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This is the 17th lecture on DSP and we continue the discussion of linear phase filters.  
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We shall also talk about a very interesting class of filters which comprises a set, and they are 

known as complementary filters. This is where the importance of all pass filters shall be 

demonstrated. In the last lecture, we talked about all pass filters and showed that the poles and 

zeros have mirror image symmetry. That is, poles and zeros occur in reciprocal pairs and as a 

result, all pass filters are necessarily maximum phase filters. None of their zeros can be inside the 

unit circle.  
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We also said that they are lossless bounded real functions, provided we take the form A(z) = z–N 

DN (z–1)/ DN (z) in which the magnitude is normalized to unity. We also stated a theorem that the 

magnitude of an all pass filter is bounded by the inequality: │A(z)│is less than, equal to or 

greater than 1 for mod z greater than, equal to or less than 1. I asked you to prove it. The proof is 

not very simple. We also introduced the Comb filters, so called because the shape of the 

frequency response resembles a comb. Comb filters can be obtained from any filter which has 

one pass band or one stop band or both, that is one pass band and one stop band, by changing z 

to zL and then we get G(z) = H(zL),which has multiple pass bands and multiple stop bands. And 

one of the most important uses of such filters is in the elimination of periodic interference like 

the 50 Hertz signal in a biomedical signal processing situation.  
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We talked about zero phase filters and also commented that they are necessarily non- causal and 

therefore cannot be realized in real time. What can be realized in the real time are the Linear 

phase filters, which play an important role in any system, transmission or otherwise, and we said 

that only FIR filters can realize exact linear phase. We also stated that the condition for linear 

phase is that the impulse response should be either symmetric or anti symmetric i.e. h(n)=±h(N – 

n), the filter being of length = N + 1, and N being the order of the filter. Now, depending on even 

or odd length, and symmetry or anti symmetry, we stated that we have four types of filters. We 

discussed types 1 and 2 in the last lecture.  
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Type 1 was symmetric: h(n) = h(N – n), and N + 1 = is odd. So N, the order of the filter is even. 

Under this condition, we showed that H(z) is the same as z–N H(z–1), which shows, that if z0 is a 

zero then 1/z0 is also a zero. This property is common to all the types: Type 1, Type 2, Type 3 

and Type 4, where for the latter two types, H(z) is the negative of z–N H(z–1). So zeros occur in 

reciprocal pairs. We also showed that since N is even in type 1, H (1) = H (1) and H (– 1) = H (– 

1) and therefore there are no restrictions on the kinds of filters which can be realized. In other 

words, type 1 filter does not have a zero on the unit circle, unless you introduce it intentionally. 

And in type two, the order N is odd and therefore if I substitute in this relation z =1, then H (1) = 

H (1) but H (– 1), because N is odd, is – H (– 1) which means that H (–1) = 0. This means H (z) 

must have a zero at z=-1. In other words, I must have a factor (1 + z–1) in H (z) and the 

consequence of this is that high pass filter is not possible because high pass filter requires unity 

magnitude at z = – 1 or omega = pi. If we cannot have a high pass filter, can we have a band stop 

filter? A band stop filter also requires unity magnitude at omega = 0 as well as omega = pi. 

Therefore band stop is also not possible. HPF and BSF of the type that we have been discussing 

are not possible. Let us go to type 3, we shall have more fun in type 3 filters.  
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Type 3 has anti symmetry, that is, h(n) = – h (N – n) and a length N + 1 which is odd. Therefore 

