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This is the 23rd lecture on DSP and our topic for today and a few more lectures to come will be 

analog filter design.  

 

(Refer Slide Time: 01:13 - 01:14) 

 

 
 

The last two sessions, namely lectures 22 and 21 were on problem solving on the topics of 

Fourier Transform, Discrete Fourier Transform, and Z transform. The previous lecture 20 was 

concerned with digital processing of analog signals. In particular, we examined the sampling 

theorem very closely, and also made some comments about band pass sampling. Band pass 

sampling requires a minimum sampling frequency equal to twice the bandwidth, not twice the 

highest frequency. The motivation for analog filter design are two–fold: one is that, in digital 

processing of analog signal, we do require low pass filters at the front end and also at the 
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receiving end. At the front end, we constrain the bandwidth so that the requirements of the 

sampling theorem are satisfied; at the far end, we get rid of high frequencies from digital to 

analog converter– that is the first motivation.  

 

(Refer Slide Time: 02:58 - 04:29)  

 

 
 

The second motivation is that our IIR design, one of the most important and useful filters in 

practice, is based on analog filter design using a transformation from s plane to z plane. The 

procedure is like this: in the first step we get the specifications of the IIR filter. You have to 

convert these into digital normalized frequency specs, convert them to an analog filter design 

specs, design the analog filter, and then go back to the z plane through the s to z transformation. 

So the motivation for analog filter design discussion in a DSP course is two–fold: one is we do 

require analog filters and the second is that a major part of digital filter design is based on 

transformation of analog filters. It is also a fact that a discussion of low pass filters is adequate 

because any low pass filter can be converted to any other kind of filter. As far as low pass filters 

are concerned, we shall concentrate on two types: Butterworth and Chebyshev.  
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In most of the practical cases, these two types suffice. The most optimum filter is the elliptic 

filter. But the problem in elliptic filter is that the design requires numerical computation in 

almost every case. It is very difficult to tabulate elliptic filters, and no elegant mathematical 

formulas are available. Therefore, in most cases digital signal processing engineers appeal either 

to the Butterworth or to the Chebyshev. Butterworth is the simplest but it may involve a little 

more cost than a Chebyshev filter; we shall discuss both of them. In LPF design, we also 

concentrate on only one kind of filter, viz. the so called all pole filters. That means the filter only 

has poles in the finite region of the s plane. Now, there cannot be a filter without zeros. The 

number of zeros and number of poles should be the same for any transfer function, so there are 

zeros but these zeros are all at infinity. So we shall consider the analog transfer function Ha(s) = 

constant divided by (sn + an–1+ sn–1…. + a1s + a0). In digital filter transfer function, we always 

write the constant term as unity; here, we shall write the coefficient of the highest power term as 

unity, because we shall write the pole factors as (s−pi). The continued product of such factors 

shall ensure that the highest power has a coefficient of 1. If we take the pole factors as s + pi then 

a0 will be the continued product of pi. Similarly what is a1? What shall be an–1?  
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Our aim therefore, is to find Ha(s) = a/D(s); where D(s) is of the form sn
 + an–1 sn–1 +…..+ a0 

where ai’s are chosen in such a manner that the given specifications are satisfied. Given 

specifications for a low pass filter are typically in terms of magnitude, whose maximum is 

normalized to 1. The specifications are: a pass band from 0 to Ωp (we use capital Ω for analog 

radian frequency); a stop band from Ωs to infinity (the difference between Ωp and Ωs is the 

transition band); a tolerance Δp in the pass band; and a tolerance Δs in the stop band. Typically, 

what will be specified are: Ωp, Ωs, Δp, and Δs. From these four specifications, you shall have to 

determine Ha(s) which satisfies these specifications. This satisfaction of specifications also has to 

be qualified. You may not be able to exactly satisfy these specifications. You can take liberties 

with the stop band but not with the pass band. Many of the textbooks say the contrary but the 

practical design experience is that if you take liberties with the pass band, you spend more man 

hours in designing the filter. The pass band is sacred; with the stop band you can take liberties. 

