the small one have the radius r and the
higher one radius r plus d r plus differentially elemental increase of radius, so that we
obtain a differential annulus, is it not?



Differential annulus is a how is the thought to area of this differential annulus its evident
because its differential annulus its 2 pi r times thickness, when you cut it this you obtain
something some long and its intuitively clear 2 pi r times d r is the r is inside of all

annulus the area of fibers it is here as a red area

Now, how area of such annulus with a area of fiber section there are also some parts here
isn’t it well, but you know the how what is it a packing density so that the area of fibers d
S must be 2 pi r d r times mu times packing density well and see here it also an order and
for us known relation that the section of area there one fiber which is lying with z axis on

the radius r of course, is a cross section area by cos inverse of this angle beta.

Now, is the question how is the number of fibers in differential annulus to this to solve
this problem lets imagine one abstract situation lets imagine that 1 am nobody of us is
here in this room and | am standing here one foot is inside of room the second my foot is
outside of this room how many people is here may be one half because I am here only
one half you understand it well.

You can see that number of fibers need not be only 1 2 3 4 natural number then it can be
a real number for example, 1 half or something. So, second how many people is here we
can say calculate 1 2 3 4 5, but | have another idea, let us go all together to some writing
machine for tracks and. So, on and you will find a, our common right and then idea why
this, is it possible this way logically is it possible?
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Number of fIbEI’S in differential annulus:

i d_ )4 o ”I’" i = 2mcos P dr /s,

Substantial cross- sectlonal rebfa = oot
area of yarn: = I dS =2=x I o clr

r=0

Mean packing density ¢ _-[J w dr g o |
H= = — wch
of yarn: - .l D4 D4 = I purc
Number of fibers in yarn cross-section:
D2 l"r “_ 1ebn
n= ‘1 dn= 1 I

] 2
2 vrdr 2 urdr
cosfp prdr=— | ‘—l — "7
A e

I‘;T}as also derived before (lecture 1): n=tk, . t=T/r=8/s
yarn count, r...fiber fineness, r...relative yarn fineness)




We may use this style of thinking fiber area in differential annulus is d S and area pair
one fiber is a star a star so that d S by S star must be number of fibrous in all differential
annulus, using equations derive we obtain for d and this, formula this expression. And
now, how is the substantial cross sectional area of yarn substantial cross sectional area of
yarn is this area in earlier, but integral of this, sum of this over all over all possible
annulus, they are from r equal 0 to on the periphery r equal D by 2, about half of an yarn
diameter so that it is this here; using s we create it, we obtain this equation. Mean
packing density of the yarn, it is total substance cross section of the yarn by total area of
cross section of the yarn pi D squared by 4, after we arranging we obtain this here,
number of fibers in yarn cross section. Now it is integral from this the yarn of number
pair one annulus from r equals 0 to r equal D by 2. After using, we use here some
geometrical formula which we now 1 by cosine square equal to 1 plus tangents square
and after slowly arranging we obtained this here, because tangents is 2 pi r Z squared, we
said tangents beta.

Well, but it was also derived in our lecture one, starting lecture to this lecture that
number of fibers is tau times k n where tau relative to 1 is the ratio yarn yarn count more

precisely for example, in tax when your density a by fiber linear density fiber (()).
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Coefficient k, is now
o D2 oh
P Eos S o prdr k—:—n wrdr

v ST Ssa fleomz) |t S !ﬁw:mz—f

Note: The relation = p(r) is necessary to know for
numerical calculation of S_fin.k . It is possible to obtain
the function 1.() as a result of experiment or try to apply
some theoretical model (e.g. based on differential equa-
tion of radial forces equilibrium in yarn — V.Z Budnikov,
J.W.S.Hearle, B.Neckar etc.)

Ideal helical model satisfies the assumption = const
and then substantial cross-sectional area of yarn:
r=Df2 [}";‘J_[ ‘

{;’k} 3:':! wordr=2au| —

et r=i
RIETE]

S = 75{"‘.;""1 ]Fk

Coefficient k n, which is in this in this expression can be derive from this s n by tau, tau
was 1 also cut it as by s times n, we now so that we obtain this expression for k n, this



expression are valid for a helical model. It means therefore, | have mu insight of integrals

because mu can be a function of radius.

I spoke about a difficult thing is done, so that let me now to make this very rearrange of
our equations for the case of ideal helical model, it is what it is the model on which the
packing density in all places inside out yarn is constant. Therefore, mu is possible to give
B for integral as a constant.

