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Hello! Welcome to another module of this course ‘Microwave Integrated Circuit’. In the 

previous module we have covered on binomial and Chebyshev impedance transformation 

network, in this module we shall be covering another special category of impedance matching 

network known as Tapers.  

Now we saw that when we have multi section transformers, both for the binomial or the 

Chebyshev polynomials that we have considered the bandwidth increases when we increased the 

section that is the general trend that we saw. 

Then logically we should have an intuition that if we keep on increasing the number of sections 

then our bandwidth should go on progressively becoming larger and then when we make the 

number of sections as infinite we should have infinitely large band width. That is the intuition off 

course but is it true in reality. So for that to find out whether such thing is possible let us try to 

analyse these special classes of circuit where infinitely large number of sections are present and 

these classes of  circuit are known as Tapers.   
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So to analyse, so as I said that the common intuition might suggest that if we go on increasing 

the number of sections as in the case in Tapers then we should obtain infinitely large bandwidth. 

So first thing is if we write Gamma K values that we have been writing in the previous sections 

as given like this, ok. Let me write it properly. So this is the value of Gamma K or the mismatch 

factor between adjacent transmission line segments that we have stated earlier. 
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In the limit when say the difference between ZK plus1 and ZK is differential or very small. Let 

us say that Gamma K I define as… So if we write the Gamma K once again as the given by Z 

plus DZ minus Z upon Z plus DZ plus Z, here Z plus DZ and Z are the characteristic impedances 

of subsequent and proceeding transmission line segment respectively 

And since this is the mismatch between two sections which have infinitely small differences in 

characteristics impedances, I can write, instead of writing Gamma K, let me write D Gamma K 

or I can all together remove this sub script and straight away write it as D Gamma. 

Now this expression can be further simplified or rather I should say approximates to DZ upon Z, 

here the denominator contains two Z terms, Z and this Z this DZ being very small compared to 

the Z values, I can simply write two in the denominator. And then in the numerator this Z cancels 

this Z so this then becomes equal to 1 upon Z, D capital Z upon small Z and this whole 

multiplied by the small Z. Now here the small Z is the distance factor. This expression shows the 

variation of the characteristic impedance with respect to the distance along the Taper. 
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So then my complete expression for D Gamma becomes this. This is my complete expression for 

D Gamma. Now depending upon what kind of relationship I have between this Z and this is my 

small Z. That will give rise to various kind of Taper. Now if I come back to the original 

expression for Gamma in, now this using the Fourier series expansion that I had described earlier 

can be given like this. Now here instead of taking this as a individual values of K the limit the 

delta Z becomes equal to 0 or approaches 0, because this B delta Z now represents our theta.  

And since this delta Z is approaching in the limit that it is approaching 0 I can write this instead 

of submission expression, I can write this expression as an integral whose limits are from Z to Z 

equal to 0 Z equal to capital L capital L is one end of the paper then the beginning of the taper is 

Z equal to 0 then the end is at Z equal to Capital L. 

Something like this I hope it is visible. Instead of this integral expression, instead of this 

submission expression I have an integral from Gamma in. Now depending on as I said what the 

impedance profile or this capital Z as a function of Z is I get various types of tapers. Now this is 

the mathematical description of taper. Taper is an impedance matching network which has 

infinite sections, the question is how we achieve or what does it physically look like? 
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Now if we consider a micro strip line which is as we said in the previous class that they are the 

PVC boards so this is our PCV boards without top metal line like this then if the width of this 

line gradually varies then the impedance or the characteristic impedance of this line will also 

gradually vary. And thus we will have impedance profile Z of Z whereas Z is in this direction. 

For a coaxial cable it might be the way we can achieve is by having diameter of the cable slowly 

changing this part will have a lower impedance as compared to this part because of this lower 

thickness. 

Here also we will have a variation of the characteristic impedance with distance and thus we can 

achieve the taper or if we consider a parallel plate wave guide where in the previous class 

previous module I said that parallel plate wave guide is nothing but two infinitely long plates at 

constant distant from each other. 

