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This is lecture 12th on DSP and we continue our discussion on Z-transforms. In lecture 11, we 

had introduced the Circulant Matrix for computing circular convolution and then we showed 

how to compute two N point DFTs by computing a single N point DFT by combining the two 

sequences in an analytic manner. That is you take x(n) = g(n) + jh(n) and then compute the N 

point DFT of x(n). We gave an example. Then we introduced the Z-transform as the summation 

g(n)z–n, summation going from n = – infinity to + infinity. We showed its relationship to Fourier 

Transforms. We also said that the ROC (Region of Convergence) is extremely important.  

 

(Refer Slide Time: 02:15 - 03:40) 

 

 
 

Then we made a special point that if you have a Finite Sequence then the ROC, irrespective of 

whether it is causal, anti causal or combination of causal and anti causal, is the whole z plane 
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except possibly z = 0 and z = infinity. It can be both or it can be one of them. The ROC is the 

total z plane. But if it is an Infinite Sequence then the ROC in general is an annular region 

between two circles. Let the subscripts be 1 and 2 and let the smaller circle be of radius R1 and 

the larger circle be of radius R2, greater than R1.The ROC in general is this annular region, 

where R1 can be as small as 0, and R2 can be as large as infinity.  

 

(Refer Slide Time: 04:02 – 05:45)  

 

 
 

For an infinite sequence, the Z-transform is a rational function of the form G(z) = P(z)/Q(z). A 

rational function is a ratio of polynomials and a polynomial is a finite series containing only 

integral positive powers of the variable. P(z) and Q(z), in fact, we write as polynomials in z–1. 

The variable is z–1, and if z is the variable then P(z) is not a polynomial. So 1 + x + x2 is a 

polynomial but 1 + x–1 + x–2 is not a polynomial in x but it is a polynomial in x–1. From this 

rational function, we define what Poles and Zeros are and we said that the ROC is bounded by 

the pole at the largest distance from the origin, for a special type of sequence, viz. Causal 

Sequence. On the other hand, if it is an anti causal sequence, then the ROC is bounded by the 

pole which is closest to the origin. For a Causal Sequence, ROC is outside a circle and for an 

Anti Causal sequence, ROC is inside a circle. 
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(Refer Slide Time: 05:55 – 07:20) 

 

 
 

We took some examples, and made a table of the Z-transforms of some basic sequences, viz. 

delta(n), u(n), alphan u(n) and rn cosine (n omega0) u(n) or rn sine (n omega0) u(n). If you know 

these transforms, then you can solve almost any problem in Z-transforms provided you are aware 

of the ROC, the region of convergence. In Fourier Transform, there is no such complication. In 

Z-transform there is this complication of ROC, which is extremely important. In fact we will 

show that the same Z-transform can represent different sequences. We also showed that there are 

sequences for which Z-transform does not exist. For example, for alphan, the Z-transform does 

not exist because it consists of two parts a right sided sequence and a left sided sequence and the 

two ROCs do not have an overlapping region. The only overlapping region is a circle of radius 

mod alpha but on that is located the pole and therefore there is no ROC. It is important to 

understand this.  
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(Refer Slide Time: 07:35 – 10:21)  

 

 
 

Now we talk of the Inverse Z-transform. You recall that the Z-transform G(z) = summation g(n) 

z– n but z, in general is r ejw, a complex quantity so G(z) is summation g(n) r– n e–jomega n where n = 

– infinity to + infinity. This can also be a looked upon as the Fourier transform of the sequence 

g(n) r– n, so the inverse Fourier Transform relationship should hold. In other words, g(n) r– n 

sequence can be  recovered from the Fourier Transform by taking the integral [1/(2pi)] integral 

(– pi to pi) G(r ejomega) ejnomega d omega.  Now I can transfer r– n to the right hand side inside the 

integral because the variable is omega. Therefore I can write this as g(n) = [1/(2pi)] integral (– pi 

to pi) G(z) znd omega. We must change the variable because our function is that of z = r ejomega. 

