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This is the 24th lecture on DSP and our topic today is Analog Chebyshev Low Pass Filter Design. 

In the last lecture, the 23rd, we talked about the Butterworth filter. We first talked about the 

motivation for Analog Filter Design in a course on DSP and then we said we only discuss Low 

Pass Filter because all other kinds of filters can be obtained by transformation of a low pass 

filter. Then we discussed the characteristics of Butterworth. Butterworth is monotonic; it is 

maximally flat at omega = 0. Its asymptotic slope is 6N decibels per octave and 20N decibels per 

decade; this is true about any all pole low pass filter.  

 

(Refer Slide Time: 02:11 to 04:19) 

 

 
 

Then we discussed the pole locations. The pole locations were on a circle of radius capital 

omegac in the s plane and the pole factors were s + omegac, and a continued product of (s2 + bk 
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omegac s + omegac
2) if the order N is odd, with k = 1 to (N – 1)/2. Then the transfer function 

would be of the form omega N
c divided by the pole factors. If N is even, then we shall have 

omega N
c  divided by continued product (k = 1 to (N/2)) (s2 + bk omegac s + omegac

2) where this 

constant bk = 2 sin (2k – 1) pi/(2N). All that you have to determine for Butterworth are omegac 

and N.  

 

(Refer Slide Time: 04:26 to 05:57) 

 

 
 

In general, N shall be determined from delta p, omegap, delta s and omegas. And N is greater 

than or equal to the formula that we derived, which is 2 log10 (omegas/omegap) in the 

denominator and in the numerator, we have log10[((1/delta s)2 – 1)/((1/delta p)2 – 1)]. For reasons 

to be made clear a little later, we can absorb the factor 2 in the denominator by introducing a 

square root sign after log10 in the numerator. This is NB. We shall refer to it later also. It is a ratio 

of two logs and one of them contains the tolerances in the Pass Band and Stop Band and the 

other contains the Stop Band to Pass Band edge ratio.  
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(Refer Slide Time: 06:08 to 7:46)  

 

 
 

Let us take an example. Let omegac = 1000 pi and omegas = 2000 pi. Attenuation in Stop Band 

should be greater than or equal to 40dB, which gives rise to delta s = 10–2. As calculated from the 

formula, NB is greater than or equal to 6.64. Therefore, the order of the Butterworth filter needed 

is NB = 7. With this, obviously omegas realized would be lower than that specified. We do not 

have to find omegac. Omegac is already given. Otherwise, if omegac was not given, then what 

would you have done? You will have to find omegac. Why do you find omegac, what is the need? 

The transfer function is expressed in terms of omegac; hence omegac has to be found out.  
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(Refer Slide Time: 08:23 to 10:00) 

 

 
 

If NB = 7 then obviously the realized omegas, that is the new edge of the Stop Band, omegas 

prime, would be given by 1/(1 + omegas prime divided by omegac)2N equal to (delta s)2 = (10–4) 

and if you solve this, then the omegas prime comes out to be 1930.6 pi instead of 2000 pi. So it 

occurs earlier and one should be happy about it because you have over satisfied the Stop Band. 

Now you can find Ha(s) as omegac
7/[(s + omegac) (s2 + b1 omegacs + omegac

2) (s2 + b2 omega c s 

+ omegac
2) (s2 + b3 omega c s + omegac

2)]; you have to find out b1, b2 and b3.  
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(Refer Slide Time: 10:10 to 10:46) 

 

 
 

Here b1 = 2 sin (pi/14), b2 = 2 sin (3 pi/14) and b3 = 2sin (5 pi/14). After a while you will be able 

to write the transfer function almost blindly. It can be very easily programmed, given the order 

and omegac. Now let us go to Chebyshev.  

 

(Refer Slide Time: 10:57 to 15:28)  
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The actual spelling of Chebyshev is quite complicated; this form, I guess is the American 

simplification. Actual spelling is T sc h y b e sc h e f f. Chebyshev LPF has the distinctive 

characteristic that if elliptic filters are excluded, then Chebyshev LPF is the Optimum One. 

Chebyshev LPF is optimum in the sense that for given order, omegap, and tolerances, the 

Chebyshev LPF, of all all-pole filters that are possible, will give the narrowest transition band. It 

can also be qualified or characterized in alternative ways.  

 

For example, if N, transition band and delta p are specified it will give the lowest delta s. The 

characteristic is that instead of monotonicity as in Butterworth filter, it ripples in the Pass Band. 

That is, the characteristic is something like the one shown in the figure. I have intentionally not 

shown the value at omega = 0 because it differs according to the evenness or oddness of the 

order. Not only it ripples but also it executes equal ripples in the Pass Band; it is monotonic in 

the Stop Band. So unlike Butterworth, it is not a monotonic filter; it has maxima and minima but 

between two limits. Equal ripple is sometimes abbreviated as Equi-ripple. Thus Chebyshev LPF 

is Equi-ripple in the Pass Band and monotonic in the Stop Band. 