Liberties means you can over satisfy. For example, if the stop band starts earlier, you should be 

happy, because you over satisfy the stop band. So this is what our job is. 
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To this end, the Butterworth filter simply takes |Ha(jΩ)|2 = 1/[1 + (Ω/Ωc)2N]. The Nth order 

Butterworth filter has a magnitude squared function equal to this. Notice that at Ω = Ωc, |Ha|2 = 

1/2 irrespective of N. And wherever (magnitude)2 = 1/2 is the frequency at which 3dB 

attenuation occurs; therefore Ωc is called the 3dB bandwidth of the Butterworth filter. Notice that 

the (magnitude)2 plot versus Ω goes down monotonically. There are no maxima or minima. If we 

plot |Ha(jΩ)|, then the value at dc is 1 and the value at Ωc = 1/√2 irrespective of the value of N. 

And therefore if we plot for various values of N, we will get plots like those shown on the slide 

where N is increasing in the left direction. 
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That is, as you increase the order of the filter, all of them have the same originating point Ω = 0 

where the value is 1; all of them have the same end of the pass band at the 3dB frequency, Ωc, 

where the value is 1/√2. Obviously, the error defined as 1–|Ha(jΩ)| decreases as the order 

increases. By error, we mean error in the pass band as well as in the stop band. As N increases, 

the cutoff slope increases and therefore the edge of the stop band, Ωs, decreases. What you do is 

to determine the order N required for meeting the given specifications. If Ωc is known, then all 

you have to do is to find the order that is required to satisfy the given stop band specifications. 

You should not unnecessarily over satisfy the specs by choosing a higher order. You should 

choose only the minimum possible order because if you make a mass manufacture, as most of 

the industries do, every increase in order requires an increase in cost. The industry usually sticks 

to the minimum possible, the guiding principle being how much less can I spend to be able to 

earn how much more.  
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You also notice that, this monotonic |Ha( jΩ)| can be written as, [1 + ( Ω/Ωc)2N]–1/2 and if we 

expand this then you get 1– (1/2) (Ω/Ωc)2N + higher powers of (Ω/Ωc)2N. And you see that if you 

differentiate the magnitude with respect to Ω and put Ω = 0, obviously the result will be equal to 

0. The next differential coefficient shall also be equal to 0 and this will continue for the i–th 

differential coefficient where i goes from 1 to 2N – 1. The 2N–th differentiation will give you a 

constant; you cannot think of any other function which will have 2N – 1 differentiation vanishing 

at Ω = 0. If one differential coefficient vanishes for a function at a particular point, we say the 

function is flat at that point. It is either a maximum or a minimum and we say that the function is 

flat at this point. The Butterworth function has the largest possible number of derivatives 

vanishing at Ω = 0 and therefore the function is called “maximally flat”. The order of flatness 

cannot be more than 2N – 1 at Ω = 0. The next question is that of the asymptotic behavior of the 

Butterworth function.  
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Asymptotic behavior is related to the characteristic when Ω goes to ∞. Now |Ha (j Ω)| = 1/√(1 + 

(Ω/Ωc)2N). If we take the magnitude when Ω goes to ∞, |Ha| becomes (Ω/Ωc)–N. If we take the log 

of this, that is, we want to express this in decibels then you get 20 log of |Ha| to the base 10, as 

the frequency goes to ∞, going to – 20N log of Ω/Ωc to the base 10. 
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In other words, as Ω increases by a factor of 10 the characteristic goes down by 20N dB. It is 

expressed in decibels and therefore the asymptotic slope = − 20 N dB/decade. Ω increasing or 

decreasing by a factor of 2 means an octave, and the characteristic goes down approximately by 