N, the order of the filter is even. To concretize our idea we take an example. Let N = 8; then we 

have samples at 0, 1, 2, 3, 4, 5, 6, 7 and 8. The pairing of h0 is with h8 but they are not equal now, 

they are equal and opposite because of anti symmetry. So h8 = – h0, similarly h1 = – h7, h2 = – h6, 

h3 = – h5, and h4 = – h4; the last relation forces h 4 to be identically = 0, and h4 is the axis of 

symmetry. Therefore, in general, h(N/2) = 0 and this introduces further restrictions, as we shall 

see. But let us first see the form of the frequency response.  
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For this particular example, H(z) = h 0(1-z-8) + h1(z–1– z-7) + h2 (z–2-z-6) + h3 (z–3-z-5). This is the 

transfer function. Suppose we change z inverse to z; then how can we regain H(z) from this? We 

multiply by z–8 but the signs are interchanged. If I multiply 1 – z8 by z–8, I get z–8 – 1 and 

therefore I shall require a negative sign. So in general HN(z) =–z–NHN(z–1); this is the difference 

from types 1 and 2. For types 1 and 2, symmetrical impulse response, HN(z)= + z–N HN(z–1).  
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For both of types 3 and 4, HN(z)= –z–NHN(z–1). This is where further restrictions come. In this 

particular case of type 3 example, the frequency response is H(ejomega) = e–j4omega [2j h0 sine 

4omega + 2j h1 sine 3omega+ 2j h2 sine 2omega + 2j h3 sine of omega] The factor j did not come 

in types 1 and 2; h(n) was symmetric and ejtheta + e–jtheta was a real quantity, twice cosine theta. 

Here ejtheta – e–jtheta is twice j sine theta. You see that in symmetry, cosine functions come. In anti 

symmetry sine functions come; in addition a factor j comes which can be taken care of by a 

phase shift of π/2 and therefore I can write this as H(ejω)=2 e–j4omega ejpi /2 summation h (4 – n) 

sine n omega where n goes from 1 to 4.  
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In general, for Nth order HN (ejomega) = 2e–j(N/2)omega ejpi/2 summation (n = 1 to N/2) h(N/2 – n) sine 

of n omega; this is the general expression. You see the phase shift now is phi = – (N/2) omega + 

pi/2 + possible addition of integral multiples of pi. The summation is the pseudo magnitude can 

have a change of sign; therefore you must admit a beta= integral multiple of π. But taug(omega) 

which is the negative gradient of phase = + N/2. The other thing that one must notice is that 

HN(z) = –z–N HN(z–1). So as far as zeros are concerned, they occur in reciprocal pairs. But you 

notice now, for type 3, N, the order is even, the length is odd and you notice that HN(1) = – HN(1) 

which means that H(1) =0. Similarly, H(– 1) = – H (– 1) which means that H(– 1) = 0. In terms 

of zeros of H(z), obviously we have zeros at + 1 as well as – 1.  
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Therefore for type 3, the transfer function H (z) shall have a factor of 1 + z–1 and also (1 – z–1). 

Call the remaining transfer function as H1(z). Is H1(z) a linear phase? It is, because (1 + z–1) is 

linear phase and (1 – z–1) is also linear phase, so from linear phase you are taking out two linear 

phase factors. The rest must also be a linear phase, otherwise the product cannot be linear phase. 

So H1 (z) is also a linear phase; it contains the other zeros of H(z) which occur in reciprocal 

pairs. What about this (1 ± z–1); why the corresponding zeros not occur in reciprocal pair? It is 

because the reciprocal of + 1 is + 1 itself, so it can occur as a single zero. The reciprocal of – 1 is 

also –1 and therefore that can also occur as single zero. H1(z), the rest of the function, may not 

contain another 0 at + 1 or – 1.  I said may not, it may also contain. For example, the zero at z = 

1 can occur with multiplicity. So, at least there is one zero at + 1 as well as at – 1. And therefore 

HPF, LPF and BSF are not possible. The only thing that you can do with type 3 is a band pass 

filter.  

