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Test for Stability using All Pass Functions 

 

This is the 19th lecture on DSP and the topic for today is Test for stability using all pass 

functions.  

 

(Refer Slide Time: 01:07 - 01:10) 

 

 
 

We shall test for stability for an arbitrary IIR transfer function H(z); all pass functions will be a 

via media. This again shows the importance of all pass functions in DSP. In the last lecture, we 

showed that the two transfer functions H0(z) and H1(z), which are half of the sum and difference 

of two all pass functions, form an extremely important set of all pass complementary as well as 

power complementary functions.  
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(Refer Slide Time: 01:35 - 03:30) 

 

 
 

We defined a frequency, called the cross over frequency, at which both H0 and H1 have a 

magnitude equal to 1/√2. Then we showed that a very simple realization is possible; all that you 

have to realize are two all pass functions. We took a simple and interesting example of A0 = 1 

and A1 = a first order all pass, which gives a very versatile realization of several kinds of filters 

and also a magnitude complementary pair by taking H0
2 and H1

2. We introduced the concept of 

digital two pairs and we showed how they can be represented by a transmission matrix 
―
T and a 

chain matrix
―
Γ . We showed how cascades can be of two different types: Transmission Cascade 

and Chain Cascade in which the respective parameters multiply to get the overall transmission or 

chain parameters. Finally, we started stability testing and we took a second order transfer 

function H(z) = N(z)/D(z) where D(z) is 1 + d1z–1 + d2z–2.  
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(Refer Slide Time: 03:44 - 05:19) 

 

 
 

We want to test the stability without determining the roots of the denominator D(z), which are 

the poles of H(z). Now if I write D(z) as (1 – p1z–1) × (1 – p2z–1), then p1 and p2 are the poles, and 

we require, for stability, magnitude p1 < 1 and magnitude p2 < 1. Obviously p1 + p2 shall be = – 

d1 and p1p2 shall be = d2. Now for stability since p1 and p2 both have to be less than 1 in 

magnitude, therefore the magnitude of d2 should be less than 1 because the magnitude of d2 is 

simply the product of the magnitudes of p1 and p2. In other words, in a parameter plane, that is if 

we plot d2 versus d1, then magnitude d2 < 1 means d2 should be confined between – 1 and + 1.  
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(Refer Slide Time: 05:25 - 16:42) 

 

 
 

Now there are two possibilities: the poles can be real or poles can be complex. In either case p1 2 

shall be = – (d1 / 2) ± 2
1 2d  / 4 –  d . If the roots are complex, then obviously d1

2/4 should be less 

than d2. First let us examine complex roots; the condition is that d2 should be greater than d1
2/4.  

 

(Refer Slide Time: 06:29 - 09:07)  
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In other words, if I plot the curve with an equality sign that is, d2 = d1
2/4 then d2 should be above 

this curve. Not only that, since it is d1
2 and d1 is a real quantity, positive or negative, d2 being 

greater than d1
2/4, should therefore be greater than or equal to 0. Now d2 = d1

2/4 is a parabola. 

When d1 is 0 d2 is 0; when d1 is + 2 or – 2 it is equal to + 1; these constitute three points, and you 

can draw the parabola passing through them. Therefore, if the roots are complex, then they 

should be contained in this cup. The hatched region represents complex poles, that is, if in the 

parameter plane, the point (d1, d2) is within the cup, then you know it is a complex pair of poles. 

Not only that, if the poles are complex, i.e. p1,2 = α ± jβ, then magnitude p1
2 shall be equal to 

magnitude p2
2; both shall equal p1p2 = d2 = α2 + β2. Now let us examine the case of real poles.  

 

(Refer Slide Time: 09:16 - 11:19)  

 

 
 

If the poles are real it means that d2 should be less than d1
2/4. The poles are p1 = – d1/2 

+ ( )2
1 2d / 4 –  d  and p2 = – d1/2 – ( )2

1 2d / 4 –  d  . Since these are real we want their mod to 

be less than 1 for stability. Which one of these can exceed 1? Obviously, p1 can exceed 1. In 

other words, we want p1 to be less than 1. p2 can go beyond – 1 because both terms are negative 

if d1 is positive. In other words, we want p2 to be greater than – 1. In any case, p1 and p2 should 

be confined within the region – 1 to + 1 on the d1 – axis. If we satisfy these two constraints, that 
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is p1 less than 1 and p2 greater than – 1, then our job is done. Let us see what these conditions 

lead to.  

