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This is the 25th lecture on DSP and our topic today is continuation of analog filter design. We 

shall also introduce transformations from low pass to all other kinds of filters. In the last lecture, 

we talked about Butterworth filters and determination of Butterworth order. We also talked about 

Chebyshev filters, their pole locations and the type of factors they have in the denominator; in 

the numerator, there is a constant which you have to adjust. You have to use a factor 1/√(1 + ε2) 

if the order is even and no such factor is needed if the order is odd. The orders were found out 

from a relationship for both Butterworth and Chebyshev which are very similar as one uses log 

and other uses cosh-1.  

 

For the Butterworth filter it is log10 of √[((1/δs2) – 1)/((1/δp2) – 1)]/log10(Ωs/Ωp). This ratio Ωs/Ωp 

is sometimes denoted as the transition ratio. Obviously, it is a transition from pass band edge to 

stop band edge. There are several other terms which have been used but you can ignore them. 

For the Chebyshev order Nc, all that changes is that cosh-1 replaces log10. I also told you that if 

cosh-1 tables are not available, then you may have to use a handbook or you use the alternative 

fact that at the edge of the stop band, 1 + ε2 CN
2(Ωs/Ωp) = δs–2. But as you know, N found from 

this relationship may or may not be an integer. That is why there is an inequality sign. The 

transmission at Ωs is ≤ δs if you use the greater than sign.  
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(Refer Slide Time: 02:00 -04:20) 

 

 
 

(Refer Slide Time: 04:27 – 09:06) 

 

 
 

In the relationship CN
2(Ωs/Ωp) ≥ (1 ε)/(1/δs2) – 1, ε, δs and the transition ratio Ωs/Ωp are known, 

therefore one can use trial and error for determining N. That is, estimate a value of N and then 

find out the relationship between the left hand side and the right hand side and increment N till 

the inequality is satisfied. Now in this calculation, one has to be very careful. Suppose the 
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inequality sign is satisfied critically and both the sides are just equal, for example, then you look 

at it with suspicion. You increase the accuracy of computation, look at it with a magnifying glass 

and see if the inequality is exactly satisfied or not. If not then you increment N by 1. If it is 

exactly satisfied then in all probability the hardware construction will conspire so that it is not 

satisfied. So even if it is exactly satisfied you increase it by 1 to be on the safe side. This will not 

cause any harm, you are only increasing the cost incrementally. If the filter cost was 100 rupees, 

may be another 10 rupees will be added to it, so it is not a problem.  

 

Now this procedure of trial and error succeeds only if N is not very large; otherwise it can 

become very laborious because you shall have to calculate CN(Ωs/Ωp) at a large number of values 

of N. A third alternative is to use the relationship cosh-1y = log of [y + √(y2 – 1)]. The proof of 

this relationship is extremely simple, if cosh-1y = θ, then obviously y is equal to cosh θ. Also, 

cosh2 θ – 1 = sinh2θ and therefore the right hand side will be sin hθ plus cosh θ, that is, eθ, and 

log of eθ = θ. It is sometimes expedient to use this relation. You shall have to use this in both the 

numerator and the denominator. I have given you three methods and whichever is suitable or 

convenient, you use that. For large orders, one invariably uses the third method because for large 

orders, you may not get the cosh-1 values tabulated at sufficiently narrow intervals.  