This means that d z = r (r is a constant and omega is the variable). ejomega j d omega. And 

therefore we can replace d omega by d z/(jz).   
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(Refer Slide Time: 10:33 – 10:35)  

 

 
 

(Refer Slide Time: 10:41 – 10:45) 
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(Refer Slide Time: 10.47 – 14:50)  

 

 
 

Therefore g(n) = [1/(2jpi)] integral G(z) zn – 1 dz.  Now what should be the limits of the integral? 

z is a two dimensional plane; it goes from – infinity to + infinity in a complex manner. On the 

other hand, what was the idea in integrating over omega? Omega goes over a circle from – pi to 

+ pi. In other words, it makes a closed contour. Therefore when you go from the unit circle to the 

total complex plane, the integration becomes a contour integration.  

 

In other words, what you should do is to choose a contour. In contour integration, we go in the 

anticlockwise direction because for omega we have gone from omega = 0 in the anticlockwise 

direction; so the direction must be the same. But the contour must be such that it does not pass 

through any of the singularities of the function G(z) zn – 1. And one of the singularities is at z = 0, 

because if you put n = 0 here then zn – 1 becomes z– 1; therefore there is a singularity for n = 0 at z 

= 0. Therefore, the contour is to be such that it is outside the poles and does not encounter any 

pole including the pole at the origin. A closed contour must be around z = 0 and therefore any 

contour c traversed in the anticlockwise direction which includes the point at the origin and all 

poles of G(z) inside it is good enough; usually we choose this to be a circle with center at the 
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origin. This is the simplest thing to do. However for useful DSP, we do not have to evaluate this 

contour integration.  

 

Contour integration evaluation is not a routine job; it has to be done with lot of care. We do not 

have to do it because our function G(z) is always rational = P(z)/Q(z) and for a rational function, 

there are better alternatives. But if you have to evaluate this contour integral, the gentleman 

Cauchy comes to rescue. Cauchy gave a theorem, called Cauchy’s residue theorem, which says 

that this integral is equal to sum of the residues at the poles inside the contour. Fortunately, we 

do not have to apply Cauchy’s residue theorem.  

 

(Refer Slide Time: 15:26 – 17:20)  

 

 
 

 

We have better alternatives for rational functions that we are concerned with. One method is that 

of partial fraction expansion. I told you that if you know the Z-transform of delta n, u(n), alphan 

u(n), rn cosine (n omega 0) u(n) and rn sine (n omega 0) u(n), then you can perform any Z-

transform or its inverse also. We will take several examples, one by one. First let us find out a 

causal h(n) such that its Z-transform H(z) = z (z + 2)/[(z – .2) (z + .6)]. The first thing you do 

when we encounter such an expression is to express it as a rational function in z– 1; therefore you 
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divide by z2 both numerator and denominator. Then you get H(z) = (1 + 2 z– 1)/[(1 – .2 z–1) (1 + 

.6 z– 1)]. Next, you expand in partial fractions. That is, you write this as = A/(1 – .2 z– 1) + B/(1 + 

.6 z– 1). Why do you write it in this form? It is because you already know that the Z-transform of 

alphan u(n) = 1/(1 – alpha z– 1). So if you can express it in this form, then your job is done and A 

and B can be found in the usual manner.   

 

(Refer Slide Time: 17:30 – 18:51) 

 

 
 

For example A = (1 –.2 z– 1) H(z) under the condition .2 z– 1 = 1 or z– 1 = 5. This evaluates to 

2.75. Similarly you can find B as – 1.75.  
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(Refer Slide Time: 19:00 – 20:05)  

 

 
 

 

And if you substitute this you get H(z) = 2.75/(1 – .2 z– 1) – 1.75/(1 + .6 z– 1). Since z - transform 

is a one to one transformation, we invert H(z) term by term and get h(n) = (.2)n u(n) – 1.75 (– .6)n 

u(n). This is the inverse transform, because we wanted a causal sequence; if it was not, then we 

would have a problem. Now go back, and look at the original problem.  
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(Refer Slide Time: 20:20 – 22:15) 

 

 
 

The ROC is not specified, but an equivalent specification is given because you are asking for 

causal h (n). So if this specification on h(n) was not given, then the answer to the inverse 

transform would not have been unique. The answer we worked out will be correct only if it is 

stated that |z| is greater than 0.6; so causal sequence and |z| > 0.6 are equivalent statements. The 

