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This is the 20th lecture. We are approximately half way in the course; the usual number of 

lectures we project in a semester is 40. It may vary from 38 to 45 depending on the time-table. 

And today we will look more closely at digital processing of continuous time signals. We have 

been talking about this off and on; repetition is good so long as you repeat the truth, and so long 

as you consider a very important topic. Since continuous time signals are the ones that we 

encounter in practice, it is important to have a close examination of them and their digital 

processing. But before that, let us review what we did in the last lecture. We talked about the 

stability triangle for second order systems and we also gave, with proof, a general procedure for 

testing the stability of an arbitrary order IIR transfer function. This test was based on all pass 

filters.  

 

(Refer Slide Time: 02.58 to 03.49) 
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Stability test is a very important topic. From the given AM(z), we found AM–1(z) by using the 

algorithm AM–1(z) = z[–kM + AM(z)]/[1 – kM AM(z)]. It is a very important algorithm and we shall 

come back to this later when we discuss lattice realization of IIR transfer functions. Coming back 

to analog signals, as I had mentioned in the second lecture, an analog signal is also preferred 

now-a-days to be processed digitally because of the advantages of DSP and because DSP chips 

and hardware are very easily and economically available. For this, the analog input first has to be 

sampled and held.  

 

(Refer Slide Time: 04:32 to 05:45) 

 

 
 

The purpose of holding, I repeat, is to allow time for A to D conversion. Each sample, in order to 

be converted to a binary number, requires time and during the time of conversion, the sample 

must be held at the constant value. Then the output of the A to D converter is the digital signal 

x(n) which is processed by the digital processor, consisting of multipliers, delays and adders; 

what you get at the output is a desired signal y(n) which is then to be converted back to analog 

through the D to A converter. The D to A converter produces a staircase like waveform and 

therefore it contains high frequencies. So at the output end, you require an analog low pass filter 

which is also sometimes called a reconstruction filter. It reconstructs the analog signal and that is 
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what you get at the output. These are the basic blocks of Digital Signal Processing of an analog 

signal.  

 

(Refer Slide Time: 06:00 to 07:06)  

 

 
 

I had also projected this slide in the 2nd lecture showing an analog input and its sampled version, 

where the holding is obvious, and during this holding, the signal is converted to a digital signal. I 

use positive pulses for 1 and negative pulses for 0. There are many other ways of representation. 

After the processing, a typical output waveform is shown in the figure, which also consists of 1’s 

and 0’s. In order to convert it back to an analog signal, you require D to A converter where 

output is a staircase waveform, like the one you get after sample and hold of the input. Therefore 

you require to cutoff the high frequencies higher than a particular value. You require a low pass 

filter which limits the high frequencies and produces a desired analog output waveform. Now in 

both A to D converter and D to A converter, the cost and the accuracy of the converter depends 

on the number of bits that you use. Ideally, we would have loved to have an infinite number of 

bits, but in practice we have to limit ourselves to a finite number of bits, and this causes errors 

which I have not shown in that diagram. The errors are quantization errors and they have to be 

given the respect that is due to them; respect because we cannot avoid them, they are necessary 

evils. We must show them respect and contain them; we cannot completely eliminate them. This 

 3 



would not be our part of discussion in this course, this is taken up in the second course on DSP 

that we offer.  

 

(Refer Slide Time: 08:15 to 12:24) 

 

 
 

Now, xa(t), the analog signal, and the corresponding signal x(n) are shown to be connected by a 

double sided arrow. What does it mean? That means that the conversion should be one to one, 

i.e. if x(n) is given you can construct xa; if xa is given, of course, we can find x(n). In order that 

this is true we require the famous sampling theorem which states that the sampling must be done 

with constraint on the sampling frequency. We shall have a brief look at the sampling theorem. 