How this, how is substantial cross section of area mu is going before, so we obtain this

area formalize this here, now pi D square by 4 times mu, corresponds to our knowledge.
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Mean packing density g 22~ S (D4
of yarn: p= o pordr= o | ‘

0

Further, the following integral is valid:

o rdr PHAE) x clx 1 | K, 7
Ll = | -'—_3-=—_3-[NII+IHDE!‘—1:|
] JiH(2mZ) 1 x(2mZ) (2n2)

, [H=R

] o
Substitution: x° =1+(2arZ) ,
1 / ]
xdx= (202 ) 2rdr, rdr=x (lllfll.'l': ]

Number of fibers in yarn cross-section:

oa - om -
b a3 L ordr 270 I 1 , 2
e el .] i e :% [.Jl-qnnﬂ 1=

. =
T o l+(2mZ) T 0o Jlﬂl‘rrﬁl ¥ \2n2) B

2t ’\h +(wDZ ) --1]

;“ 7 ‘ln;r'.l:u}u,-fi:[:Jm_lil' ”:{TU-”Z )’

Mean packing density, we derive this equation times mu sorry, mu is constant. So, before
integral for r d r its trivial so that you obtain final in final position, mu bar equal mu,
evident if mu is constant then each all mu must be there for all yarn. For future, we are
arranging we need to solve one integral, this integral is shown here, is shown also to why
how to obtain it is not too difficult to use in such such substitution as we obtain this
result. So, | think do not want to comment integration.

A number of fibers in yarn cross section, for this we had this expression. Now, mu is
constant can go before integral we obtain this expression, but this is our early integral
this one on the place of this, we can give this expression in a in a brackets and after. So,

rearranging, where we use here is we multiply and divide by D square, then we



understand that this is s capital S so that this is tau, you know it is earlier equations to the

r equations, we obtain number of fibers in this form.
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Coefficient £, is now

e : [,/Iﬂxbzr—l}

T ¥11DZ|‘ (rDZ )
For the fiber on the yarn surface (» =1,. p=f,) itis valid

tanf, =2r r Z=aDZ =« ...intensity of twist (see also the
derivation in lecture 1). The alternative equation for &, can
be derived using equation mentioned before.

l+{.‘!£“: " fl}=|l lm;j(, r‘{ ||l+.|ill.l"|"r-’ -.] ) j|=

k=

=l

) 2cos f
. cos’ Py (1-cosPp ) (1+cosPy) (- -cosfip
- ™ » L
sm* Py cosPpll+cospPy) 1 +cosf,

And k n k n because it is n by tau, k n is given by this equation. We can also we can also
use another rearranging this is, this expression is identical is this expression, but we
know for us along the pi D Z is tangents beta D of tangents of peripheral angle beta on

the yarn.

So, tangents beta D, after rearranging multiply and divide by 1 plus cos beta D. Here, we
obtain finally k n in this form, all rearranging pure trivial mathematical, rearranging
which you know know from university, from high school, no difficultly. How the, how is
k n how is k n graphically? How is k n when we use this last formula for k n?
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The graphical interpretation of last I 1
function do shown on the picture. kn |
Note: The angles [, of common yarns 0 95¢
lie usually between 20° and 30°. Then ﬁ
the value of %, surrounding the value 090
0.95 characterizes the influence of i
fiber slope due to twist in ideal helical ¢ gs'—— e
ther b model. The value &, can 1 .5'”| : “i
le\é.‘f.'."" be a little higher for real Poldeg
——-= function of () (follows our equation for
general helical model) and less in consequence of diffe-
rent effects of radial migration. (In reality, we measured
*fh values round 0.95 for traditional ring yarns, but values
3; d 0.80 for rotor yarns.) N

In or express it in graphical form, we obtain such graph here, this is axis of peripheral
angle of beta D, and this is axis of value of k n, we obtain this thick curve, in the textile
is usually usually we twist the yarn so that the peripheral angle is something between 20

and 30 degrees.

So, let us imagine average average value 25 degree, this is this red dotted line to this
angle corresponds the coefficient 0.95. When you experimentally measured coefficient k
n, are evaluated based on cross sectional microscopic triplets, cross sections of yarns,

then really we obtain the value 0 point, around 0.95 for yarns, ring spun yarns.

Now for rotor yarns, for rotor yarns we obtain much more smaller value, because the
angles of fibers are not in dominant effect, create it to twist that important is also the
intensive unparallelity of ribbon in rotor, and so called birch fibers on the periphery of
rotor yarn. You know this term, you know this problem so that in rotor yarn the

coefficient k n is smaller.
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YARN RETRACTION IN IDEAL HELICAL MODEL
Non twisted Twisted
Length of bundle s il 5}
Yarn retraction 6= (5, —5)/5, =1-5/5, & &l ¥
Number of fibers  n..ccccovvec.e n 9
Volume of fibers T8 v enenn /4 v
Mass of fibers R e m Ul S
Starting yarn count 7, =m/Z, o
Yarn count (final) w T=mfE, [T=TI,/(1-8)
Number of coils o Ne
Latent yarn twist Z, =N, /&
| | Yarn twist (real) Cwr Z=N (6,12 = Z,/(1-8)
Aatent twist coeff. o, =2, ‘f_ _ _ .
|T§ Ast coeff. (real) e 0= 2T, =0y /(1-8)"

Now this is, this is all for coefficient k n, the theoretical value of this coefficient based on
ideal helical model. In reality, it can be a bit larger why, because the structure is not
perfectly ideal helical model. Well, to the problem of number of fibers and coefficient k
n, rewrite it also the theme about the yarn retraction. You have found an individual
experience, institutive experience, when you twist it something, some bundle of
something may be fibers, may be also a bundle of yarns or something. So, then when you
twist it this bundle, the bundle is shorter and shorter and shorter and shorter and shorter,
is it not? It is not possible more twist inside; it means by twisting the fiber bundle is

shorter and shorter.