ROC outside a circle of radius 0.6 specifies that the inverse transform shall be causal. One of the 

two must be given. Again, go back to the original problem; how do you know that these two 

terms are adequate for partial fraction expansions. On the other hand if you make a partial 

fraction expansion of z (z + 2)/ (z –.2) (z + .6), there shall be a constant. The constant shall be 

equal to the value of z =∞ ; it is 1. There is no constant here because the numerator is 1° less 

than the denominator. If the numerator also had another linear factor, then there would have been 

a constant term.  
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(Refer Slide Time: 22:22 – 24:35) 

  

 
 

Let us take another example; suppose we have H(z) = P(z)/Q(z) where P(z)° = 3 and Q(z)° = 2. 

Then the partial fraction expansion of this shall have first the components K0 + K1 z– 1. If you 

take this out by making a long division of P(z)/Q(z),then the remainder P1(z)/Q(z) will be such 

that the degree of Q = 2 but the degree of P1 = 1. Now you expand this into the sum of two 

rational functions. You must look at the given function very carefully. Inversion of a K0 is not a 

problem. It is K0 delta n and the inverse transform of K1 z– 1 is K1 delta (n – 1). Now, there is 

another simplifying feature about this problem that there were no repeated poles; the poles were 

distinct at + .2 and - .6. If there are repeated poles, then what do you do?   
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(Refer Slide Time: 24:43 – 27:36) 

 

 
 

We take a general case. Suppose G(z) is some numerator N(z)/[(1 – pz– 1)L. Q1(z)]; the pole at z  

= p is repeated L number of times. Q1(z) contains the other poles; it does not contain the pole at z 

= p. Then provided N(z)°  is less than L + degree of Q1 i.e. the numerator degree is less than the 

denominator degree, the partial fraction expansion will include summation Ai/(1 – pz– 1)i where i 

goes from 1 to L. That is, the repeated roots would give rise to a partial fraction expansion A1/(1 

– pz– 1) + A2/(1 – pz– 1)2 +… up to AL/(1 –  pz– 1)L. So there are L number of constants and then 

the rest of the function will be a reduced polynomial N1(z)/Q1(z), which you can expand by 

partial fraction expansion. And then you invert term by term; for the inversion of (Ai)/(1 – pz– 1)i, 

take help of the fact that the Z-transform of n times g(n) is given by – z dG/dz. If you take 

account of this, then you can find a general formula for the inversion of this. How do you find 

the AI'?  
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(Refer Slide Time: 27:44 – 28:53) 

 

 

All textbooks give this formula: Ai = {1/[(L – i) ! (p)L– i }
( )

( )1( )

L i

L i
d

dz

−

−−
 (1 – pz– 1)L G(z) evaluated 

at z = p. The general formula looks horrible. You have to differentiate L – i times and at any 

step, you can make a mistake. What I do is slightly different. Let us take an example to illustrate 

what I do. The scope of making mistake in my procedure is much less.  
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(Refer Slide Time: 29:13 – 31:27)   

 

 
 

Let us say I have a G(z) = N(z)/[(1 – pz– 1)3 (1 – alpha z– 1); here I have taken a pole repeated 

three times represented by (1 – pz– 1)3 and it is assumed that N(z)° is less than 4. If the numerator 

degree is less than the denominator degree then we call it a proper rational function. There is 

nothing improper about the other rational functions in which the degree of numerator exceeds or 

is equal to that of the denominator, but then this term has gone into the literature and we shall use 

it. Now the partial fraction expansion of this would be A1/(1 – pz– 1) +  A2/(1 – pz–  1) 2 + A3/(1 – 

pz– 1)3 + B/(1 – alpha z– 1). We can find out B very easily; you multiply G(z) by (1 – alpha z– 1) 

and put alpha z– 1 = 1. Do not bother about finding the value of z because alpha z inverse = 1 is 

good enough, z– 1 is 1/alpha. A3 can also be found out easily: A3 = (1 – pz– 1)3 G(z) with pz– 1 = 1. 