6N decibel/octave. This should have been 6.0206 because log2 = 0.30103. But for engineering 

purposes, we take it as the round figure 6N. It does not make much of a difference. The slope is 

6N dB/octave where octave is doubling or halving the frequency. This makes it clear that if we 

know the asymptotic slope, then you know the order. If you are required to design a Butterworth 

filter with 18dB/octave asymptotic slope, then you require a third order filter. But this is not the 

way to specify a Butterworth filter. As I said, specifications will always be in the form of Δp, Δs, 

Ωp and Ωs. This is how a required filter is specified in practice.  
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Knowing |Ha(jΩ)|2 as 1/(1 + (Ω/Ωc)2N) is not adequate for designing the filter; we require the 

transfer function Ha(s) in the s plane. The process of analytic continuation says that Ha(s) Ha(– s) 

= 1/1 + (– s2/Ωc
2)N. It is obvious that I can go from s to jΩ by putting s = jΩ. The converse is also 

possible only if the function is analytic, that is, we are looking for Ha(s) which has a finite 

number of singularities and the function is differentiable in the total s plane except at the 

singularities; that is the definition of an analytic function, and Ha(s) satisfies the conditions of 

analyticity. Therefore what we require now, is to find the function Ha(s). This requires that we 

find all the factors of 1 + (–s2/Ωc
2)N, and assign half of them to Ha(s) and the other half to the 

Ha(– s).  

 

The factors that we assign to Ha(s) must be such that their zeros are in the left half of the s plane. 

In the z plane they were inside the unit circle; in the s plane they must be in the left half, for 

Ha(s) to become a stable transfer function. And therefore we must find all the roots and then 

make assignments. Well, the poles obviously satisfy (s2/Ωc
2)N = – 1. At the poles, the 

denominator should be equal to 0; – 1 you can write as ej(2k–1)π in general. k will go from 1 to N 

because now in this form we are finding the values of s2 and the total function shall have 2N 

number of roots.  
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So s2 = − Ωc
2 ej(2k –1)π/N. And if I take the square root of this then s = ±  j Ωc ej(2k –1)π/(2N) where k 

goes from 1 to N because plus sign takes care of N roots; minus sign takes care of the other N 

roots. It is now very easy to show that the plus sign corresponds to left half plane poles. Let us 

call these as sk; then sk = j Ωc [cos (2k – 1)π/(2N) + j sin (2k – 1)π/(2N)] and if I multiply by j 

then I get Ωc [– sin (2k – 1)π/(2N) + j cos (2k – 1)(π/2N)]. Obviously one observation that can be 

made from here itself is that all poles are on a circle of radius Ωc because magnitude sk = Ωc. 

Second, you look at the real part with the positive sign; the real part is at – Ωc [sin (2k – 

1)π/(2N)] and k goes from 1 to N. If k goes from 1 to N we start from π/2N and end up in (2N – 

1) π/(2N) that is less than π by an angle π by 2N. So we remain in the upper semi circle, first and 

the second quadrants; in the first and second quadrants, sine is positive. Therefore the real part of 

sk with k = 1 to N is always negative which means that these are the poles in the left half plane. 

So these are our required poles.  
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Let us take a few examples. Let us normalize the pole as sk/Ωc. Now I shall have sk/Ωc = – sin 

(2k – 1)π/(2N) + j cos (2k – 1)π/(2N), k = 1 to N. Suppose I have the first order, N = 1; then 

since sin(π/2) is 1, and cosine(π/2) = 0, the root must be at − Ωc and therefore Ha(s), the transfer 

function is simply Ωc/(s + Ωc). You remember, for the transfer function the magnitude is 1 at Ω = 

0. This is why we have Ωc in the numerator. Take N = 2; then s1/Ωc = − sin π/4 + j cos π/4. If I 

know that a pole is complex, its conjugate must also be present. Since we are only taking about 

second order transfer function, everything is found. Our Ha(s) = 1/{[(s/Ωc) + (1/√2) + (j/√2)] 

