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This is the 10th lecture on Digital Signal Processing and we continue our discussion on DFT. In 

the last lecture we discussed the symmetry relationships for Fourier transform, and introduced 

the concept behind DFT. What is the concept? There are N number of pieces of information in 

the time domain, and therefore, N number of pieces of information in the frequency domain 

should be adequate for any signal. The latter are usually obtained by sampling the Fourier 

transform at N number of points at uniform intervals. We also stated the formulas for DFT and 

IDFT and emphasized that one follows from the other. The two are not independent of each other 

because DFT as well as FT are one to one transformations. We sketched the proof of IDFT and 

we gave examples of delta n, delta (n – m) and 2cosine (r(pi)n/N). Then we said that DFT is 

useful and important because of FFT, which itself is not a new transformation; it is an algorithm 

for computation of DFT. Then we showed how from the N samples in the frequency domain, i.e. 

X(k), k = 0 to N – 1, one can find the total spectrum X(e jomega) which is a process of 

interpolation. The formula does not look very nice but it can be programmed and then you can 

rapidly compute the in between samples of DFT. We also made a matrix representation of DFT 

and IDFT.  
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(Refer Slide Time: 03:00 – 04:21) 

 

 
 

We showed that 
―
X  vector is simply 

― N
D  which is an N × N square matrix, times 

―
x  vector. The 

entries in 
― N
D  are as follows. The first row is all one, the first column is all one, and then for the 

rest, you have powers of Wn. We also showed that the inverse of DFT can be written as (1/N) 

― N
D *

―
X . We shall demonstrate these matrix representations today and find out how these are 

useful. One point that I wish to emphasize here is that if X(k), k = 0 to N – 1, are given and you 

want a denser representation, i.e. you want the in between samples, then you can use the 

interpolation formula; you can also do it differently, using DFT only.  
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(Refer Slide Time: 04:43 – 07:09) 

 

 
 

Suppose your x(n) exists from n = 0 to N – 1 and you wish to compute X(k) for k = 0 to N – 1. 

This is the usual DFT but suppose you want to compute X(k) not at 2pi/N intervals but smaller 

intervals; that is what we mean by interpolation. Suppose instead of 2pi/N intervals, we wish to 

compute at intervals of 2pi/M, where M is much greater than N. if N is 128, may be you wish to 

compute at 1024 points, that is M may be 1024. Then it will be very dense representation of the 

spectrum and the envelope shall represent, almost accurately, X(ejomega).  

 

What you can do is to append the necessary number of 0s to x(n) such that its length becomes M. 

You have x0, ….. xN– 1, then you add 0, 0, 0 up to M – 1. Take this sequence instead of the original 

sequence; the complexity of computation does not increase thereby because 0 multiplied by 

anything is 0. But if you compute the M point DFT of this extended sequence then you shall get 

samples of X(k) at intervals of 2pi/M. This is an alternative method to using interpolation; you 

artificially extend the length of the sequence by adding 0s and then compute M point DFT.  
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(Refer Slide Time: 07:23 – 04:21) 

 

 
 

Next we go to DFT property. Once again, the proofs shall be left to you but I shall explain the 

steps and their significance while discussing the properties. Consider two sequences g(n) and 

h(n) whose N-point DFTs are G(k) and H(k), respectively. The first property, as is true about all 

transformations, is linearity: alpha g(n) + beta h(n) shall give you alpha G(k) + beta H(k) as the 

DFT. Now in ordinary Fourier transforms we showed that if the sequence is delayed by n0 

samples, then the transform is multiplied by e – jno(omega). Here, if you have samples between 0 

and N – 1 and you delay it by one or more samples, then you go out of the range of vision; 

therefore you have to define some other kind of delay or some other kind of shift, such that even 

after that shift the sequence remains in the range of vision. So we define a new concept, called 

circular shift. Let us understand how circular shift occurs. It is like a circle along which a group 

of people are sitting; when one person shifts to the right or to the left, then the previous person 

comes and occupies the vacant position. This is called circular shift. I shall explain this with the 

help of a figure. The figure that I have prepared is the following and I shall project it by parts.  
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(Refer Slide Time: 10:18 – 14:20)  