 

(Refer Slide Time: 11:27 - 12:27)  

 

 
 

So – d1/2 + ( )2
1 2d / 4 –  d  should be less than 1 means that ( )2

1 2d / 4 –  d  should be less 

than 1 + d1/2. If I square both sides now, then I get d1
2/4 – d2 should be less than 1 + d1

2/4 + d1. 

d1
2/4 cancels from both sides; if I change the sign of d2 on the left side, we get the condition as d2 

greater than – 1 – d1. In a similar manner, if I take the other one that is – d1/2 – 

( )2
1 2d / 4 –  d  should be greater than – 1, we get – ( )2

1 2d / 4 –  d  should be greater than – 1 

+ d1/2.  

 

 

 

 

 

 

 

 6 



(Refer Slide Time: 12:33 - 14:00) 

 

 
 

Again, if I square both the sides, then we get the condition that d1
2/4 – d2 should be less than (1 – 

d1/2)2. So I get d1
2/4 – d2 less than 1 + d1

2/4 – d1 in which d1
2/4 cancels and therefore this 

condition is that d2 should be greater than d1 – 1. Now, if I plot this with an equality sign I shall 

get a straight line. The other condition was d2 greater than – 1 – d1. Once again if I plot this with 

an equality sign then we shall get a straight line. In this, if d1 is 0 and then d2 is – 1. If d1 is – 1 

then d2 is 0. Joining these two points will give the straight line d2 = – 1 – d1. In a similar manner, 

for the other straight line d2 = – 1 + d1, the two points are (0, – 1) and (1, 0). 
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(Refer Slide Time: 14:06 - 14:59)  

 

 
 

The two points are good enough to draw a straight line. The triangle having the vertices (0, –1), 

(–2, 1) (+2, 1) therefore defines the parameter plane in which the second order transfer function 

shall be stable. This is called a stability triangle for a second order IIR transfer function. In 

addition, if (d1, d2) is within the hatched area then the poles will be complex; if not then they 

shall be real. If (d1, d2) point is outside the triangle, the system would be unstable. Does it look 

like too much of a discussion with a very simple transfer function like the second order?  

 

We can always find the roots and find whether it is stable or unstable, and whether the roots are 

real or complex. But then this stability triangle is useful in a different context, viz. in studying 

the quantization errors in a digital signal processor. Therefore I thought we must carry out this 

discussion at this stage, so that you get some experience. What do we do if we have a general 

transfer function HM(z) = NM(z)/DM(z) where testing for stability means we test for the roots of 

DM(z) and find whether all the roots are inside the unit circle or not. Let DM(z) be written as 1 + 

d1 z–1 + d2 z–2 + … + dM z–M. Instead of finding the roots we go through the via media of an all 

pass function.  
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(Refer Slide Time: 17:05 - 20:44) 

 

 
 

We construct, as the first step, an all pass function AM(z) with the same denominator DM(z); then 

the numerator shall be z–M DM(z–1), that is, the coefficients of the numerator shall be in reverse 

order. In other words, the numerator shall be dM + dM–1 z–1 + … + z–M. Now let us say pi; i = 1 to 

M, are the roots of DM(z). Then for stability we require |pi| less than 1. dM is the product of the 

roots, i.e. dM = continued product, i = 1 to M, pi. Since magnitude pi is less than 1, |dM| should be 

less than 1. 
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(Refer Slide Time: 19:01 - 21:51)  

 

 
 

You notice that dM = AM (∞). For reasons to be made clear later, I shall denote it by kM. They are 

identical at this stage but they are not so as we proceed ahead. Therefore for stability kM
2 must be 

less than 1. This is a necessary condition, but not a sufficient condition. Let us assume that AM(z) 

is stable with kM
2 < 1. The next step is to find an all pass with order M – 1 by using the 

relationship:  
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(Refer Slide Time: 22:32 - 23:52) 

 

 
 

AM–1(z) = z [AM(z) – kM]/[1 – kM AM(z)] which is the same as z [AM(z) – dM]/[1 – dM AM(z)]. Let 

us see what this transfer function is. We have arbitrarily put the subscript of A on the left hand 

side as M – 1; we will show that the order is indeed M – 1. Now, if I substitute for AM, then I can 

write this as AM – 1(z) = NM–1 (z)/DM–1(z) (again we shall show that the numerator as well as the 

denominator are also (M – 1)th degree polynomials) where NM–1 (z) = z [(dM + dM–1 z–1 + … + z–

M) – dM (1 + d1 z–1 + dM z–M)].  
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(Refer Slide Time: 24:01 - 28:20) 

 

 
 

(Refer Slide Time: 26:56 - 28:22) 

 

 
 

Note that dM cancels on carrying out the simplification; I get NM–1(z) = (dM–1 – dM d1) + (dM–2 – 

dMd2) z–1 +…+ (1 – dM
2) z–(M–1). So the numerator is indeed an M – 1th order polynomial in z–1. 