[(s/Ωc) + (1/√2) – (j/√2)]}.  
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We have written the transfer function in terms of s/Ωc; multiplying both numerator and 

denominator we shall have Ha(s) = Ωc
2/(s2 + √2 Ωcs + Ωc

2). Ha(s) becomes 1/(s2 + √2s + 1) if Ωc 

is normalized to 1. The denominator is called the second order Butterworth polynomial. Now, if 

we go to the third order, we have N = 3 and it is convenient to normalize Ωc to unity. Later on, if 

we require Ωc ≠ 1 then we shall simply replace s by s/Ωc. 
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(Refer Slide Time: 33:30 - 35:15) 

 

 
 

If Ωc = 1 and N = 3, where would be the poles? Obviously, one is at − 1 and the other two are s2, 

3 = – sin(π/6) ±  j cos(π/6), that is at − 1/2 ±  j√3/2 and therefore Ha(s) shall be equal to 1/[(s + 1) 

((s + ½)2 + ¾)]. There are two factors: s + (1/2) + j (√3/2) and the other factor is s + (½) – 

j(√3/2), the product of which is s2 + s + 1. The third order Butterworth transfer function is 

therefore 1/[(s + 1) (s2 + s + 1)] = 1/(s3 + 2s2 + 2s + 1).  
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(Refer Slide Time: 35:23 - 38:40) 

 

 
 

If Ωc ≠ 1 then we have to modify the denominator of Ha(s) as (s3 + 2Ωc s2 + 2Ωc
2 s + Ωc

3) while 

its numerator would be (Ωc)3, that is, we have to replace s by s/Ωc. Now this should convince you 

that if the order of the Butterworth filter is odd, then there must a real pole at s = − Ωc. All other 

poles are complex. On the other hand, if N is even, then all poles are complex conjugates, there 

are no real poles. In case the poles are complex conjugate and let us say for simplicity Ωc = 1, 

then two complex poles shall give rise to a quadratic, as the example of the third order case 

shows. In general, the quadratic polynomial would be {s + sin [(2k – 1)π/(2N)]}2 + cos2[2(k – 

1)π/(2N)] = s2 + 2sin[(2k – 1)π/(2N)] s + 1. Therefore one need not even find the location of the 

poles; if one knows the order and Ωc, one may write the transfer function directly. All that you 

have to compute is this factor 2 sin [(2k – 1)π/(2N)]. Let us give the name bk to this; then the 

quadratic factor is s2 + bk s + 1.  
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We must not lose sight of Ωc, as Ωc in all practical cases would not be one radian per second; it 

will be something else, may be 500 π or 100 π radians/sec, depending on your 3dB frequency. 

So, in general Ha(s) would be of the form Ωc
N divided by the continued product of (s2 + bk Ωcs + 

Ωc
2), where k shall go from 1 to N/2, if N is even. There should be N number of complex poles 

and complex poles occur in conjugate pairs. There are only N/2 conjugate pairs, so the continued 

product is from k = 1 to N/2. On the other hand, if N is odd, then the denominator shall be (s + 

Ωc) multiplied by the continued product of (s2 + bk Ωcs + Ωc
2), where now k will go from 1 to (N 

– 1)/2. The numerator shall still be Ωc
N. You see how simple it is to design a Butterworth filter, 

once you know Ωc. You just have to compute the bks; then you get the transfer function directly. 

You do not have to compute the poles, only the sine factors.  
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Let us take an example of N = 4; also let Ωc ≠ 1. We can directly write Ha(s) as Ωc
4 divided by 

the two factors (s2 + b1 Ωcs + Ωc
2) (s2 + b2 Ωcs + Ωc

2) where b1 = 2sin π/8 and this comes out as 

0.76537. If this filter is going to be used for design an IIR digital filter, then you better take care 

of these constants to as many decimal places as you can. Do not make truncations unnecessarily. 