 

There can also be another type of Chebyshev, that is, we can reverse the position of the ripples; 

we can have monotonic in the Pass Band and equal ripple in the Stop Band. This type is called 

the inverse Chebyshev filter. It is also sometimes called a type two Filter, while the previous type 

is called type one Chebyshev. Obviously type one is the preferred filter because once we have 

specified delta s and satisfied this, one should not bother whether there are ripples or not in the 

stop band. I repeat: Type one Chebyshev is the most favored optimum Low Pass Filter provided 

you exclude Elliptic Filters from your field of view.  
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(Refer Slide Time: 15:34 to 18:22) 

 

 
 

The magnitude function of a Chebyshev filter is given by A/square root of 1 + ϵ2(epsilon square, 

epsilon is a constant, A is a constant) CN
2 (N is the order) (omega/omegap). This is the form of 

the magnitude function. CN(x) where x = omega/omegap is the Chebyshev polynomial and is 

defined as cosine(N cosine–1 x) for mod x less than one, that is x between – 1 and + 1. And when 

│x│exceeds 1 cosine loses its meaning and is replaced by cosh; this is a natural transition. 

Cos(N cos–1x) becomes Cosh (N cosh –1x) for mod x greater than 1.  

 

Now you know that cosine function is oscillatory and this is what gives rise to oscillations or 

ripples in the Pass Band. For mod x less than 1, that is omega between – omegap and + omegap 

there shall be oscillations. Since the magnitude function is even, it suffices to consider the range 

0 to omegap. For mod x greater than 1, that is omega greater than omegap cosh function is 

monotonic and therefore the magnitude characteristic shall be monotonic beyond the Pass Band. 

In the Pass Band it will be oscillatory; beyond the Pass Band, it shall be monotonic which is the 

characteristic of the Chebyshev filter. Now let us get familiarized with Chebyshev polynomials. 

Notice that C0 (x) is simply = 1. C1(x), cosine of cosine inverse x, obviously is = x.  
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(Refer Slide Time: 18:27 to 19:20)  

 

 
 

To find C2(x), let us put cosine–1 x = theta. Then cosine theta = x and therefore C2(x) would be 

cosine (2theta), that is equal to 2x2 – 1. Similarly C3(x) which is cosine of 3 theta is = 4 cosine3 

theta – 3 cosine theta and therefore C3(x) = 4x3 – 3x. Does that mean that we shall have to 

remember all the multiple angle formulas? No, we can find a recurrence relationship.  

 

(Refer Slide Time: 19:31 to 23:03)   
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The recurrence relationship comes from this: cosine (N theta) + cosine (N – 2 theta) = 2 cos theta 

cos(N – 1) theta. Since cosine N theta is CN(x), we have CN(x) = 2x CN – 1 (x) – CN – 2 (x). For 

example, if N is 3, you get C3(x) = 2x C2 (x) – C1(x) = 4x3 – 3x. This agrees with the previous 

result. In a similar way you can find out C4(x) as 2x(4x3 – 3x) – (2x2 – 1), that is equal to 8x4 – 

8x2 + 1. Also, as already indicated, C0(x) = 1, C1(x) = x, and C2(x) = 2x2 – 1.  

 

You notice a pattern: if the order is odd then the polynomial itself is odd. C1(x) = x,C3(x) = 4x3 – 

3x and so on. On the other hand, if the order is even, then the polynomial is also even. So it is 1, 

2x2 – 1, and 8x4 – 8x2 + 1 for N = 0, 2 and 4 respectively. And you notice that CN(0) has to be 

equal to 0 if N is odd because CN(x) is odd polynomial. And CN(0) is equal to + or – 1 if N is 

even. C2 (0) = – 1 but C4(0) is + 1. So it is either – 1 or + 1. So we learnt two things: one is, if N 

is even the polynomial is even and if N is odd, the polynomial is odd and because of even or odd 

characteristic the value at x = 0 is either 0 or ±  1 depending on whether N is odd or even.  

 

(Refer Slide Time: 23:32 to 27:01)  

 

 
 

Now a picture is a better indicator of these properties. Draw this picture. Draw a square and 

divide into four equal parts. We plot CN(x) in the vertical direction and x in the horizontal 

direction.  
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The plots of C0, C1, C2, C3 and C4 are shown. When x exceeds 1 or x goes below – 1, it is 

monotonic. Now, the equal ripple oscillation is obvious from x = – 1 to + 1. Our concern is 

between 0 and + 1. We only consider positive frequencies; and 0 for x shall correspond to capital 

omega = 0; + 1 for x shall correspond to capital omega = omegap.  