So A3 and B are known. All that you have to do now is to find A1 and A2. Obviously if you want 

to apply the formula you should differentiate it once and find A1; then you have to differentiate 

again to find A2. Instead of doing that what I do is to use two specific values of z– 1.  
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(Refer Slide Time: 31:55 – 34:11) 

 

 
 

Let us put z– 1 = 0 then z would be infinity. What is G(infinity)? It is A1 + A2 + A3 + B and A3 

and B are known. So I have got the value of A1 + A2 = G (infinity) – A3 – B; this is one of the 

equations. The other equation is obtained by using any other value of z– 1 you like e.g. 1 or– 1. If 

I put z– 1 = 1, then G(1) = A1/(1 – p) + A2/(1 – p)2 + A3 + B. Once again I get an equation in two 

variables A1 and A2 because A3 and B unknown. Now I have two simultaneous equations and I 

can solve them. This procedure uses a little bit of algebra, but it is much simpler and not prone to 

mistakes. I would suggest that you follow this.  
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(Refer Slide Time: 34:13 – 34:55) 

 

 
 

The other thing that one can do is to simplify the partial fraction expansion to a rational function 

with the same denominator, as that of G(z). So I get in the numerator a polynomial in z inverse 

with the constants A1 A2 A3 and B. A3 and B are known, so A1 and A2 can be found by equating 

corresponding coefficients. But I find the previous method more convenient. This is how we 

handle the case of repeated poles.   
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(Refer Slide Time: 35:25 – 37:02) 

 

 
 

The Inversion of Z-transform can also be done by long division. All you have to do is to express 

G(z) = P(z)/Q(z) in the form g(0) + g(1) z– 1  + g(2) z– 2 and so on. You divide P(z) by Q(z) in 

long division and take the quotient, which is a polynomial in z– 1. The coefficients will give you 

the sequence. The difficulty is that you may not be able to find a Closed Form formula. You may 

not be able to find in general a formula for g(n) but you can find the individual coefficients. But 

we will use this to illustrate that the ROC is an extremely important attribute of Z-transform.  

 

Consider u(n) whose Z-transform is (1 – z– 1). But suppose the nature of the sequence is not 

specified and you are only told that G(z) is (1 – z– 1), find the inverse transform. Obviously there 

can be multiple answers. The answers shall not be unique unless the ROC is specified. For 

example, I could write this as z/z – 1 and if I make a long division then the quotient would be 1 + 

z– 1 + z– 2 and so on. Obviously the sequence is {1, 1, 1 …}, starting at n = 0; therefore the 

required sequence is u(n).  Now this is one of the answers. What is the ROC of this? Obviously 

this series converges if mod z is greater than 1 so the ROC is outside the unit circle.  
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(Refer Slide Time: 37:42 – 40:46) 

 

 
 

On the other hand, if I carry out the long division as it is, that is G(z) = 1/1 –  z– 1) and divide 1 

by –z– 1 + 1, I get the quotient as – z – z2 – z3… and so on. Thus the sequence is – 1 – 1 – 1 to 

infinity, starting at n = 1, which is clearly – u(– n – 1), a legally valid candidate. You must admit 

this also as one of the answers and this obviously converges for mod z less than 1. Therefore if 

G(z) is specified with ROC mod z less than 1 then you know its corresponding sequence will be 

the anti causal sequence – u(– n – 1). The ROC is therefore extremely important.  
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(Refer Slide Time: 41:28 – 44:53) 

 

 
 

We take another example. Suppose I have X(z) = 2/(z + .5) (z + 1) and the ROC is not specified 

and I have to find the inverse transform. Obviously there will be multiple answers and the first 

thing I do is to write it is as a rational function in z– 1. I divide by z2 and get X(z) = 2 z– 2/[(1 + .5 

z–1) (1 + z– 1)]. 

 

Now you see here the numerator degree was less than the denominator degree but in a rational 

function in z– 1 the numerator degree is equal to denominator degree. So in the Partial Fraction 

Expansion we have to take out a constant and this constant obviously would be 4. (Allow z– 1 to 

go to infinity). The rest of the terms are, 4/(1 + z– 1) and – 8/1 + .5 z– 1). Now in the inversion, we 

have a problem. ROC has to be bounded by poles. The poles are at – .5 and – 1 therefore we can 

have an ROC which is the annular region between the two poles. We can also have ROC as |z| <. 

