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This is the 30th lecture and our topic is All-pass Realizations. 
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(Refer Slide Time: 01:20 to 02:13) 

 

 
 

In the last lecture we ended up with the 1st order all-pass filter H(z) = (d1 + 
1
z
−

)/(1 + d1 
1
z
−

). We 

identified four possible sets of the transmission parameters t11, t22, t12 and t21, but there are many 

other choices.  All these realizations are different. We also pointed out that A and C shall have a 

transposed relationship with respect to each other and similarly B and D are transposes of each 

other.  
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(Refer Slide Time: 02:22 to 04:43) 

 

 
 

Let us take choice A and look at it closely. Choice A says that Y1 = 
1
z
−

 X1 + (1 –
2
z
−

) X2 and Y2 = 

X1 – X2 
1
z
−

. These are multiplierless as we wanted. But if I realize this directly we shall require 

two delays whereas we want only one delay. So we have to do something to reduce it to one 

delay. If I multiply this Y2 by
1
z
−

, then I get 
1
z
−

X1 – 
2
z
−

X2 on the right hand side; both the terms are 

present in the first equation. In addition, in the first equation, we have X2, so I can write this as 

Y1 = X2 + 
1
z
−

Y2. I can realize Y2 by one delay. To construct Y1, I require X2 and 
1
z
−

Y2. If these 

two delays can be shared then the job is done. A possible realization of the two equations is 

shown in the figure, but here I cannot avoid two delays.  
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(Refer Slide Time: 04:52 to 08:19min) 

 

 
 

Can you find out a modification of this so as to have one delay? If you can do so, you have done 

an original work. Let us now consider choice B.  

 

(Refer Slide Time: 08:30 to 10:52min) 
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Choice A requires two delays therefore its transpose shall also require two delays. There is no 

point in investigating a transpose; so we investigate choice B. As in A, one multiplier has been 

assured by extraction. We have Y1 = 
1
z
−

X1 + (1 +
1
z
−

) X2 and Y2 is (1 –
1
z
−

) X1 –
1
z
−

X2. And if you 

notice carefully, I can write Y1 as X2 + 
1
z
−

(X1 + X2) and Y2 as X1 – 
1
z
−

(X1 + X2). Now the road to 

a single delay has opened up. Both of these equations contain 
1
z
−

(X1 + X2), which can be realized 

with only one delay after adding X1 and X2. The diagram I draw now will be slightly involved.  

 

(Refer Slide Time: 10:58 to 13:49min) 

 

 
 

First, we add X1 and X2 and then we delay by one sample. So I have the signal as 
1
z
−

 (X1 + X2). 

Add this to X2 to get Y1. Multiply 
1
z
−

(X1 + X2) by –1 and add to X1. You get Yz. Finally, multiply 

Y2 by d1 to get X2. This is a single delay single multiplier structure, so it is canonic in multiplier 

as well as delay. This is a very beautiful first order structure, first derived by Mitra following his 

concept of digital two pair. Normally, it would not occur to one that one can draw such a 

structure. Choices B and D are transposes of each other which are equally applicable. The virtue 

of this is that even if d1 changes due to various reasons, the all-pass property is maintained. The 
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magnitude shall still remain one, the phase shall deviate, but there will be no magnitude 

distortion.  

 

(Refer Slide Time: 13:54 to 14:57) 

 

 
 

Similarly, let us consider a second order transfer function of the form A2(z) = (d1 d2 + d1 
1
z
−

+ 
2
z
−

)/(1 + d1
1
z
−

+ d1d2
2
z
−

). In other words, I express the coefficient of 
2
z
−

as a multiplier of d1. There 

are so many choices and which one shall lead to two delays and two multipliers you do not know 

beforehand. But if you choose t11, t22, t21 and t12 properly, you should be able to arrive at the 

structure. One possible structure is shown in the figure.  
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(Refer Slide Time: 15:02 to 17:39min) 

 

 
 

Can you call it a direct structure? Not quite, because the co efficient of 
2
z
−

is d1d2, whereas the 

multiplier is d2 so it is indirect but it does not matter as we are able to do with two multipliers. 

Now one might ask here why the usual form of the second order transfer function, i.e. A2(z) = (d2 

+ d1
1
z
−

+ 
2
z
−

)/(1 + d1
1
z
−

+ d2
2
z
−

) is not used. 
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(Refer Slide Time: 17:42 to 20:47min) 

 

 
 

This can also be realized only with two multipliers but a slightly more involved procedure has to 

be followed to find out the structure. It is shown in the figure. 

 

You can analyze and show that this structure indeed realizes A2’(z). But to get the structure from 

the given transfer function you shall have to think quite a bit.  