 

 
 

Look at this diagram, I have taken a very simple sequence of length 4, i.e. x0, x1, x2, x3 which are 

of arbitrary amplitudes. Look at this circle from which the name circular shift comes. I draw a 

circle and put them at equal intervals, along the circumference. The shift we are talking of is the 

clockwise shift, i.e. shift to the right. Now if I shift this sequence by one sample then x0 will 

come in the position of x1, x1 will come to the position of x2 and so on. This is what we mean by 

circular shift. The successive diagrams will show delay by one sample at each step. Now let us 

go to the Mathematics. In x(n – 1), if n = 0, it becomes x(– 1). There is no x(– 1), so you take (– 

1) modulo 4, i.e. add 4 to – 1, then x(4 – 1) is x(3) so x(3) comes at the position earlier occupied 

by x0. And then the other 3 samples each shift by one position to the right. So in terms of circular 

shift, x0 goes to this position 1 and x3 is driven out of position 3 to occupy the vacant position. 

This is what we mean by circular shift. Now let us see a second example: x(n – 2)4 is x(n – 1)4 

delayed by one sample and is shown in the next figure; similarly for x(n – 3)4. Our range of 

vision remains from 0 to 3; otherwise DFT does not make sense: DFT freezes the range of vision 

from 0 to N – 1. Finally x(n – 3)4 = x(n + 1)4. x0, x1, x2 and x3 go in a merry-go-round fashion in 

circular shift or modular shift. The argument of x has to be taken modulo 4, and then your range 

of vision shall remain frozen between 0 and 3.  
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(Refer Slide Time: 14:29 – 18:02) 

  

 
 

Let us make a circular time shift by n0 samples. What are the possible values of n0? n0 must 

remain within the range of vision. The DFT of x(n – n0)N shall be WN
kn0 G(k). If you have a 

circular frequency shift, that is you have WN
– k0n g(n) then the DFT simply becomes G(k – k0); it 

follows from the definition. Then there is convolution. You know that in linear convolution, if 

you take the convolution of N samples, with another sequence which also has N samples, then 

the total length of the linear convolution shall be 2N – 1. In DFT applications, your range of 

vision has to be restricted to 0 to N – 1, you cannot go beyond that, and therefore you have to 

define what is called circular convolution, sometimes also called periodic convolution. Periodic 

convolution is summation [g(m)h(n – m)N], where the argument n – m had to be taken with 

modulo N. Then you make sure that the range of vision is restricted between 0 and N – 1. The 

shift has to be a circular shift, and m goes from 0 to N – 1. Then the DFT shall be simply the 

product of G(k) and H(k). So circular convolution gives rise to a multiplication in the frequency 

domain, exactly like Laplace transform or Fourier transform. Next comes the modulation 

property i.e. we consider the sequence g(n)h(n). In Fourier transform, it was integration but here 

it shall be a summation. The inverse DFT is also a summation unlike the previous case where it 

was integration. The Fourier transform of g(n)h(n) is (1/N) summation [G(m)H(k – m)N where m 
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goes from 0 to N – 1. Clearly this is a convolution but a circular convolution. What it imposes on 

the mechanics of convolution is what we shall illustrate with a few interesting diagrams.  

 

(Refer Slide Time: 18:10 – 14:20)  

 

 
 

Finally the Parseval’s relation for energy is also valid here. That is, the energy in the time 

domain: given by the summation magnitude of (x(n))2, where n = 0 to N – 1 is exactly equal to 

(1/N) summation magnitude of X(k)2 where k goes from 0 to N – 1. The energy in the time 

domain is the same as the energy in the frequency domain. In Fourier transform this involved 

integration, here it is a summation. So the DFT makes life simple. You do not have to integrate; 

it is all summation. Mechanization in the computer is much easier in this case.  
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(Refer Slide Time: 19:25 – 21:14) 

 

 
 