 

Now let us talk of type 4. In type 4, h(n) = – h(N –  n), and length N + 1 = even. So order N = 

odd. If we take N = 7 as an example, then my pairing would be like this: h0 = – h7, h1 = – h6, h2 = 

– h5 and h 3 = – h4. There is no loner here. The symmetry is around 3.5 where there exists no 

sample.  
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So we can write the frequency response directly as H(ejomega) =2j e–jomega7/2 [(h 0 sine of 7 

omega/2 + h1 sine of 5omega/2 +h2sin of 3omega/2 +h3 sine of omega/2]. In general HN(ejomega) 

=  2e–j omega N/2. ejpi/2 summation (n = 1 to (N + 1)/2) h([(N + 1)/2] – n) sine of omega(n – ½). This 

is the correct expression and here also the phase is – omega N/2 + pi/2 + beta, so taug(omega) = 

N/2; the extra half sample delay creates problems in actual hardware realization but the problem 

can be surmounted.  
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Now H(z) = – z–N H(z–1) and N = odd. So H(1) = – H(1), but H(– 1) = H(– 1). In other words, 

you have a zero at z=1. H(z) shall have a factor (1 – z–1). Therefore a Low pass Filter is not 

possible because z = 1 corresponds to omega = 0. If LPF is not possible, Band Stop Filter is also 

not possible. Thus types 2, 3 and 4 are restricted. Type 3 is the most restricted one, we can only 

design Band Pass Filters. Type 1 is the most versatile, you can design any kind of filter. Type 1 

also does not give a non integer delay, it gives delay of an integral number of samples. 

Nevertheless in situations where you require zero at z = 1 or z = – 1 or both you use the other 

appropriate type. 
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For example, you may want to design a differentiator.  What is the magnitude response of a 

differentiator? It is a straight line. For an ideal differentiator, H(ejomega) would be of the form j 

omega, – pi less than omega less than pi. Therefore its magnitude is 0 at omega = 0.  What type 

would be suitable? At omega = 0 that is z = 1 it is 0; so type 4 filter would be the most suitable 

one for this application. So there are situations where one requires one of these types. But if it is 

a general filter design problem, you have to design Low Pass, High Pass, Band Pass and Band 

Stop and so on, then type 1 is the most favored one. In general, we have also seen that for a 

linear phase FIR, the expression is of the form e–jomega N/2 H1(ω)ejγ. N even or odd. All of them 

have N/2 number of delays and then you have an additional factor of ejgamma where gamma can be 

0 or π/2; gamma is 0 for types 1 and 2, gamma is π/2 for types 3 and 4. H1(ω) is the pseudo 

magnitude function. So the phase is – omega (N/2) + gamma + beta which can be 0 or an integral 

multiple of π. The group delay is still N/2. Now let us look at the zeros. The transfer function, in 

general, obeys the relationship H(z) = ± z–N H(z–1), so what we said about zeros of types 1 and 2 

are valid here also. I mean, even if there is negative sign it does not change the reciprocal pair 

character of the zeros. 
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I am going to give you a location of a zero and I want you to tell me where its reciprocal would 

be. If we have a zero at + 1 then we do not require its reciprocal. It can occur as singly or 

multiple times. Similarly a zero at z = – 1 does not require a reciprocal. But if I have a zero at z = 

+ j, what is its reciprocal? That is – j, but do I have to force the function to have a zero at – j or 

does it automatically come? It automatically comes with real impulse response. If I have a zero 

at + j, I must have a zero at – j, not only because 1/j is – j, but also because complex zeros must 

occur in conjugate pairs for real h(n). If I have a zero at j r where r is less than 1, and then I must 

have a zero at – j/r. But since zeros must occur in complex conjugate pairs, we conclude that an 

imaginary zero must occur in a quad. If I have a zero at + r, then I must have 0 at 1/r; if it is at – 

r, I must have one at –1/r also. But if I have zero at rejθ then I must have zero at re-jθ also for real 

coefficient, and I must have zeros at 1/r e–jθ and 1/r ejθ, these being the reciprocals of rejθ and re–

jθ respectively. Purely imaginary zeros, as we have seen, also occur in groups of 4. Why group of 