Let us imagine some bundle of parallel fibers which is here, runs at zeta 0 after twisting
the lengths of resulting yarn is zeta smaller than zeta O, the zeta 0 minus zeta, it is the
difference of ones between non twisted and twisted form of our bundle. This column
here represents non twisted structure; this structure the second column here represents

this structure. So, once a bundle non twisted bundle is zeta 0 twisted is zeta.

Yarn retraction, we define as ratio zeta 0 minus zeta, these lengths, the starting lengths
zeta 0. So, we can write it 1 minus zeta by zeta 0, number of fibers by twisting is not
changed, so here is n and here is also n, volume of fibers generally, we can say that it can
be different volume of fibers can be different in this bundle, and in this bundle.
Therefore, starting value is 0, final value is V, mass of fibers must be same, non twisted



as well as in twisted structure, starting count starting count count of parallel fiber bundle
is mass by lengths; mass is m, lengths is zeta 0. So, starting yarn count T 0 is m by zeta
0, is it not? After twisting the yarn count, I mean linear density that is a, the m count is

now m by another lengths, lengths zeta.

The ratio between T 0 and T, there is under definition of yarn retraction is this one,
number of coils in parallel fiber bundle is 0, here number of coils is N c. And we can
construct two, or we were construct two quantities for twist; the first, which is here will
be latent yarn twist, it is number of coils per lengths per lengths of starting non twisted

structure clear.

How many coils | were give to 1 meter of non twisted parallel fiber bundle, do you
understand this term? In opposite to start yarn twist which is which is the same number
of coils, but by length of yarn how many coils is in on 1 meter of yarn, final yarn, so that
it is N c by zeta between latent yarn twist, zeta 0 z 0 and yarn twist is Z, related to this

expression is valid.

Latent twist coefficient, we can also construct the latent twist confident which is Z 0
times square root of T 0, latent twist and starting yarn count in opposite to this
coefficient real which is Z times square root of T clear. So, this latent quantity related to
starting lengths, now to final lengths, there is a difference here. It is starting quantities,
now in a set of our of our slides are free variations of model for yarn retraction. We will
comment only the second one, we will jJump the first one and the third one, it is not too
necessary to sign it here, when somebody will study deeper the problem of yarn
retraction, he can use my my slides and immediately for this, from this slides to
understand also the first and the second variation.
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1. Idea of neutral radius

A helical fiber has length 7 at the radius »
in the yarn of length C. It is valid /= Z/cosf. 1|4

The helical fiber length is equal to the
starting length, /= £, , at the so-called
neutral radius =1, (f= U i Therefore

/
.*:;/ t‘nﬁ[i &= ._| l,(um[l |7 L+ tan’ 3, By =Ey1+(2 'uZl

g I 1 - 1 x, =2, /D .. .neutral
& (2702 n N femi ) position
H | 1+| , ;‘1:' { xDZ :mB = 1 ... twist
Yarn retraction retractlon intensity (Iecture 1)

' ?‘)l l/\fl+'. (DZ )’ —]—];‘,-\!]:r\ tan’ 3, ~l—]/,,‘]+\ K’

So, the first variation it is idea of neutral radius according a book, thus at we will not to
to to do it.
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2. Idea of total fiber volume

Usually the following assumption is taken as granted

(E. Braschler) : Total fiber volume in yarn and fiber cross-
sectional area (fiber diameter) do not change due to twist.

I7 =1 _const, s const NI RE S ea
Fiber volume - non-twisted 1, = » s, d |
- twisted -« I _.sg (Iecture 1)“" 1 4
W =V, naly=88, &/G= 6‘/' .'.'"-'}#z ' ‘“—f(‘ﬂﬂ = ’I‘ﬂ o §

ns
Retraction was defined by equation 5 = |- /2 , coefficient
I, was derived befure for |deal hellcal model. Therefore

P .
%Qj retraction .3::-|_L|:1— E =:-—T£' ‘[,(1mozr~1]
! &) (rDZ)

RETEL

We will start this variation 2, the second variant of model idea of total fiber volume
which is, which was created from Brasher around 1935. It was some special set of textile
on the university in Switzerland, but how is this theoretical concept; | want to show you
in the next lecture. So, in the moment, thank you for your attention.