Quantization error adds further to the errors and may make the filter unacceptable. b2 shall be 

twice sine 3π/8, and this comes as 1.8476. So you know the total transfer function.  
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If N = 5 and Ωc = 1 then you can write the transfer function directly as 1/[(s + 1) (s2 + b1 s + 1) 

(s2 + b2 s + 1)]. I am going back and forth between Ωc and 1 to familiarize you with the actual 

procedure. Here b1 = 2 sin (π/10). Once you get some experience with this you can even forget 

2(k – 1) π/(2N). b1 comes out as 0.61803 and b2 is twice sine (3π/10), and this comes as 1.17557. 

How does one determine the order N? The two things that are needed for Butterworth filter are 

Ωc and N. 
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Suppose Ωc is given, you have to find the order. How do you do that? You look at Ωs and the 

stop band tolerance Δs. Then I get (Ωs/Ωc)2N = Δs–2 − 1. This gives N = half log10((1/Δs–2) – 

1)/log10(Ωs/Ωc).  

 

Now there is no guarantee that this quantity on the right shall be an integer whereas N is required 

to be an integer and therefore we shall choose an integer which is higher than this, but closest to 

this. If this comes out as 6.7 then you have to use 7. Do not go for 8 because that unnecessarily 

increases the cost of the filter. So you choose N greater than or equal to this. If N is greater than 

the right hand side, then obviously the actual Ωs that you shall realize will be less than the 

specified Ωs. In other words, the stop band is shifted to the left and you have over–satisfied the 

specs, which is a welcome feature. But you must not play with the pass band; pass band is sacred 

and it cannot be touched. Now this is a situation where Ωc was specified.  
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In general Ωc shall not be specified; what shall be specified is Δp, the minimum possible value in 

the pass band extending from 0 to Ωp; Δp is not the tolerance in the pass band; tolerance in the 

pass band is 1 – Δp. So how do you determine N? Now you have to determine two things Ωc and 

N. If the tolerance is 3dB, then you know Δp is 0.707 and Ωp is the same as Ωc. But, for general 

specification, you write the two conditions that is 1 + (Ωp/Ωc)2N is equal to Δp–2 and 1 + 

(Ωs/Ωc)2N = Δs–2.  
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Now, (Ωs/Ωc)2N is Δs–2 – 1. In a similar manner (Ωp/Ωc)2N shall be Δp–2 – 1. And now we take the 

ratio and get (Ωs/Ωp)2N = (Δs–2 – 1)/(Δp–2 – 1). And therefore N shall be 1/2 log10 [(Δs–2 – 1)/(Δp–

2 – 1)]/log10 (Ωs/Ωp). This is the general formula for determining the order of the Butterworth 

filter. And in order to emphasize that N has to be an integer, N should be greater than or equal to 

this. Once you obtain N, the next step is to obtain Ωc. There are two equations which compete 

with each other for determining Ωc; which one should we use? We should use the formula with 

Ωp because the pass band is sacred. I must satisfy the pass band tolerance exactly. I can over 

satisfy the stop band tolerance. So whatever value of N you have obtained, you substitute this in 

1/[1 + (Ωp/Ωc)]2N = Δp2 and from this you find Ωc. 
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Then if N is greater than half of ratio of two logs, then the realized Ωs shall be less than the 

specified Ωs. In other words, you are bringing the stop band in the transition band and that is a 

welcome feature. Now Δp and Δs are usually specified in decibels. If they are specified in 

decibels, then you have to convert them into ratios. Suppose Δp corresponds to Ap decibels, and 

Δs corresponds to As in decibels, then 20 log10 Δp = − Ap because 1 corresponds to 0 decibel, 

anything below that must be negative and therefore Δp = /2010 pA− . In a similar manner Δs 

= /2010 sA− . So you shall have to convert the decibel specifications into ratios and then find out N.  
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