If you want to implement taper then the plates will not be infinite anymore and the distance 

between them will keep vary. So the various kind of tapers that we have, the first most common 

type of paper from mathematical point of view the most commonly described paper is what we 

call exponential paper. 
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So exponential paper has an impedance profile like this where A is a constant, Z 0 is also 

constant, Z capital is the characteristic impedance small Z is the distance along the taper. And so 

from here we see that Z equal to 0 is equal to Z 0 and A can be given by this expression where 

this capital L is defined as that distance where Z or small z is equal to L becomes equal to RL. So 

it is the point it is that distance along the taper where we connect the load resistance.  
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So now using this formula if we try to find out the expression for Gamma in. So Gamma in value 

is found using the integral expression that we have described earlier just a few moments ago. So 



this is the expression for the input reflection coefficient of a of a of a exponential taper. And as 

we as we know the various value of theta or this or as this distance from the input changes,  
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The value try to find out the value of Gamma in using the expression for exponential paper that 

we just derived… the Gamma in value can be written as like this and then on simplification we 

see it like this. So we see that Gamma In for this exponential taper is proportional to the sync 

function. There are other kinds of tapers that we see that we commonly use, one of these tapers if 

we go back to the monitor slides is what we call triangular paper function. 
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Now derivation of the triangular paper function is not that simple it is actually the combination 

of two Gaussian functions, in that case the Gamma in value is given like this which is actually 

proportional to square of the sync function. So impedance that we can derive from the triangular 

taper function or this triangular taper is that the frequency…  
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…if we go back to the slide that this green line represents the input reflection coefficient of 

triangular taper and this red line represents the input reflection coefficient of exponential taper. 

And we see that the frequency of the ripples for the triangular taper is actually half that of the 



exponential taper and this is because of the presence of the sync square term for this expression 

Gamma in of the triangular taper. Whereas for the exponential taper we have a sync function 

only, there is no power of sync.  
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So one other type of taper that is commonly used is what is called Klopfenstein taper. If we go 

back on the slides of monitor it again involves a complicated impedance profile, it is actually the 

integral of modified Bessel function and the expression for Gamma in you get is something like 

this. 
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And if we again see the Klopfenstein taper this purple or violet line represents the taper of the 

impedance frequency characteristics of the input reflection coefficient various kind of tapers and 

this purple line shows the characteristics of Klopfenstein taper. One thing we note for 

Klopfenstein taper is that the ripples are all of same height. For the exponential taper the ripples 

nearer to the DC have higher heights as compared to the ripples far away from DC, where as for 

the Klopfenstein taper all the ripples are of same height. 

For the triangular taper the ripples are of minimum height but then the bandwidth is much lower 

as compared both the Klopfenstein as well as exponential taper. That is why this Klopfenstein 

taper is often a good compromised between bandwidth ripple heights. Because for the 

exponential taper we see that we get the widest possible bandwidth but then we get the highest 

ripples. For the triangular taper we get the lowest height of the ripples but we also get the lowest 

bandwidth and Klopfenstein taper is somewhere between the two. 

So in summary I would like to mention that tapers are in commonly used in microwave 

engineering. In fact at any time one reflection at any surface or device to be less, tapers are 

commonly used. And tapers also prevent the formation of spurious reflections; they also prevent 

the formation of what are called evanescent modes. Because any sharp corner or any sharp 

transition is always on undesirable modes. Tapers solve that problem they help to gradually 



move from one impedance to another impedance and in that way they enable us to have smooth 

impedance transition as well as tapers are also often used in antenna structure. 

In fact many of the commonly used antennas are tapers for example horn antenna, TEM horn 

antenna or pyramidal horn antenna or the corner antenna they all are examples of tapers that we 

used in commonly. And they solve important purpose in microwave engineering as well as 

antenna engineering.  

Thank You. 

 

 