4? It is because real coefficient demands that complex zeros must occur in conjugate pairs. If a 

zero exists outside the unit circle on the imaginary axis then it must occur in sets of 4. The term 

“Quad” is a short term for quadruplet.  
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Suppose I have a 5th order Linear phase FIR filter, having one of the zeros at (1/2) ejpi/4; can you 

construct the total filter? I have given you only this piece of information. How many choices do 

you have? Four of these zeros are determined by the “quad” property. You shall have (1-z–1 (1/2) 

ej pi/4) as one of the factors. Then you shall have (1 – z–1 (1/2)e– j pi/4), (1 – z–1 2ejpi/4) and (1 – z–1 

2e–j pi/4) also as factors. Now what would be your choice for the fifth factor? I have said the order 

is five; we have been able to construct four factors, what will be the fifth one? You require a zero 

which occurs singly, either at + 1 or – 1, and therefore you have two choices, (1 ± z–1); you also 

have the choice of simply z–1, which has linear phase. If you choose a zero at +1, then you have 

chosen which type? With a zero at – 1, is it type 1? No, type 1 cannot have a zero at – 1. Type 2? 

No, it cannot be. Type 3? Type 3 requires a zero at – 1 and also at + 1. You must be careful, it is 

type 2. On the other hand if you choose a zero at + 1 then you have a type 4. So this is the kind 

of judgment that one has to exercise if partial information is provided. You can construct the 

whole, given only partial information because of the property of Linear Phase Functions. To 

summarize, type 1 is versatile having no zero at + 1 or – 1; all kinds of filters can be designed. 

Type 2 is not versatile; HPF is not possible in type 2 and if HPF is not possible, Band Stop is 

also not possible. Type 3 is severely restricted: no low pass, no high pass, no Band Stop it is only 
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suitable for Band Pass Filter. With Type 4, no low pass, no Band Stop. Only high pass and band 

pass are provided. That summarizes our discussion of Linear Phase.  
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Now we go to Complementary Filters. The Complementary Filters can be of various types: it can 

be Delay Complementary, Magnitude Complementary, Power Complementary or All Pass 

Complementary. First we consider Delay Complementary The definition is that a set of filters 

Hi(z) where i = 0 to L – 1, i.e. a set of L number of filters Hi(z) are said to be delay 

complementary if and only if the summation of HI(z), i = 0 to L – 1, is some constant beta 

multiplied by a pure delay z–n0 where n0 is a positive integer. The sum of the filters makes a pure 

delay, the magnitude may not be unity, magnitude may be a constant beta. For example, if you 

have L = 2 then {H0(z), H1(z)}constitute a delay complementary set if H0(z) + H1(z) = beta z–n0. 
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A very simple example is H0 = 1 and H1 = – 1 + z–1; these are delay complementary. This is a 

trivial example. Suppose H0 is type 1 Linear Phase of length M = odd. And suppose the 

magnitude characteristics of H0 (ejomega) is Low Pass. A Low Pass Filter, as you know, has to 

have a tolerance in the Pass Band and a tolerance in the Stop Band. Suppose the tolerance 

scheme is this: in the range 0 to ωp, the magnitude must lie between two levels 1 + delta p and 1 

– delta p. It can be monotonic, or with ripple. Then in the Stop Band, extending from omegas to 

pi, the magnitude must be less than or equal to deltas. The magnitude can be zero at some 

frequency or frequencies between omegas and pi. At such a zero, there will be an abrupt jump of 

π in phase. So in the pass and transition bands, the pseudo magnitude and magnitude are 

identical. Since the Stop Band has started at omega s, if at all there is a change of sign in the 

pseudo magnitude, it shall occur between omega s and pi.  
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Now, suppose we want to construct, from this H0, a Delay Complementary H1(z), but first let us 

find out the form of H0(ejomega). It is of the form H0(ejω)= e-jω(M-1)/2  ~

0H (ω), where 
 ~

0H (ω) is the 

pseudo magnitude function. We want a Delay Complementary function H1(ejomega). What can be 

the form of H1(ejomega)?  