So our subscript M – 1 is justified. 
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(Refer Slide Time: 28:28 - 31:57)  

 

 
 

In a similar manner you can show the DM–1(z) = (1 – dM
2) + (d1 – dM dM–1) z–1 + … + (dM–1 – dM 

d1) × z–(M–1). Here dM z–M term cancels. Note that the coefficients of DM – 1 (z) are exactly those of 

NM–1 (z) but in reverse order. Hence we get an all pass function. In AM–1(z), if we follow the 

same discipline of having the constant term in the denominator is unity, then we will have to 

divide both numerator and denominator by 1 – dM
2. Therefore AM–1(z) shall be of the form, AM –

1(z) = [dM–1′ + dM–2′ z–1+…+ z–(M–1)]/[1+ d1′ z–1 + d2′ z–2 +…+ dM–1′ z–(M–1)]. It is indeed all pass 

function.  
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(Refer Slide Time: 32:04 - 35:57) 

 

 
 

The primed coefficients obey the relationship di′ = (di – dM dM–i)/(1– dM
2), i going from 1 to M – 

1. But we still have a long way to go before we accept this recurrence relation. Our assumption 

was that AM(z) is stable and kM
2 is less than 1. Now let us see whether AM–1(z) is stable or not. 

That is the question. Before we proceed, let us take a stock of this situation. We constructed 

AM(z) with the same denominator as that of the given transfer function to be tested. We have 

proved that if AM(z) is stable, then kM
2 is less than 1. Then we constructed AM –1(z) which is an 

all pass function of order M – 1. Now we have to find out whether AM–1 (z) is stable or not and 

for this we have to look at its poles which are the zeros of the denominator. The number of poles 

is M – 1. Choose an arbitrary pole qi; at which the denominator must be = 0, that is 1 – kM AM 

(qi) = 0 or AM(qi) = 1/kM. Therefore AM(qi) magnitude = 1/kM magnitude (kM could be positive or 

negative).  
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(Refer Slide Time: 36:00 - 38:33) 

 

 
 

But kM
2, by hypothesis, is less than 1, therefore |AM(qi)| must be greater than 1. We have also 

shown that if AM(z) is a stable all pass function, then its magnitude is greater than, equal to, or 

less than 1, for magnitude z less than, equal to, or greater than 1. Therefore if |AM(qi)| is greater 

than 1, then |qi| must be less than 1. Therefore magnitude qi is less than 1. What are qi‘s? They 

are poles of AM–1(z) and therefore AM–1(z) is stable, all pass. We have shown that if AM(z) is 

stable and kM
2 is less than 1 then AM–1(z) is a stable all pass function. Now we prove the reverse, 

that is, let AM–1(z) be a stable all pass and let kM
2 be less than 1; we have to prove AM(z) is a 

stable all pass function. Then these two will constitute necessity as well as sufficiency and that 

will constitute the core of the test that we are going to learn. What we are going to prove now is 

that if AM–1(z) is stable all pass and kM
2 is less than 1, then AM(z) is stable all pass. 
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(Refer Slide Time: 38:52 - 41:38)  

 

 
 

Now our defining relationship was AM–1(z) = [AM(z) – kM]/[1 – kM AM(z)]. Now what we have to 

do is to find AM in terms of AM–1(z), therefore cross multiply and simplify. The relationship is 

AM(z) = [kM + z–1 AM–1(z)]/[1 + kM z–1 AM–1(z)]. We have expressed AM now in terms of AM–1. 

Now AM(z) is all pass, by hypothesis. So all we have to prove is that AM(z) is stable under these 

conditions that is AM–1(z) is stable and kM
2 < 1. Let pi be a pole of AM(z), then 1 + kM pi

–1 AM–1 

(pi) = 0. Therefore pi
–1 AM–1(pi) = –1/kM. If I take the magnitudes on both sides then |pi

–1AM–1 

(pi)| = |1/kM| which is greater than 1. Therefore magnitude AM–1(pi) is greater than magnitude pi. 

Now AM–1(z) is a stable function; therefore.  
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(Refer Slide Time: 41:45 - 45:49)  

 

 
 

|AM–1(z)| is less than equal to 1 for mod z greater than equal to 1. If pi magnitude is greater than 

or equal to 1, then AM–1(pi) magnitude should be less than equal to 1. But our requirement is that 

|AM–1(pi)| should be greater than magnitude pi which should be greater than 1. These two are 

contradictory; therefore this cannot be allowed, and pi must be less than 1. The proof is by 

contradiction. To repeat, if magnitude pi is greater than or equal to 1 then AM–1 magnitude should 

be less than equal to 1. On the other hand, this relation shows that it should be greater than 

magnitude pi which means it should be greater than 1. These two are contradictory and therefore 

magnitude pi must be less than 1.  