5; this will give you a left sided anti causal sequence, while ROC |z| > 1 will give you a right 

sided, causal sequence. For 0.5 < |z| < 1 as ROC, the inversion of 4/(1 + z– 1) will give an anti-

causal sequence, which that of –8/(1 + 0.5z– 1) will give a causal sequence. 
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(Refer Slide Time: 45:05 – 47:12) 

 

 
 

Correspondingly, you have the inverse transform as 4delta (n) – 4(– 1)n u(– n –1) – 8(– .5)n u(n) 

if the ROC is 0.5 < |z| < |. On the other hand, if the ROC is simply mod z less than 0.5, then the 

total signal would be anti causal and therefore x(n) = 4 delta(n) – 4(– 1)n u(– n – 1) + 8(–.5)n u(– 

n – 1).  

 

(Refer Slide Time: 47:13 – 48:30)  
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Now, the third possibility is mod z can be greater than 1. Correspondingly, x(n) would be 4 delta 

(n) + 4 (– 1)n u(n) – 8(– .5)n u(n). Thus, there are three possibilities. Unless the ROC is specified 

or unless the nature of the sequence is specified, the answer will not be unique. If the sequence is 

totally causal, then you have one answer, totally anti causal has another one answer, but if it is 

the mixture of the two, then you have a third answer. This example illustrates the importance of 

the ROC in specifying a Z-transform.  

 

(Refer Slide Time: 48:50 – 50:33)  

  

 
 

Now we talk about some properties of Z-transforms, exactly like those of the Fourier Transform. 

Consider two sequences g(n) and h(n) whose Z-transforms are G(z) and H(z) with ROC’s 

specified as Rg and Rh. Rg stands for, in general, mod z lying between Rg1 and Rg2. It is the 

annular region between two circles of radii Rg1 and Rg2. Similarly Rh is mod z lying between Rh1 

and Rh2. We shall also use the symbol 1/Rg: it shall mean that mod z lies between 1/Rg2 and 

1/Rg1. We shall also use the symbol Rg Rh: this will stand for Rg1 Rh1 less than mod z less than 

Rg2 Rh2. We shall use these symbols to discuss the properties. There are no such complications in 

Fourier Transform but Z-transform has this complication. 
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(Refer Slide Time: 50:41 – 55:02) 

 

 
 

If you take the conjugate of a sequence g(n), then by applying the definition you can show that 

its z – transform is G*(z*). What do you think its region of convergence would be? Mod z and 

mod z* are of the same value, and therefore ROC shall be the same as Rg. Then if you take g(– 

n), its Z-transform will be G(1/z). And what shall be the region of convergence? It is 1/Rg 

because the argument has changed from z to 1/z. Z-transform obeys linearity: alpha g(n) + beta 

h(n) shall give rise to alpha G(z) + beta H(z). What is the ROC? It shall include the overlap, that 

is Rg intersection Rh, but that is not the total story, it can be wider than this.  

 

Suppose G(z) = z– 1 and H(z) = (1 – z– 1); alpha and beta are 1. Then the sum is 1 therefore the 

whole of z plane is included. Therefore the ROC includes the intersection but can be wider, 

because of the possibility of cancellation. Suppose G(z) has a pole at gamma and H(z) also has 

pole at gamma, the combination alpha and beta can be so chosen that the numerator has a 0 at 

gamma; then the pole and zero cancel. And then that pole is unable to bind the region of 

convergence because it is unobservable and the region of convergence becomes wider. The next 

sequence is g(n – n0) whose z - transform is simply z– n0 G(z). The region of convergence is Rg 

with, the factor z– n0 taken into account. If n0 is a positive integer then the point at the origin shall 

be excluded. On the other hand, if n0 is a negative integer then the point at infinity is to be 
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excluded. Hence the ROC is Rg, except possibly z = 0 or z = infinity. You must find the ROC 

very carefully.  

 

(Refer Slide Time:  55.26 - 55.58) 

 

 

If you multiply g(n) by alphan then in the definition, z– n alphan would be (z/alpha)–n. Therefore 

the Z-transform would be G(z/alpha) and the ROC is mod of z/alpha = Rg, which means mod z = 

alpha Rg. You must find the ROC very carefully, I repeat.  
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