In fact we shall prove it in a very simple manner. In order that this is a one to one 

correspondence, we must sample xa(t) in an appropriate manner. Let an analog signal ga(t) be 

sampled at regular intervals of T. What you get at the output is ga(nt) which after quantization, 

i.e. after A to D conversion, becomes g(n). We said that since the mathematics of discrete time 

signals and digital signals is the same, we shall use them interchangeably. Therefore ga(nt) can 

be written as g(n), without any harm, which means that there is no quantization error. If we have 

to consider quantization error we shall distinguish between them in a statistical manner. That is, 

we cannot treat this as a deterministic phenomenon; we have to use statistical methods. But that, 

as I said, will form a topic in a second course on DSP.  
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Now let ga(t) have the Fourier Transform Ga(jΩ); Ω denotes the analog radian frequency, that is 

radians/s and Ω = 2πxF where F is the frequency in Hz, T is the sampling interval and therefore 

this is = 1/Fs where Fs is the sampling frequency. We must reserve ω for the main obsession of 

ours, namely Digital Signal Processing. This ω shall be reserved for normalized digital 

frequency. We have already said how it comes through. We shall say it again, because truth 

should be repeated as many times as possible; only then it gets imprinted in the mind. And we 

also know the g(n) can be represented in the frequency domain by its Fourier transform G(ejω) 

where this ω is now the normalized digital frequency. So we are interested in the 

interrelationship between Ga(jΩ) and G(ejω).  

 

(Refer Slide Time: 12:38 to 16:25) 

 

 
 

In order to do that we idealize the sampling waveform to a sequence of impulses. Actually, it is 

done by narrow rectangular pulses, pulses of short duration and large height. We can treat 

impulse as the limit of such waveforms. We cannot generate an impulse in the laboratory. All we 

can generate is a high amplitude pulse with short duration. The only distortion that occurs using 

rectangular pulses in place of impulses is that the spectrum is amplitude modulated by the 

spectrum of the rectangular pulse. And if it is small enough, then that modulation can be ignored 

and therefore there is not much of a deviation from practice. 
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But when you go from rectangular pulse to impulse, the mathematics is drastically simplified. 

For an engineer, whatever works is good enough a tool. So we idealize the sampling signal as 

summation δ(t – nT), where n goes from – ∞ to + ∞. This is the waveform by which we multiply 

ga(t) to get the sampled signal. Let us call the sampled signal as gs(t). And this you can write as 

∑(n = – ∞ to ∞) ga(nT) δ(t – nT). This becomes the sampled waveform. In other words, the 

sampled waveform is a sequence of impulses whose strengths are ga(nT). Strength means area of 

the impulse. And if I take the Fourier Transform of this, then I get Gs(jΩ) = summation (n = – ∞ 

to ∞) ga(nT) e–jΩnT. This is not a very useful form except for establishing the relationship 

between ω and Ω. You know G(ejω) is summation (n = – ∞ to ∞) g(n)e–jnω and these two must be 

identical. If we take ga(nT) = g(n), that is we ignore quantization error, then it means that ω = 

ΩT, as we have said earlier.  

 

In other words, the normalized digital frequency is ω = Ω/Fs and you can write this 2π F/Fs. I can 

also write this as 2π Ω/Ωs. So ω is a normalized digital frequency and is dimensionless; it is 

expressed in radian. Radian is a dimensionless quantity because it is a ratio of length to length, 

arc/radius. Ω is expressed in radians per second and because of the sampling requirement, by the 

sampling theorem, Ω should not exceed Ωs/2. In other words, Ω lies between zero and Ωs/2. If 

that is true, then ω must be < π. In other words, the range of ω is – π to + π. In analog, we had to 

go from – ∞ to + ∞, a doubly infinite scale; that length has been compressed, to our advantage, to 

– π to + π. So in a sense, DSP is a much simpler concept than ASP but it also has its own 

disadvantages. Now, in order to see how Gs(ejω) and Ga(jΩ) are related to each other, we make an 

alternative representation of the impulse train which samples the waveform.  
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(Refer Slide Time: 19:06 to 21:39) 

 

 
 

Let p(t) = ∑ δ(t – nT), n = – ∞ to + ∞. It is a periodic waveform and therefore can be expanded in 

Fourier series. So it can be expanded as summation ak ejk s tΩ , k = – infinity to + infinity, where 

the Fourier coefficient ak turns out very simply as = 1/T. Now if I use this representation, then 

my gs(t), the sampled waveform, becomes gs(t) = ga(nT) × p(t). When I represent p(t) by Fourier 

series, then my representation becomes (1/T) summation ga(nT) × ejk s tΩ , k goes from – ∞ to + ∞. 