Now let us understand what we mean by circular convolution. If you have two sequences g(n) 

and h(n) then the linear convolution yL(n), denoted by a *, is simply given by yL(n) = g(n)*h(n) = 

summation g(m)h(n – m), where m goes from 0 to N – 1 because both g(n) and h(n) are finite 

sequences of length N and yL(n) has to be computed from n = 0 to 2N – 2. The length has to be 

2N – 1. This is linear convolution. The circular convolution, of g(n) and h(n) shall be denoted by 

yc(n). To emphasize that it is N point and circular convolution, instead of a star symbol, we 

simply include N within a circle. The expression is written like this: yc(n) = g(n) (N) h(n). By 

definition, this is equal to summation [g(m)h(n – m)N], where m goes from 0 to N – 1. To 

understand this a little more deeply, let us consider a simple example of two 4 point sequences 

(the number of points has to be the same in circular convolution but this is not necessary in linear 

convolution).  
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(Refer Slide Time: 21:37 – 22:20) 

  

 
 

The example that we take is g(n) = {1 2 0 1} consisting of four samples, the first sample being at 

n = 0, as indicated by an arrow. The sequence h(n) also has 4 points. The samples are: h(n) = {2 

2 1 1}. Here also the arrow indicates h(0). The last sample must be at n = N – 1. Now let us see 

what is meant by circular convolution. We shall discuss several methods. You make your choice 

of the method which appears simple to you. Now look at this slide carefully. I project it in parts 

and steps.  
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(Refer Slide Time: 22:55 – 27:00) 

 

 
 

I have indicated m on the first line: 0, 1, 2, 3, g(m) in the second line: 1, 2, 0, 1 and h(m) in the 

third line: 2, 2, 1, 1. Now I have to find out h(– m), then shift it by one sample at each step. Now 

h(– m), is obtained by flipping back h(m) with m = 0 as pivot. In other words, we shall start from 

m = – 3; but we cannot do that, we must start from m = 0. So we take h(– m) modulo 4 which 

means that h(0) remains unchanged, but when you get m = – 1, the argument would change to m 

= 4 – 1, that is 3. This 1 in the position under m = 3 of h(m) comes here as indicated by an arrow. 

Then h(– 2) is same as h(2) so this one comes here directly and h(– 3) is the same as h(1) and 

therefore this comes here. I have taken modulo 4 so that my range of vision is 0 to 3. If you 

recall this summation, namely summation g(m) h(n – m)N, m = 0 to N – 1, we shall have yc(0) by 

multiplying g(m) by h(– m) sample by sample and adding them. The sum is 6, which is yc(0). 

What happens next? For yc(1), I have to find h(1 – m), 1 – m means the whole sequence is 

shifted to the right by one sample and the last sample goes back to occupy the vacant position at 

n = 0. So 2 goes here, 1 goes here, 1 goes here and this 2 is running back, which I have indicated 

by this arrow. Since we have found out h(1 – m), you can now calculate yc(1). What you do is 

this: 1 multiplied by 2, 2 multiplied by 2, 0 multiplied by 1 and 1 multiplied 1, and the sum is 7. 

This process continues for another two steps. We have already found out two samples; another 

two samples have to be found. For h(2 – m), 2 comes here, 2 comes here, 1 comes here and this 1 
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goes back to the 0th position. I now multiply g(m) by h(2 – m) sample by sample: 1 times 1, 2 

times 2 then 0 times 2 and 1 times 1, the sum is 6. Finally compute the last sample; once you do 

the first step, then the other steps are very simple. All we have to do is to repeat this arrow 

pattern. The value is 5. Finally, my yc(n) becomes {6, 7, 6, 5} with four samples. How do you 

mechanize this?  