 

(Refer Slide Time: 27:10 to 29:10)  

 

 
 

Therefore if we consider the transfer function, then Ha (j omega) magnitude = A/square root of [1 

+ ϵ2 CN
2(omega/omegap)]. Thus the maximum Ha(j omega) magnitude shall obviously lie 

between two limits for mod omega less than omegap. We are considering only positive 

frequencies: 0 less than or equal to omega less than or equal to omegap. In this range because CN 

is oscillating, the minimum value of magnitude shall be A/square root (1 + ϵ2). When CN = ±  1 

and if A is normalized to 1, then the magnitude shall lie between 1 when CN = 0 and this value. 

Now, let us draw a few typical magnitude characteristics starting with N = 1.  
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(Refer Slide Time: 29:12 to 35:10) 

 

  
 

Clearly, if N is odd, then at omega = 0 the magnitude shall be 1. If N is even, then the magnitude 

is 1/square root of (1 + ϵ2) at omega = 0. For the first order filter, Butterworth and Chebyshev are 

the same because the transfer function is omegap/(s + omegap).  

 

Notice that at omega = omegap, CN
2(1) = 1. And therefore, irrespective of the order, all 

characteristics must pass through the point [omegap, 1/square root of (1 + ϵ2)] exactly like 

Butterworth filters. Omegap is the edge of the Pass Band. Unlike Butterworth, the value at omega 

= omegap is not 1/root 2. It is equal to 1/root 2 if ϵ = 1. The characteristics clearly show that the 

number of peaks and dips in the pass band is exactly equal to the order; considering omega = 0 

as either a peak or a dip. If the function is even, then at omega = 0, there is a minimum; on the 

other hand, if N is odd, then at omega = 0, there is a maximum.  

 

I repeat: the number of maxima and minima in the Pass Band is equal to N, the order of the filter. 

And if N is even then starting point is 1/square root of (1 + ϵ2). If N is odd then the starting point 

is 1. Starting point means at omega = 0. If you remember this then we can proceed further. If 

someone asks you to find out the 3dB frequency of a Chebyshev filter, you can; 3dB frequency is 
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a very important factor in Butterworth filter, it is not so in Chebyshev. In Chebyshev, omegap 

and ϵ are arbitrary.  

 

(Refer Slide Time: 35:18 to 36:45)  

 

 
 

To find out the 3dB frequency, omega3, then obviously the defining equation would be 1 + ϵ2 

CN
2 (omega3/omegap) = 2 and therefore ϵ2 CN

2 (omega3/omegap) = 1. Therefore CN 

(omega3/omegap) = 1/ϵ. I can take plus or minus sign before 1/ϵ; then I will find + omega3 and – 

omega3. Let us take plus sign; now 1/ϵ shall be greater than 1. Epsilon normally is a very small 

quantity, 1/ϵ is greater than 1 and therefore for CN I should use cosh.  

 

 

 

 

 

 

 

 

 

 12 



(Refer Slide Time: 36:54 to 38:23) 

 

 
 

So cosh[N cosh–1 omega3/omegap] = 1/ϵ from which you can find out the expression for omega3; 

that should be equal to omegap [(1/N)Cosh–1 1/ϵ]; this is the expression for the 3dB frequency. 

Obviously this will be greater than omegap. if ϵ < 1. Next, the question of Poles and Pole Factors: 

obviously, the poles will satisfy 1 + CN
2 [(s/j) omegap] = 0 and this turns out to be a lot of 

complex algebra which we shall not go into but the end result is that the poles are located on an 

ellipse, instead of a circle as in the Butterworth case.  

 

 

 

 

 

 

 

 

 

 

 

 13 



(Refer Slide Time: 38:28 to 41:00) 

 

 
 

The pole locations are such that finally the denominator of the transfer function Ha(s) has a factor 

of s + omegap C0 (in the Butterworth case we had simply s + omegac) when the order is odd. And 

the other factors are different from Butterworth case; we shall illustrate them a little later) 

omegaps + Ck omegap
2). These are the factors in the denominator. In other words, when N is odd, 

Ha(s) denominator is (s + omegap C0) multiplied by continued product (s2 + bk omegap s + Ck 

omegap
2), k = 1 to (N – 1)/2 and the numerator shall be omegap

N C0 × continued product of Ck, k 

= 1 to (N – 1)/2. We have brought all the denominator constants in the numerator. So the dc 

value of this transfer function would be = 1. 
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(Refer Slide Time: 41:06 to 43:19)  

 

 
 