I wrote ga(nT) because δ(t – nT) exists at t = nT only. I can also write this as ga(t) without any 

harm. 
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(Refer Slide Time: 21:45 to 23:10) 

 

 
 

Originally gs(t) = ga(t) × p(t) and I write this as ga(t) (1/T) ∑ (k = – ∞ to + ∞) ejk sΩ t. I can take 

ga(t) inside the summation. Now if I take Fourier Transform of both sides then I get Gs(jΩ) = 

(1/T) ∑ (k = – ∞ to + ∞) Ga(Ω – kΩs). Therefore this spectrum is a superposition of the base 

spectrum which occurs for k = 0 and its delayed versions occurring with centers at kΩs. That is, 

the same spectrum has shifted + Ωs on the right, – Ωs on the left, + 2Ωs on the right and – 2Ωs on 

the left, and so on. Can I write the argument of Ga as Ω + kΩs? Yes, we can, without changing 

anything. 
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(Refer Slide Time: 24:16 to 27:09) 

 

 
 

Consider a hypothetical base band spectrum of the shape of a triangle which goes from – Ωh to + 

Ωh, Ωh being < Ωs/2. In Gs(jΩ) we shall have repetition of this with centers at kΩs, k = ± 1, 

± 2,… as shown in the figure. The amplitude now becomes 1/T, because of the Fourier series 

expansion of p(t). You understand that the shape of the base band spectrum is retained only if Ωh 

is less than Ωs/2. So shape of Ga(jΩ) is retained if Ωh is < Ωs/2; in other words, Ωs > 2Ωh. Ωs can 

also be equal to 2Ωh. The shape shall be retained and this is the famous sampling theorem. Since 

spectrum and time domain signal are in one to one correspondence, if you can retain the 

spectrum you also retain the original signal. It can be retained only if the sampling frequency is 

at least twice the highest frequency content of the signal; this is the sampling theorem.  
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(Refer Slide Time: 27:21 to 29:17)  

 

 
 

On the other hand, if this is not the case, e.g. if we have Ωh greater Ωs/2, then we shall have 

overlaps, as shown in the figure. The composite spectrum would be distorted. There is no way 

that you can recover the original spectrum. This is the case of aliasing, and the resulting 

distortion is called aliasing distortion. We have taken a numerical example early in this course to 

show how aliasing distortion occurs, how a high frequency like 13 Hz poses as 7 Hz, and that is 

why the name aliasing was given. 

 

The fact of the matter is that aliasing distortion cannot be completely removed because no signal 

in practice is band limited. That is why you require analog low pass filter at the front end. The 

input analog signal is first filtered through a low pass filter and the purpose of that filter is to 

constrain the bandwidth, that is, you retain only the essential part of the spectrum, up to 3.4 KHz 

in digital telephone application, for example. Well, you are free to take it to even 20 KHz, but 

you also have to be prepared to pay the cost of a higher bandwidth. Essential bandwidth for 

intelligible speech is 3.4 KHz and therefore the low pass filter may have a cutoff at 4 KHz. But 

no low pass filter is ideal. You know, an ideal low pass filter is non-realizable and also unstable. 

Therefore some high frequencies, may be of very small magnitude, shall be retained. As long as 
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the aliasing distortion does not hamper with the main objective of recovering our original signal, 

as long as it does not distort to a large extent, it is acceptable.  

 

(Refer Slide Time: 30:48 to 32:35) 

 

 
 

In order to recover the original signal from the sampled one, we require a low pass filter whose 

magnitude response, |Ha(jΩ)|, should be = T for Ω < Ωc, the cutoff frequency; it should be 0 

ideally for Ω > Ωc, where Ωc itself must be restricted to be anywhere between Ωh and Ωs – Ωh. In 

practice, mathematics becomes simpler if Ωc is chosen Ωs/2, that is half the sampling frequency. 

Half the sampling frequency is also called the Nyquist frequency. This band – Ωs/2 to + Ωs/2 is 

also called the Nyquist band or base band. We shall refer to it by various names although they 

mean the same. Now in the time domain we take up a discussion on the characterization of the 

reconstruction filter. 
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(Refer Slide Time: 33:33 to 36:30) 

 

 
 

What we have is gs(t) = ∑ ga(t) δ(t – nT), n = – ∞ to + ∞. What should be the impulse response 

ha(t) of the LPF which will recover ga(t) from gs(t)? For the ideal filter, Ha(jΩ) = T for mod Ω < 

Ωc and Ωc itself is restricted to lie between Ωh and Ωs/2. Now ha(t) is obtained by the inverse 