 

(Refer Slide Time 10.48 - 12.43 min) 
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Now let us start with some examples: the first one is an example of Chebyshev filter 

approximation. Suppose our specs are: 1 less than equal to magnitude less than equal to 0.8, 

between 0 to 1 kHz and the transition ratio is 5. In other words, the stop band starts at 5 kHz and 

the stop band transmission must be ≤ 0.2. You are required to find out the required Chebyshev 

transfer function. The first thing you do is to calculate ε. Now, 1/√(1 + ε2) must be = 0.8; so ε 

from here calculates out as ¾ or 0.75. Wherever possible, you maintain a fraction because 

fraction does not truncate the number. You have found out ε and the next thing is to find N. Let 

us use this relation CN (Ωs/Ωp) ≥ (1/ε) √1/[(δs–2 – 1)]. Now 1/ε = 4/3 and δs = 0.2 which makes 

the right hand side = 6.532. So you try a few values of N. Here Ωs/Ωp = 5. Now C1(5) = 5 and 

C2(5) = 49. Therefore N = 2, satisfies the inequality; obviously, the stop band will be much over 

satisfied but there is no other way.  

 

(Refer Slide Time: 12.48 - 14.08 min) 

 

 
 

If N = 2 then you can immediately write Ha(s) = [C1Ωp
2/√(1 + ε2)]/(s2 + b1Ωps + C1Ωp

2). Here Ωp 

= 2π(10)3 radians/sec. N is even and therefore you must have the factor [1/√(1 + ε2)] in the 

numerator. For finding out b1 and C1 you have to find out y2 first.  
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In the second example, let us take a more practical spec that is in decibels; let the pass band 

tolerance be 1 decibel extending from 0 to 1 kilo Hertz.  

 

(Refer Slide Time: 14.12 - 14.34 min) 

 

 
 

(Refer Slide Time 15.23 - 16.20) 
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As in the previous example, let the stop band start from 5 kHz and let the minimum attenuation 

be – 40 decibels. So the first thing you do is to find out δp and δs. Here δp = 10–1/20 and that 

comes out as 0.8912. What we need is 1/δp2, which calculates out as 1.259.  

 

(Refer Slide Time: 16.27 -17.59 min) 

 

 
 

Also δs = 10-40/20 = 10-2 so 1/δs2 = 104. Now it is interesting to find out what order of Butterworth 

will satisfy these specifications. Then you should be able to compare Butterworth and 

Chebyshev. If I want to satisfy this specs by Butterworth, then NB ≥ log10(√[(104 – 

1)/.259]/log10(5). This quantity calculates out to 196.5/log10(5). So NB ≥ log10 196.5/log10(5) = 

3.28, therefore NB = 4.  
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(Refer Slide Time: 18.32 - 21.49 min) 

 

 
 

In Butterworth, we have to calculate Ωc at which the attenuation is – 3 decibels. Then the 

denominator factor of HB(s) would be (s2 + b1 ΩCs + ΩC
2) and (s2+ b2 ΩCs + ΩC

2); the numerator 

will be simply ΩC
4. Next you calculate b1 and b2. For Chebyshev, use the formula Nc ≥ cosh-1 

196.5/cosh-1 5. Instead of using this, we can use the inequality for CN(5). Calculate ε from δp = 

1/√(ε2 + 1). Here ε is approximately 0.51. So CN(5) ≠  100/0.51 = 196.51. Now C1(5) is 5, C2(5) 

= 49 while C3(5) > 196.51. Therefore compared to the Butterworth, Chebyshev uses a lower 

order, and it reduces the cost. They can also be identical but in this particular case the 

specification is such that a lower order Chebyshev does the job.  
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(Refer Slide Time 22.04 -23.37) 

 

 
 

And once you know Nc, then you can write down Hc(s) denominator factors as (s + C0Ωp) and (s2 

+ b1 Ωps + C1Ωp
2); the numerator would be Ωp

3C0C1. No factor involving ε is needed because the 

order is odd. And you can calculate C0 = y3 and then b1 and C1. Chebyshev is always preferred 

because the cut off slope shall be higher than that of Butterworth. But if you want to keep life 

simple, then you do not have to even think of Chebyshev; you design a Butterworth filter. If it is 

one or two filters for a dedicated job, it does not matter. But in an industry, they never fabricate 

one or two filters because it requires a lot of engineers’ time to design a particular filter and 

therefore they produce in 1000s if not 100,000s.  