 

Clearly, H1(ejω)=1- H0(ejω) should be of the form e-jωN/2  ~

1H ( )ω in order that 
 ~

0H (ω)+ 
 ~

1H ( )ω =1. 

(We normalize β to unity). 
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Consider pseudo magnitude 
 ~

1H ( )ω =1-
 ~

0H (ω). Now, in the Pass Band of H0, the magnitude 

(which is the same as 
 ~

0H (ω)) lies between 1 + delta p and 1 – delta p; so, 
 ~

1H ( )ω will lie between 

+ delta p and – delta p in the frequency range 0 to omega p. In the stop band, H0 magnitude 

(which may be different from
 ~

0H ), lies between zero and delta s, within the frequency range 

omega s to pi. 
 ~

0H therefore could lie between – δs and +δs. Corresponding, 
 ~

1H ( )ω will lie 

between 1 + δs and 1 – δs. Clearly, H1 (ejω) is a high pass filter with stop band between 0 and ωp, 

with tolerance δp and pass band between ωs and π with tolerance 2δs. On the other hand, in the 

Low Pass Filter, the tolerance was 2delta p and delta s only. So, in general it stands to reason that 

the Delay Complementary Filter of a Low Pass Filter shall be a High Pass Filter and vice versa 

but the tolerance schemes are different; it has to be worked out. For a Band Pass Filter the Delay 

Complementary Filter will be a Band Stop Filter. For an All Pass Filter, the Delay 

Complementary Filter shall also be All Pass. [Although the example we took was that of FIR, 

complementary filters need not necessarily be FIR; they can be FIR as well as IIR.] 

 

 

 

 18 



(Refer Slide Time: 52:26)   

 

 
 

Let us now talk about All Pass Complementary Filters. A set of transfer functions Hi, where i = 0 

to L – 1, is All Pass Complementary if their sum is an all pass filter. Delay Complementary Filter 

is also All Pass Complementary. Two delay Complementary Filters, H0 and H1 have H0+H1 = 

beta times z–n0. What is this filter? It is all pass. If the components of this set are FIR then Delay 

Complementary is a special case of All Pass Complementary. Delay complementary filters can 

be realized with all pass filters. As a simple example, suppose L = 2 and suppose I take H0(z) = 

(1/2) (A0(z) + A1(z))  where A0(z) and A1(z) are All Pass, then H1(z) shall be equal to  (½)((A0(z) 

– A1(z)). Now let me also point out that this sum can be either positive or negative, as far as 

magnitude is concerned, it does not matter. So when I add these two, I get H0 + H1 = A0(z). Now 

you can see how All Pass is gradually coming into the picture. I have already stated that if you 

can design an All Pass Filter, you can design any other kind of filter.  
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We will conclude this class with the definition of Power Complementary Filters. The set Hi is 

power complementary if their powers (which are characterized by magnitude squared of the 

transfer function) add up to a (normalized) value of 1; We did not say energy, because magnitude 

squared is not energy, but why is it power? It is power because for energy you require (1/(2 pi)) 

integral of magnitude squared with respect to omega. Since the sum is unity for all omega, then 

by analytic continuation, you can also say that summation Hi(z) Hi(z–1) i = 0 to L – 1, is unity.    
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Suppose L = 2. Next time we will start with a very interesting observation that two filters which 

are All Pass Complementary are also Power Complementary. That is, if H0(z) H0(z–1) + H1(z) 

H1(z–1) = 1, then H0+H1=all-pass and vice-versa. You can prove it by taking H0 as (½) [A0 +A1] 

and H1 as (1/2) [A0 – A1,].  
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Therefore this set of filters is All Pass Complementary as well as Power Complementary and 

they are known as Doubly Complementary Filters. There are very important applications, and we 

shall look at some of them at a later date. 
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