Fourier Transform that is, [1/(2π)] integral (– ∞ to + ∞) Ha(jΩ) ejΩt dΩ. Instead of – ∞ to + ∞, we 

have to go from – Ωc to + Ωc. We have done this earlier, and we know that the resulting ha(t) is 

non-causal and unstable. Look at the problem from another point of view. We have the analog 

signal ga(t) whose Fourier Transform is Ga(jΩ). Thus ga(t) = 1
2π

 
∞

−∞∫  Ga(jΩ) ejΩt dΩ. Now 

Gs(jΩ), the spectrum of the sampled signal is given by Gs(jΩ) = 1
T

 
k

∞

=−∞
∑ Ga[j(Ω – kΩs)]; Ga(jΩ) 

= Ha(jΩ) Gs(jΩ) where Ha(jΩ) = T for – Ωs/2 ≤  Ω ≤  Ωs/2 and 0 otherwise. Also, Ωc = Ωs/2. 

Thus ga(t) = 
2
T
π

 s

s

/2

/2

Ω

−Ω∫  Gs(jΩ) ejΩt dΩ = 
2
T
π

 s

s

/2

/2

Ω

−Ω∫
n

∞

=−∞
∑  ga(nT) e–jΩnT ejΩt dΩ. Now interchange 

integration and summation to get ga(t) = 
n

∞

=−∞
∑  ga(nT) 

2
T
π

 s

s

/2

/2

Ω

−Ω∫ ejΩ(t – nT) dΩ. Now change the 

variable of integration from Ω to ϖ = ΩT. Then the limits will change to – π and + π. Carrying 

out this integration and simplifying we get the required formula ga(t) = 
n

∞

=−∞
∑ g(n) sin ( )t nT

T
π − / 
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( )[ ]t nT
T

π − where we have replaced ga(nT) by g(n). Unfortunately, n has to go from – ∞ to + ∞. 

Not only it is not hardware realizable, it is not software computable either because we have to go 

from – ∞ to + ∞.  

 

(Refer Slide Time: 36:43 to 40:17) 

 

 
 

If you are interested in the original signal as a function of time, usually one restricts this to a 

large enough value of n, may be – 300 to + 300. And you assume that this is a reasonable 

approximation to the given function. Is it logical? Yes, it is, because you know that ha(t) shall 

look like a sinc function; it has a main lobe and then goes on decreasing. Therefore if you go for 

a sufficiently large interval including the main lobe in the middle then you are reasonably sure 

that it would be a reasonable approximation.  

 

Reconstruction formula is an important formula and you should remember this. Now therefore 

our concern is with these two low pass filters; one is band constraining, and the other is a 

reconstruction filter after D to A conversion. How good these low pass filters are shall determine 

how good your DSP is for the processing of an analog signal. And in very simple industrial 

situations, for example in digital telephony or the digital stereo, you use simple RC low pass 

filters, to keep down the cost. But then there is a problem; the capacitance required is large, it 
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cannot be integrated. Integration of a very large capacitor requires a lot of silicon area and 

therefore you have a problem there. We would like to investigate how very good analog filters 

can be designed; the cost will be higher but we shall be able to avoid as much distortion as 

possible.  

 

(Refer Slide Time: 42:03 to 44:22) 

 

 
 

So, our next topic for study would be analog low pass filters. But before we do that, I would like 

to have a brief discussion about sampling of a band pass signal. So far we have talked about low 

pass signal that is, a signal having frequency from dc to high frequency Ωh. But suppose you 

have a band pass signal having frequencies from Ω1 (>0) to Ω2 (<∞). In reality, you cannot get a 

strictly band limited signal, but we assume this ideal situation to keep mathematics simple. 

 

Suppose we have a band pass signal having a flat envelope, so assumed for simplicity. How do 

we sample this? By sampling theorem, we require Ωs > = 2Ω2. it turns out that Ωs ≥  twice the 

bandwidth is good enough, that is Ωs ≥  2(Ω2 – Ω1) is good enough. The underlying reason is that 

although this may not satisfy the sampling theorem, sampling at this rate makes a repetition of 

the spectra in such a manner that one of these repetitions shall come within the base band. And 
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since the shape remains the same, we can do further processing in the base band only. We would 

not like to do a rigorous mathematical analysis but let me illustrate with a very simple example.  