 

 

 

 

 

 

 

 

 

 8 



(Refer Slide Time: 24.44 - 28.12 min) 

 

 
 

We next consider frequency transformation in analog filters. What we wish to do is to transform 

a normalized low pass filter with cutoff at 1 radian/sec into other kinds of filters in which the 

cutoff frequency is Ωp radian/sec. This cutoff frequency could be 3dB frequency for Butterworth 

or it could be 1dB frequency for a Butterworth, or it could be                                                   .5d 

B for Chebyshev. 

 

For example, if we wish to transform this to another low pass filter whose cutoff frequency is Ωp 

instead of 1 rad/sec, then we simply substitute s by s/Ωp. Obviously stop band of the transformed 

filter will start from Ωs × Ωp. In general, I want to transform a normalized low pass filter (NLP) 

to a de-normalized other kind of filter. I want to design an actual filter with actual specifications 

starting from a normalized low pass filter. In order to keep the symbols tractable, we shall use S 

as the complex frequency variable for the normalized low pass filter, and s for the de-normalized 

other kind of filter.  
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(Refer Slide Time: 28.14 - 29.49 min) 

 

 
 

Therefore if we go from normalized low pass filter to de-normalized low pass filter then we shall 

replace S by s/Ωp. For example, if I have a first order filter 1/(S + 1) having a cutoff frequency at 

1 radian per sec (3dB cutoff) and if you want cutoff of Ωp then the de-normalized low pass filter 

would be 1/(s/Ωp + 1) = Ωp/(s + Ωp). It is a first order filter with cutoff frequency at Ωp. When 

you go to other kinds of filters, things are not so simple. For example, let us consider 

transformation from normalized low pass to de-normalized high pass (HP). Then S has to be 

replaced by Ωp/s. What is the justification of this transformation?  
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(Refer Slide Time: 30.18 - 32.29 min)  

 

 
 

With S = Ωp/s, S = 0 corresponds to s = ∞. In other words, a low pass filter has gone into a high 

pass filter. Not only that, S = + j which is the cutoff frequency of the normalized low pass, goes 

to s = – j Ωp. Also S = – j corresponds to s = + j Ωp. The magnitude characteristic is even, so if 

you plot for negative frequencies, you get the same characteristic as for positive frequencies, 

which means the cutoff frequency is Ωp and it is now a high pass filter.  

 

In essence, we have simply flipped over the low pass characteristic with Ωp as our pivot. For 

example, if I have a low pass first order low pass filter 1/(S + 1), then replacing S by Ωp/s, we get 

s/(s + Ωp) as the high pass filter. The positive frequencies in LP go to the negative frequencies in 

HP; it is not a matter of concern because the magnitude characteristic is even.  
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(Refer Slide Time: 32.35 - 35.00 min) 

 

 
 

Now comes the question of band pass filter. That is, we want to convert a normalized low pass 

filter to a de-normalized band pass filter. Then you replace S by Q(s2 + Ω0
2)/(Ω0s). First let us see 

whether it is a band pass filter or not. S = 0 (where the magnitude of the low pass filter is unity 

for a Butterworth filter (not necessarily for Chebyshev) corresponds to s = ±j Ω0 and therefore 

whatever transmission I have at dc in the low pass filter transfers to the non zero finite frequency 

Ω0. S = ∞ is possible in two ways: s can go to 0 or ∞.  