If the order N is even, then Ha(s) denominator shall be continued product (s2 + bk omegaps + Ck 

omegap
2), k = 1 to N/2 and in the numerator we shall get omegap

N, then continued product Ck, k 

= 1 to N/2, multiplied by 1/square root of (1 + ϵ2), to make the d.c. value equal to the last term. If 

the order is odd, the magnitude starts from 1. If the order is even, the magnitude starts from 

1/square root of (1 + ϵ2). 
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(Refer Slide Time: 43:22- 46:30) 

 

 
 

Now, it is time to tell you what these bk‘s and Ck’s are. We rename C0 as yN, to indicate that it 

depends on the order of the filter. Then CK = yN
2 + cosine2[(2k – 1) π/(2N)]. Recall that this 

angle, (2k – 1)pi/(2N) is the Butterworth angle. bK in Butterworth case was 2sine [(2k – 

1)pi/(2N)]. In the Chebyshev case, it is multiplied by yN. The factor yN comes because of the 

shrinking of the circle into an ellipse. It is as if you press the circle from two sides and it 

elongates and shrinks in the middle. Finally what is yN? This requires a little bit more calculation 

but it is not too difficult. yN = ½ {[square root of (1 + 1/ϵ2) + (1/ϵ)] to the power 1/N – ½ [square 

root of (1 + 1/ϵ2) + 1/ϵ]–1/N}. So given N and ϵ you can find out the transfer function. N and 

epsilon (ϵ) are the only two parameters of a Chebyshev filter. Once you know them you can find 

out the transfer function. 
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(Refer Slide Time: 46:47 – 48:08) 

 

 
 

As an example, suppose capital N = 4 and ϵ = 0.8; then the calculation proceeds like this (you 

can also make a small program). First you find out yN, yN = ½{[square root of (1 + (1/0.64)) + 

(1/0.8)]1/4 – [square root of (1 + (1/0.64)) + (1/0.8)]–1/4}. This works out to 0.26490. This 0 at the 

end is significant. I could have omitted this but it shows that I have calculated it correct up to 

five places of decimals.  
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(Refer Slide Time: 48:13 - 49:38) 

 

 
 

This is yN, and yN is the same as C0. Now you have to find out 2 b’s and 2C’s. b1 = 2y4 (y4 is 

already calculated) sine of pi/8 and that comes out as 0.20275, C1 = y4
2 + cosine2 pi/8 and that 

calculates as 0.92373. At least go up to five places of decimals. b2 = 2y4 sine 3pi/8 and that 

comes out as 0.48947 and C2 = y4
2 + cosine2 3pi/8 and that comes out as 0.21662.  

 

(Refer Slide Time: 49:45 - 51:05) 
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So the problem now is to find N and ϵ from the given specs. Well, the specs are: delta p, omegap, 

omegas and delta s. If delta p is known then you know what is epsilon because, 1/square root of 

(1 + ϵ2) = delta p. Therefore ϵ = square root of [(delta p)–2 – 1]. The Stop Band specification says 

that 1 + ϵ2 CN
2(omegas/omegap) should be equal to (delta s)–2.  

 

(Refer Slide Time: 51:13 - 53:32) 

 

 
 

Therefore ϵ2 CN
2 (omegas/omegap) should be equal to (1/(delta s)2) – 1 or CN (omegas/omegap) 

should be equal to 1/ϵ times square root of [(1/(delta s)2) – 1]. If I put the value of epsilon, 

namely, square root of [(1/(delta p)2) – 1], I get the expression for CN(omegas/omegap) = square 

root of [1/delta s)2 – 1]/[(1/delta p)2 – 1]. Let us denote this by delta. Because omegas is greater 

than omegap, CN becomes Cosh (N cosh–1omegas/omegap).  

 

Therefore N = cosh–1 delta divided by cosh-1 (omegas/omegap). And if you compare this with the 

Butterworth case, all that changes is that cosh-1 replaces log10.  

 

 

 

 

 19 



(Refer Slide Time: 54:11 - 56:26) 

 

 
 

If you do not have excess to cosh-1, then use the intermediate expression CN
2(omegas/omegap) = 

(1/ϵ2) [(1/(delta s)2) – 1]. You have numerical value for the right hand side and the argument of 

CN
2. So try values of N. Try from N = 2. If the right hand side is less, then you increment N by 

one. This can also be programmed, increment N to N + 1 and then go on doing this till the left 

hand side exceeds the right hand side. There is no guarantee that they would be equal. In other 

words, this formula for NC should also be written with greater than or equal to sign. Try values of 

N till the left hand side exceeds the right hand side. It may exceed drastically, but there’s no 

other way; the positive point is that you are over satisfying the stop band specs. Next time we 

will take a few examples and also we shall consider how Low Pass Filters can be transformed to 

any other kind of filter.  
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