 

                    Now, the next topic would be the same, that is IIR all-pass realization, but by a 

different approach. We consider an arbitrary order all-pass function AM(z) = 

( Md
−

+ 1Md
−

−

1
z
−

+…..+
M
z
−

)/(1+ 1d
− 1

z
−

+ 2d
− 2

z
−

+……. Md
− M

z
−

). 
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(Refer Slide Time: 21:54 to 27:01min) 

 

 
 

We will find the reason later for using the bar. You can realize this as a cascade of first order and 

second order all-pass filters but that requires factorization of the denominator. You do not have 

to factorize the numerator because of the special relationship of the numerator and denominator, 

viz. NM(z) = 
M
z
−

DM(
1
z
−

). 

 

Now, in digital filter realization one always wants many structures so that you can choose the 

one that has no overflow and the lowest quantization error. We shall now show that it is possible 

to realize an Mth order all-pass filter without factorization. And the approach that is adopted for 

this is D2P; instead of extracting the multipliers as we did in the first order and second order we 

extract digital two pairs. In other words, what we do is take a digital two pair and terminate in 

AM–1(z) to get a transfer function AM(z).  

 

We start with AM(z) and then we construct the digital two pair which is terminated in one lower 

order transfer function. Then I shall repeat the process, i.e. AM–1(z) is realized as a digital two 

pair terminated in AM–2(z) and so on. It is an iteritative process. This will not require 

factorization and will give an alternative structure. Now we have to show that at every stage 

what we get is all-pass.  
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In IIR stability analysis and testing, we have discussed a procedure using all-pass functions. We 

apply that procedure to get an alternative realization of the IIR all-pass filter of any order. It turns 

out that the structure you get is quite well known in statistical signal processing and that structure 

is a lattice. And for some reason lattice has been found very suitable for VLSI implementation. It 

was discovered that the same structure can be derived from digital two pair extraction approach 

and this approach is simpler than the one used in literature on statistical signal processing. For 

this, we recall the stability testing procedure that we have adopted for an all-pass filter.  

 

(Refer Slide Time: 27:23 to 30:02min) 

 

 
 

What we did was to start from AM(z) and derive a set of filters AM–1(z), AM–2(z), ……. upto 

A1(z). What is A0(z)? It is 1. We tested the factor km which is the same as the coefficient of 
m
z
−

in 

the denominator (km is the same as dm) of Am(z), m = M, M –1,………1. The transfer function is 

stable if 2

mk  is less than 1 for all m. How did we derive the lower order from the higher order? 

The relationship was Am–1(z) = z (Am(z) – km)/(1 – km Am(z)), where small m goes from M to 1. 

Note that km = dm, which is the same as Am(∞). And in addition this relationship gives a 

relationship between the coefficients of Am(z) and Am–1(z).  
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(Refer Slide Time: 30:04 to 32:41) 

 

 
 

This relationship is di’ = (di – dm dm–i)/(1 – 2

md ),  to m – 1. This was the stability testing 

procedure. We shall use this now. Now our aim is to construct AM(z) as the transfer function of a 

digital two pair terminated in AM–1(z) which I have not shown as a block, but this block is 

realized by another digital two pair and another digital two pair and so on. An important point to 

note is the last all-pass function. The output Y2 should be connected to X2 through a transfer 

function of A0(z) = 1, that means they are directly connected. So this cascade would be 

terminated in a straight connection and this point should be obvious. In order to construct this 

digital two pair in going from mth to (m – 1)th stage I require identifying its transmission 

parameters. To do so, invert the relationship between Am and Am–1. We have Am(z) = (km + 
1
z
−

Am–1(z))/(1 + km
1
z
−

Am–1(z)).  
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(Refer Slide Time: 33:01 to 35:09) 

 

 
 

Now if the mth digital two pair has the transmission coefficients t11, t22 etc then obviously 1 + 

km
1
z
−

Am–1(z) should be the same as 1 – t22 Am–1(z). Also, t11 – (t11 t2 – t12 t21) Am–1(z) should be the 

same as km +
1
z
−

Am–1(z). So I compare these two and identify the transmission parameters. 