 

In other words, at both dc and infinite frequency, the characteristic of the low pass filter at 

infinity is reproduced. Low pass filter at infinite frequency has to give zero or negligible 

transmission and therefore in the band pass filter, both dc and infinite frequency are in the stop 

band. Now you should have been convinced that this is a low pass to band pass transformation.  
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(Refer Slide Time: 35.15 - 37.20 min) 

 

 
 

What happens to the cutoff frequency? The low pass cutoff frequency corresponds to S = ± j; let 

us take the (+) sign first, we can derive other results very simply. Then S = + j will correspond to 

Q(s2 + Ω0
2)/(Ω0s) = j; in other words, s2 + Ω0

2 – jΩ0s/Q = 0. This is a quadratic equation and 

therefore there are two solutions. If we solve them, we get s = [jΩ0/(2Q)] [1 ± √(1 + 4Q2)]. There 

are two solutions; obviously one of them is positive and another is negative. Similarly if you take 

S = – j then the solutions would be [jΩ0/(2Q)]. [– 1± √(1 + 4Q2)]. Thus two solutions S = ± j go 

over to the band pass filter to four frequencies; two of them are positive and two of them are 

negative. We are interested in the positive frequencies. 
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(Refer Slide Time 38.05 - 38.58 min) 

 

 
 

The two cutoff frequencies are therefore s = + jΩ1, where Ω1 = [Ω0/(2Q)] [√(1 + 4Q2) – 1] and 

Ω2 = [Ω0/(2Q)] [√(1 + 4Q2) + 1]. The other two solutions are – Ω1 and – Ω2. What is the nature 

of the transformation? It is not a linear transformation, it is a quadratic transformation.  

 

The interesting thing is that the product of Ω1 and Ω2 is Ω0
2. In other words, the two pass band 

edges of the band pass filter have geometric symmetry with regard to centre frequency Ω0. Also 

Ω2 – Ω1 which is the bandwidth B is Ω0/Q. And if you remember, this is one of the definitions of 

Q. 

 

Note that the two cutoff frequencies are not in arithmetic symmetry; they are in geometric 

symmetry. In fact, geometric symmetry also reflects in the characteristic all through. If you take 

any level of magnitude, let us say δ, then there are two frequencies Ωs1 and Ωs2 at which this 

level is attained; these are also geometrically symmetrical with respect to the centre frequency. 

That is, any two frequencies on two sides at which the transmission is the same satisfy the 

relation that their product is = Ω0
2. This applies to pass as well as stop bands. Thus if Ωp1 and 

Ωp2 are the pass band edges and Ωs1 and Ωs2 are the stop band edges, then Ω0
2 = Ωs1Ωs2b = 

Ωp1Ωp2. Now you cannot compel your consumer to make such a specification; the consumer 
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makes specifications according to what he desires. It is the duty of the filter designer to satisfy 

the specs. But since the tool in his hand is geometric symmetry, he must modify the specs and 

this is where an important point comes. He must modify the specs such that the pass band is 

exactly satisfied, but he can play with the stop band and modify in such a manner that the 

geometric symmetry is satisfied; this will make the stop band over satisfied. This is the point I 

would come to a little later, but let us get some experience of this transformation of the 

normalized low pass to a de-normalized band pass filter.  

 

(Refer Slide Time: 44.00 - 46.04 min) 

 

 
 

Suppose I take the first order filter 1/(S + 1) and transform it to a band pass filter HBP(s) by using 

the transformation S = Q(s2 + Ωo
2)/(Ωos). Simplifying this, you see that the order is doubled from 

first order to second order. This is so because the transformation is a bi-quadratic function, it is a 

second order transformation. You cannot make a first order band pass filter. If I simplify this, 

then I shall get HBP(s) = (Ωo/Q)s/[s2 + (Ωo/Q)s + Ωo
2]; this is second order band pass filter. At s = 

0 magnitude = 0; at s = ∞ the magnitude = 0, and when s = ±jΩo then the magnitude = 1. And 

you can find out the two cutoff frequencies, 3dB or otherwise. Note that (Ωo/Q) is the bandwidth. 
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(Refer Slide Time 46.17 - 48.14) 

 

 
 

You can write this as HBP(s) = Bs/(s2 + Bs+ Ωo
2) = 1/[1 + (1/(Bs)) (s2 + Ωo

2)]. If I take the value 

on the imaginary axis, then HBP(jΩ) can be written as 1/[1 + j(Ωo/B) ((Ω/Ωo) – (Ωo/Ω))].  