 

(Refer Slide Time: 27:27 – 27:45) 

 

 
 

I gave you a trick for linear convolution. There should be mechanization here also. The trick is 

the following, let me explain in steps. What we do is the following, I have written m, g(m) and 

h(m) and I have identified which are g(0) and h(0), in order to be able to keep track of which 

sample will be what.  
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(Refer Slide Time: 28:32 – 31:56) 

 

 
 

Then I do the same thing as I did in linear convolution. That is I multiply second and third rows 

sample by sample exactly like arithmetic multiplication, but without a carry. So 1 times 1 is 1, 1 

times 0 is 0, 1 times 2 is 2 and 1 times 1 is 1; this is the first step. In the second step if you recall 

in arithmetic multiplication or linear convolution we have left this place vacant, we leave it 

vacant now also so we put a dash here and then go for the second one. That is 1 times 1 is 1 so 

this is 0, 1 times 2 is 2 then 1 times 1 is 1. We do not write the last sample to the left, it runs and 

occupies the vacant position we left in the rightmost column. In the next step, we leave two 

vacant places, then we multiply by 2; 2 times 1 is 2, 2 times 0 is 2 then 2 times 2 is 4. This 4 runs 

and occupies the first available vacant position. Then 2 times 1 goes to the next vacant position. 

You see that we have only created four samples in each step. In the last one, you leave three 

vacant spaces. Here 2 times 1 is 2 then 2 times 0 is 0, it comes here, 2 times 2 is 4 it comes here, 

2 times 1 is 2 and it comes here. Now you add each column. Now there is a problem, we get {5 6 

7 6} our result was {6 7 6 5}. You must identify which one is the 0th sample, then the rest will be 

clear.  

 

You recall that this was g(0) and this is h(0). This column will give yc(0) because it contains g(0) 

h(0). The value is 6. Once you identify this one, then the identification problem is solved. You 
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have yc(1) as the next right sample and so on. Suppose you have made a mistake in identifying 

this; how do you verify? Go back to the first sample; here is the first product. What is this? This 

is a multiplication of g(3) and h(3). The sum of the indices should be equal to the index of the 

output. Now 3 + 3 is 6 we do not have a 6th sample but 6 modulo 4 is 2 so this must be yc(2). 

Then you can verify whether you have done it correctly or not.  

 

As I told you we can compute circular convolution by various other methods. One of the 

methods is that you find G(k) and H(k), multiply the two and then take IDFT of G(k) H(k).  

 

(Refer Slide Time: 32:24 – 32:38) 

 

 
 

We will compute the same example by this method.  
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(Refer Slide Time: 32:48 - 35:10) 

 

 
 

Our sequences are g(n) = {1 2 0 1} and h(n) = {2 2 1 1}. The definition is that G(k) shall be 

summation g(n)WN
nk, n goes from 0 to 3 and N is 4. Let us see what is W4, W4 = e– j2pi/4 = – j. I 

am calculating G(k) which is equal to g(0) multiplied by W4
0 + g(1) multiplied by – jk + g(2) 

multiplied by (– j)2k + g(3) multiplied by (– j)3k . Then you have to find out G(k) by putting the 

values of k. I leave this algebra to you.  

 

 

 

 

 

 

 

 

 

 

 

 

 14 



(Refer Slide Time: 35:24 – 37:41) 

 

 
 

Please verify whether my result is right or wrong. My result is G(k) = {4 1 – j – 2 1 + j}. In a 

similar manner I calculate H(k) = {6 1 – j 0 1 + j}. The product of G(k)h(k) shall be the 

multiplication of the corresponding samples, the final result being G(k) H(k) = {24 – 2j 0 2j}. 

Then yc(n) shall be IDFT of this. That is yc(n) = (1/4) summation [G(k)H(k) (+ j)]kn where k = 0 

to 3. Now you expand this, this will become: yc(n) = (1/4)[24 – 2j (j)n + 2j (j)3n]. Now put n = 0, 

n = 1, n = 2 and n = 3 and compute this sequence.  
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(Refer Slide Time: 37:53 – 41:35) 

 

 
 

Final result that I get is: yc(n) = {6 7 6 5}. I have given you three methods: One is graphical, one 

is a trick and the third is multiplication of G(k) by H(k) and taking inverse DFT. Now this is 

where the matrix representation comes to help. I find what D4 is; D4 will occur when finding 