Obviously t11 should be equal to km, t22 should be equal to – km
1
z
−

and t11 t22 – t12 t 21 should be 

equal to –
1
z
−

. That is, t12 t21 should be equal to (1 – 2

mk )
1
z
−

. So I have got t11, t22 and the product 

t21 t12 and now I can play with these individual factors. Let us list some choices for t12 and t21 

exactly like we did in the first order all-pass case and then investigate some of them.  
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(Refer Slide Time: 35:26 to 37:32) 

 

 
 

Let us make a table of these choices and denote them by a, b, c and d. So t11 and t22 are fixed for 

each of them, km and – km
1
z
−

respectively. Here we will not use transposition. If we can find one, 

we can find the transposed one also; so let us list unrelated choices. For a, we choose t12 = (1 – 

km)
1
z
−

, then the other one should be simply 1. I can also choose (1 – km)
1
z
−

for t12; then t21 = 1 + 

km. I can choose t12 as √(1 – 2

mk )
1
z
−

; then t21 would be √(1 – 2

mk ). I can choose t12 as
1
z
−

; then t21 

shall be 1 – 2

mk . I can go on doing this. These four choices contain the structures of our interest 

and therefore we shall explore them. Our aim would be to realize the set (t11, t22, t12, t21) in as 

simple a manner as possible, aiming at a canonic structure. What does it mean? It means we 

should use one multiplier and one delay only. Consider choice a.  
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(Refer Slide Time: 37:35 to 39:00) 

 

 
 

In choice a, we proceed as follows: Y1 = km X1 + (1 – 2

mk )
1
z
−

X2 and Y2 = X1 – X2 km
1
z
−

. If you 

look at Y1 and Y2, you see that Y1 can be written as km Y2 +
1
z
−

X2. Let us look at these 

relationships and try to construct them: Y1 = km Y2 +
1
z
−

X2 and Y2 = X1 –X2 km
1
z
−

. 
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(Refer Slide Time: 39:02 to 39:48) 

 

 
 

Notice that in both the equations, we require
1
z
−

X2, so we delay X2 by one sample, as shown in the 

figure, with X1, Y1 on the left side and Y2, X2 on the right, as in the convention is D2P.  

 

(Refer Slide Time: 39:41 to 43:34min)  
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To construct Y1, we require the inputs 
1
z
−

X2 and kmY2. To construct Y2, we add X1 to – km 

X2
1
z
−

.But we have not achieved our purpose, we have used two multipliers km and – km. And it 

suffers from the same problem of word length or quantization error. The total structure is simply 

the cascade of such structures ultimately terminated in a straight connection. This block here is 

simply represented as km as shown in the figure. 

 

Now we shall show that it is possible to derive a single multiplier structure. However, the 

structure just derived has been favored over the single multiple structure, and this is called a 

lattice. One of the reasons can be that if it is a software program to realize the all-pass structure 

(the difference between software and hardware is not relevant if you use a host PC to interface 

with your processor), it does not make a difference. However, in special circumstances, like that 

of tunable filters, we should not have more than one variable multiplier in a first order filter and 

we should not have more than two variable multipliers in a second order filter. 

 

(Refer Slide Time: 43:39 to 46:07min) 

 

 
 

To get a single multiplier structure, we consider choice b. In choice b, Y1 = kmX1 + (1 – km) 
1
z
−

X2 

and Y2 = (1 + km) X1 – km
1
z
−

X2. If I define a variable V1 as km(X1 – 
1
z
−

X2), then I can write both 
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Y1 and Y2 in terms of V1 and X1 or X2. For example, Y2 is simply X1 + V1 and no multiplier is 

required. But a multiplier km is needed to construct V1. Also, Y1 is V1 + 
1
z
−

X2, so no multiplier is 

needed here. One multiplier has done the job. Now let us look at the realization.  

 

(Refer Slide Time: 46:12 to 49:16min) 

 

 
 

We have Y1 = V + 
1
z
−

X2 and Y2 = X1 + V1 = km(X1 – 
1
z
−

X2). To draw the realization we first draw 

the X1 Y1 lines and Y2 X2 lines. Our digital two pair is between the first two terminals. We 

require 
1
z
−

X2 so we use a delay 
1
z
−

with X2 as input. And then we need to construct V1. So I add X1 

to –
1
z
−

X2 and I multiply the adder output by km to get V1. Once I have constructed V1, then the 

construction of Y1 and Y2 easy, as shown in the figure. It is a single multiplier and single delay 

structure and is indeed canonic.  

 

One reason I guess why this structure is not popular in comparison to the two multiplier structure 

is that there is an additional feedforward line, but notice that there is no delay free loop. A 

second order all-pass would have required two such sections, while a third order all-pass 

function can be realized by three such lattice sections, as shown in the next figure. 
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(Refer Slide Time: 49:24 to 50:44min) 

 

 
 

First section will be k3, then k2, then k1, and termination by a direct connection. Obviously k3, k2 

and k1 have to be derived by using the relationship di’ = (di – dm dm – i)/(1 – dm
2). k3 is the same as 

d3; so you have to derive k2 and k1. And if in the process, magnitude of one of these exceeds or is 

equal to unity, then you need not proceed further because the structure is unstable and you 

cannot realize the transfer function.  
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