  

(Refer Slide Time: 44:39 to 49:25)  

 

 
 

Suppose we have a band pass signal from 75 Hz to 80 Hz then we shall have the signal between 

– 80 Hz and – 75 Hz also. And let us sample this waveform at exactly 10 Hz. Obviously we 

should have required 160 Hz as the minimum by sampling theorem, but twice the bandwidth is 

10 Hz. For example, if we do the sampling at 10 Hz, then this same shape shall be repeated 

infinite number of times on the right and also on the left. There shall be bands between 10k ±  75 

and 10k ±  80, where k is an integer, positive or negative. Suppose k = 8, then 10k – 75 and 10k 

– 80 become 5 and 0Hz, respectively. 

 

Similarly, if you take k = 7, then you get – 5 to 0 and therefore this same spectrum comes within 

the base band. The shape remains the same; hence we do not have to process the signal beyond 5 

Hz. What would be the cut off frequency required for the low pass filter? It is 5 Hz and therefore 

you can do with a much less costly low pass filter. All processing is done at the base band, i.e. – 

5 Hz to + 5 Hz. We do not have to go to high frequencies if the sampling frequency is correct 

and distortion is contained.  
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Distortion will definitely occur if Ωs is less than twice the bandwidth. But if it is higher than 

twice the bandwidth, distortion should not occur. You draw the waveforms and verify for 

yourselves.  

 

The basic point that I am making here is that for a low pass signal, sampling theorem constrains 

the sampling frequency to be at least twice the highest frequency content. For a band pass signal 

the sampling frequency required is at least twice the bandwidth, which can be a much smaller 

frequency. Instead of 75 – 80 Hz, if we have 75 - 80 MHz, then you require 10 MHz as the 

sampling frequency. You do not have to go to 160 MHz. The higher the sampling frequency, the 

more complex is the hardware. In fact beyond 10 MHz sampling frequency, the present state of 

the art encounters difficult problems. The hardware is limited; also at such high frequencies, the 

parasitic capacitance plays nuisance. 

 

(Refer Slide Time: 51:14 to 56:36) 

 

 
 

Tomorrow we will have a problem session. Then the next few lectures would be on analog filter 

design. This will be a review; also I will not discuss everything in analog filter design. I will only 

talk about approximation of analog filters. And what is the motivation for discussing analog filter 

design in a DSP course? One is that we require analog filters at the transmitting end and also the 
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receiving end; therefore we should know about analog filters. More importantly, analog filter 

design forms the basis of IIR digital filter design. The techniques for analog filter design are well 

established. They are available in handbooks on filter design. Everything is known about analog 

filters. So we make that as the base and make a transformation to get a digital filter. These are 

the two reasons why we discuss analog filter design in some details.  

 

Now for the DSP of analog signals we require only two low pass filters; so it should suffice for 

us to consider only low pass filters. But if you want to design IIR digital filters of various kinds, 

like band stop, band pass or multi-band pass, you require other types of analog filters as well. It 

turns out that if you know how to design a low pass filter, then you know how to design any 

other kind of filter because low pass filter can be transformed to any other kind. Therefore, our 

focus shall be on analog low pass filter design only.  

 

In analog low pass filter design, also there are various techniques. The ones that are most 

important in practice are generated by two considerations; one is that the filter design must be 

simple. If you spend many hours in designing a filter, well, you have already hiked up the price 

of the product and it may not sell. For example, if you put 80 man hours, let us say 20 engineers 

for 4 hours each, then we have already spent money on their salary, the infrastructure and 

everything, therefore the product that you are going to design must incorporate this expenditure. 

There will be competitors who will design simpler filters in less time; so there has to be a 

compromise between simplicity of the filter design and satisfying the specs. The same specs can 

be satisfied by many different kinds of filters. And the filter that is the best or the optimum is the 

elliptic filter. But then elliptic filters are very difficult to design. They require much effort in 

design as compared to other filters.  

 

As compared to elliptic filters, Butterworth and Chebyshev types are much simpler to design. 

They can be designed from analytical formulas whereas elliptic filters, of necessity, require 

computational efforts; no generalization as in Butterworth and Chebyshev types are possible for 

elliptic filters. Even the tables that are given are given at discrete intervals of tolerances. On the 

other hand, Butterworth and Chebyshev can be designed analytically. That is, we have analytical 

formulas for computing the transfer functions of Butterworth and Chebyshev. And therefore 
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starting our Monday’s lecture, we shall discuss Butterworth and Chebyshev low pass filters only. 

We would make a kind of a review, because I assume that you have done this topic in some other 

course. 
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