 

In other words, we have proved that if AM–1, the derived function, is stable then the original 

function must also be stable. So we now state the core of the test; it says that; if AM(z) is stable 

all pass, then AM–1(z) is also stable all pass. This is necessary as well as sufficient. So the testing 

simply amounts to the following: if AM(z) is stable all pass, then kM
2 must be less than 1. Then 

we derive the lower order transfer function AM–1(z). Look at kM–1
2 = d′M–1

2, this should also be 

less than 1. Then by recursion, we form AM–2 and we test for kM–2
2; that should also be less than 

1 and we proceed up to the first order, that is k1
2 which should also be less than 1.  

 

 17 



(Refer Slide Time: 46:08 - 48:49) 

 

 
 

This is the stability test. It is very important that you understand the logic. It is one of the most 

beautiful theorems in DSP which shows how to avoid root finding. It is a little bit of exercise but 

with experience, you do not have to find all the transfer functions. All you have to find are the 

denominator polynomials. The coefficients are found by the relationship between di′ and di for 

the general order m – 1 from the previous one of order m (m = M to 2). So you find kM, kM–

1….k1 and test whether ki
2 < 1, 1 = M to 1. We take an example. Let H(z) = 1/(6 + 5z–1 + 4z–2 + 

3z–3 + 2z–4 + z–5); you are required to find whether this is stable or not.  
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(Refer Slide Time: 49:06 - 52:07) 

 

 
 

The numerator is irrelevant; it can be taken as 1 or any other function. The first thing you do is 

form an A5(z). Now you must be careful; intentionally I have taken the constant term in the 

denominator as 6; you must make this 1; so your numerator will be 1/6 but this need not be 

written because all we are concerned with are the denominator coefficients. You see that 

magnitude k5 = 1/6, so k5
2 is 1/36, less than 1. We take square because the last coefficient may 

come positive or negative. First condition is satisfied. If this was not so, then you need not carry 

out the test further. Then to find A4(z); let A4(z) denominator be 1 + d1′ z–1 + d2′  z–2 + d3′ z–3 + 

d4′ z–4; the numerator need not be constructed. Here our interest is only d4′ but to find the d4′, you 

have to go through finding all of them because the next one shall require the values of d1′, d2′ and 

d3′. So we use the formula di′ = (di – 1
6

d5– i)/(1 – 1
36

) = 36/35 [di – (d5–i/6)].  

 

 

 

 

 

 

 

 19 



(Refer Slide Time: 52:09 - 54:48)  

 

 
 

Using this, I get d1’ = 4/5, and similarly d2′ = 3/5, d3′ = 2/5 and d4′ = 1/5. Now therefore k4
2 

=1/25 which is less than 1. The test has not failed yet, so we are encouraged to go to the next 

step. That is we have to find A3(z); write D3(z) = 1 + d1″z–1 + d2″ z–2 + d3″ z–3. You are only 

concerned with the denominator, so you can ignore the numerator (which, if necessary, you can 

easily write by reversing the order of the coefficient di”). 
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(Refer Slide Time: 54:59 - 57:06)  

 

 
 

The formula now shall be di″ = (di′ – d′4 d′4–i)/(1 – 1/25) = [(25/24)[di′ – d4–i′/5]. Calculate the 

coefficients and it gives d1″ = 3/4, d2″ = ½, d3″ = ¼. Therefore k3
2 = 1/16, which is less than 1. 

Now, if we continue the test, then you get k2
2 = 1/9, less than one, and k1

2 = ¼, which is also less 

than 1. Hence the given H(z) is stable. If at any stage, ki
2 is equal to or greater than 1, no further 

testing is needed; you conclude that the given function is unstable.  
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(Refer Slide Time: 57:22 - 59:40) 

 

 
 

If you are designing a filter, then you better do the test twice or thrice so that you are absolutely 

sure that the given function is stable. The recurrence relation di′ = (di – dM dM–i)/(1 – dM
2) can be 

easily programmed to compute kis but you have to keep a track of the primes. If the order is high, 

you should not use many primes; instead use the subscripts a b c d and so on. If you have 

exhausted the alphabets, then you go to alpha, beta, gamma, delta etc. What the book says is; 

di
(M) but this can also be confusing sometimes; it may be taken as the power. We will stop here 

today. 
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