G(k), finding H(k) and also in finding inverse DFT because G(k)H(k) is also of length 4. So one 

matrix D4 is good enough. In D4 matrix, the first row is 1 and the first column is also 1; then you 

have WN
1 so W4 = – j. The next one would be (– j)2 = – 1, then ( – j)3 = + j. You see, we cannot 

make a mistake here; it is very easy to do this, instead of summation form. Then the next row 

would have 1, (– j)2 = – 1, WN
4 = + 1, and finally, WN

6 = – 1. What was your third row? The 

third row is 1, WN
2, WN

4, WN
6 and so on because your k = 2. The next one that is in the third 

row, this will be WN
3 which is j, then – 1 and then – j (this is WN

3), then WN
6 and finally, WN

9 

which is the product of these two. This you should be able to write without a thought. So we get 

G(k) = D4 multiplied by the column matrix g(n) where elements are 1 2 0 1. Similarly you find 

H(k) with the same matrix D4. Finally, you find out G(k)H(k).  
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(Refer Slide Time: 41:47 - 42:57) 

 

 
 

Next step is to find out yc(n): for yc(n), you need D4
*. For this, all you have to do is the 

following: in D4 wherever – j occurs you put + j. The first is 1 1 1 1, then 1, + j, – 1, – j, then 1, + 

1, – 1, – j, then 1, – 1, 1 – 1 and then 1 – j – 1 + j. This matrix is multiplied by the samples of 

G(k)H(k) put in a column matrix. You see, this computation is much easier to do, than writing in 

the summation form and keeping track of powers j. Once you are able to write D4, you are 

absolutely safe. The next point is, what is the use of circular convolution? The use is in 

computing linear convolution. You can compute linear convolution by using circular 

convolution. In circular convolution, if the number of samples is large, you do not compute like 

we did here; you may not be able to compute by hand. You have to take help of computer. What 

help? It is to use DFT. If the number of samples is large then you take the DFT of both the 

sequences, multiply them and find IDFT. But how do we carry out linear convolution? In linear 

convolution, as you know, the number of samples in individual sequences may not be the same. 

And the total number of samples in the output of linear convolution is N1 + N2 – 1. Therefore we 

apply the same trick that has been applied so far that is we pad 0s. I have enunciated this by 

means of a slide here which I will project gradually.  
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(Refer Slide Time: 44:41 - 47.01) 

 
 

I said I have to compute linear convolution of the sequence g(n) = {1 2 0 1} with h(n) = {2 2 1 

1} I know that my output shall go from n = 0 to 8 – 1 = 7. The length of the output shall be 7 

therefore go from 0 to 6. The length of the output shall be 7 therefore we must have seven 

samples in both the input sequences. If you want to compute by circular convolution, number of 

samples should be the same. So I make both of them of length 7 by padding 0s. Then I compute 

the circular convolution by the trick I discussed earlier. If the number of samples is large then I 

shall use FFT. But if the samples are manageable like this, then you see how we can do it by 

mechanization. Here each sequence has 7 samples, so the output of circular convolution also has 

seven samples. My final result is here. And then to find out which one is my yc(0) I find out 

where g(0)h(0) occurs, addition of samples in this column shall give you yc(0). This will be 

followed by n = 1 2 3 4 5, and you come back to the extreme left sample, which must correspond 

to n = 6. So I can compute linear convolution by using circular convolution.  
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(Refer Slide Time: 47.28 - 49.06) 

 

 
 

In summary we have found various methods for computing circular convolution. One is 

graphical, one is a trick that is basically a mechanization. One of the disadvantages of 

mechanization is that you lose track of the physical picture. But for an engineer once you have 

got the concept you should be able to mechanize it, time is important and therefore whatever 

works is good enough. In circular convolution, as you know, you have to identify which column 

shall give you the 0th sample and then everything else is clear. Then we said how to find circular 

convolution as IDFT [G(k)H(k)]. You can do this by two methods: matrix method, which 

appears to be easier, and the other one is to use the summation. There are 4 methods now. Finally 

we said that the linear convolution can also be computed by FFT if you padded sufficient number 

of 0s to the two input sequences which are to be convolved. The number of 0s has to be carefully 

chosen so that the length becomes equal to the expected length of the result. I think this is a 

correct point to stop, we shall continue in the next lecture. 
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