 

(Refer Slide Time: 48.30 - 49.39 min) 
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Using Ωo/B = Q, we get │HBP(jΩ)│2
 = 1/[1 + Q2 ((Ω/Ωo) – (Ωo/Ω))2]. If you take any frequencies 

Ωs1 and another frequency Ωs2 = Ωo
2/Ωs1, then you see that the magnitudes at these frequencies 

should be equal, because Ωs2/Ωo = Ωo/Ωs1. At the two frequencies which are related by the 

relation Ωs1 Ωs2 = Ωo
2, the magnitude is the same, which demonstrates geometric symmetry.  

 

(Refer Slide Time: 50.34 - 53.05 min) 

 

 
 

This is another way of saying that at the same attenuation the two frequencies are geometrically 

symmetrical with respect to Ωo.  

 

Let us finally consider the transformation of a normalized low pass to de-normalized band stop 

filter. The transformation here is simply the reciprocal of the low pass to band pass 

transformation. In other words, we shall simply have S = Ωos/[Q(s2 + Ωo
2)]. Here S = 0 

corresponds to s = 0 or s = ∞. Therefore if it is a Butterworth filter of unity magnitude at S = 0, 

the feature is transferred to the de-normalized filter at zero and infinite frequencies. Therefore 

our job is done; in between there must be a minimum. That minimum you can see by recognizing 

that when S = ∞, then s = ± jΩo. When S = ∞ in the low pass filter, the transmission should be 0 

or negligible and therefore at Ωo, the band stop response must come down to the same value. Let 

Ω1 and Ω2 be two frequencies at which the transmission is the same. It can be shown that here 
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also, Ω1 Ω2 = Ω0
2. The band stop filter is just the complement of the band pass filter. There are 

two pass bands and one stop band.  

 

(Refer slide: time 53.15 - 54.24 min) 

 

 
 

Let the stop band, defined by magnitude ≤  δs, extend from Ωs1 to Ωs2. Also let the pass band, 

defined by 1 ≤  magnitude ≤  δp extend from 0 to Ωp1, and Ωp2 to infinity. The centre frequency, 

or the notch frequency is Ωo. The centre frequency here means the frequency of null or notch. Ωo 

is the centre for geometric symmetry. Here also by the same procedure, you can show that Ωo
2 = 

Ωp1 Ωp2 = Ωs1 Ωs2. 
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(Refer Slide Time: 55.05 - 55.52 min) 

 

 
 

As an example, if you want to design a 6th order Butterworth band-pass filter then you will start 

with 3rd order Butterworth normalized low-pass filter. The transfer function is 1/[(S + 1)(S2 + S 

+ 1)]. All that you do now is to put S = Q(s2 + Ωo
2)/(Ωos). Given the normalized low-pass filter, 

then you can always go to the band pass or band stop or high pass filter. In all these 

transformations, the pass band is to be strictly satisfied; whatever frequencies come for the stop 

band edges, we shall have to accept. But the practical problem is not that; the practical problem 

is that the specifications of the desired filter are given to you for band-pass and band-stop filters, 

where Ωs1 Ωs2 may not be equal to Ωp1 Ωp2. So what you have to do is to predistort the stop band 

edges so that Ωs1 Ωs2 becomes equal to Ωp1 Ωp2 with over satisfied stop band specs. Then convert 

these specs to that of a normalized low-pass filter. Design the normalized low-pass filter and then 

by frequency transformation, you go to the band-pass, band-stop or high-pass filter.  
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(Refer Slide Time: 57.55 - 59.31 min) 

 

 
 

Do you understand the steps? The steps are: from the specifications of the desired filter, you go 

to specs of normalized low-pass filter (NLPF); then design the (NLPF) and use transformation to 

get the required H(s).  
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