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This is the 33rd lecture on DSP and our topic for today is FIR lattice. We also start digital filter 

design today. In the 32nd lecture, we talked about general FIR lattice synthesis and then we went 

to linear phase transfer functions.  

 

We considered all possible cases, namely symmetrical, asymmetrical, even length and odd 

length. Then, we started discussing general FIR, non linear phase filter with the highest power 

coefficient = + 1 or – 1, because km = + 1 or − 1 creates a problem in going to the next stage. We 

had taken one example. A single multiplier FIR lattice incidentally does not exist so far; unless 

you find one by the end of this course, it shall remain an open problem in future also. For IIR, it 

exists but for FIR it does not. To continue with the problems, last time we considered H4(z) = 1 + 

h1z−1 + h2z−2 + h3z−3 + z−4 which is of odd length and highest power coefficient = + 1. We said 

that the decomposition would be 1 + h3z−1 + h2z−2 + h3z−3 + z−4 which is linear phase, plus (h1 – 

h3) z–1. That is, we use the higher power coefficient in the linear phase part. I could have used h1 

z–3 for symmetry, but then I have to add (h3 − h1) z−3. 

 

In other words the tap had to be after three delays. But after three delays, calculation of the tap 

weight becomes a little more involved. It is much easier to use (h1 − h3) z−1. The structure would 

be like that shown in the next figure. Note that in the linear phase part, the middle term has been 

broken into two equal parts, as we illustrated earlier. Also note that k3 = 0 and k4 = 1. The output 

of the linear phase part has to be added to (h1 − h3) z−1, which we derive by tapping at the end of 

the first delay.  
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Let us consider the same case with the highest power coefficient = – 1. Now we shall have to 

bring in asymmetry to decompose into a linear phase plus some other transfer function. 

Specifically, let H4(z) = 1 + h1z−1 + h2z−2 + h3z−3 – z−4. We take − h3z−1 instead of + h1z−1 and 

would have to add (h1 + h3) z–1. If the filter is anti-symmetrical, then the middle coefficient must 

be 0 so that h2z−2 has to be added. As far as realization is concerned, I now require two tappings, 

one after z−1 and the other after z−2. Let us see the realization of these two terms which no longer 

constitute a linear phase transfer function.  
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The structure is shown in the figure. Note that here k2 = k3 = 0. So we shall have two delays after 

the lattice section, and finally we shall have k4 = − 1. We have to take two tappings now. We 

have synthesized the linear phase transfer function by observation. Let the first tap weight be α 

and the second one, after the second delay be β. The only thing that remains to be found are the 

values of α and β.  

 

The signal αz−1 + βz−1 (k1 + z−1) should be equal to h2z−2 + (h3 + h1) z−1. Now match the 

coefficients and obviously β = h2, α = h3 + h1 − h2k1, and k1 is – h3.  
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Let us take the other two cases now. Next case is, even length and highest power coefficient = + 

1. Let us take a 5th order transfer function H5(z) = 1 + h1z-1 + h2z−2 + h3z−3 + h4z-4 + z-5 and the 

decomposition now would be 1 + h4z-1 + h3z−2 + h3z−2 + h4z−4 + z−5 + (h1 − h4)z-1 + (h2 − h3)z−2. 

The first one is linear phase and I can synthesize it in the usual manner. I have to show the first 

two lattices explicitly because I want to tap the signals after the first two delays; and I cannot 

show them as boxes.  
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Now k1 is h4/(1 + h3) and k2 is h3. What are the next two? The next two are k3 and k4 which are 0 

and therefore I shall have two delays, and finally k5 = + 1. The output shall combine with the two 

tapped signals. Let us call the tap weights as α and β.  

 

(Refer Slide Time: 17:28 - 17:48)  
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And if you follow the same procedure you get β = h2 − h3 and α = h1 − h4 − (h2 − h3) × h4/(1 + 

h3).  

 

(Refer Slide Time: 17:07 - 8:25) 

 

 
 

Finally, consider the case of even length and coefficient of highest power term = − 1; so we have 

to go for anti-symmetry. Let H5(z) = 1 + h1z−1 + h2z−2 + h3z−3 + h4z−4 − z−5 and the 

decomposition now would be (1 − h4z−1 − h3z−2 + h3z−3 + h4z−4 − z−5) + (h4 + h1)z−1 + (h2 + 

h3)z−2. Also we have k2 = − h3, k1 = - h4/(1 − h3), k3 = k4 = 0 and k5 = -1.  
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The values of α and β can be calculated easily. β has to be h2 + h3 and α = h1 + h4 − βk1. With a 

little bit of maturity, you will not have to do the intermediate steps but write these values 

directly. The highest power coefficient being either + 1 or − 1 actually is a welcome step, 

because it reduces your effort. If it is linear phase, it reduces the effort considerably. If it is not a 

linear phase, and neither is the coefficient of the highest power term equal to + 1 or – 1, even 

then with a little bit of ingenuity, you can apply some of these simplifications.  
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And with that, we close our discussion on FIR realization of digital filters. We next go to the 

most important topic, that is Digital Filter Design. We have already done some examples. We 

have done first order low pass, first order high pass, and then second order (the minimum order) 

band pass and band stop. Given a problem, we should be able to solve it even without 

sophisticated digital filter design techniques. But if the specifications are very tight, for example, 

if Δp is of the order of 0.1dB and Δs is 120dB, the order has to be high and it may not be 

possible to do it by cascading lower order ones, by trial and error. You shall have to know what 

the order is and how to go about it. But given a practical situation, most of the practical engineers 

use synthesis by analysis. That is, they cascade first and second order filters and find out whether 

it does the job. They use MATLAB to find out the performance and if it does not satisfy the 

specs, then they keep changing. So, the problem is that the specifications are given in terms of 

tolerance in the pass band, tolerance in the stop band and the band edges; you have to find the 

transfer function.  

 

Now, if it is a simple low pass filter, then you know Δp, Δs, ωp and ωs, which are the digital filter 

specs. On the other hand, if it is a bandpass filter then you require ωp1, ωp2 or the bandwidth, the 

center frequency and also ωs1 and ωs2. Δs may differ from one stop band to another stop band. 
8 

 



You can have multi band pass or multi band stop or a combination filter which is, for example, 

low pass plus something else. From the specifications, your job is to find out a transfer function 

H(z). The specifications we are talking about are magnitude specs. Usually we do not design 

digital filters to satisfy phase specifications, although there are situations where this is to be 

done. But for phase, what is our objective in digital filter design? The phase should be linear; we 

cannot obtain this with an IIR filter but we can obtain this exactly with FIR. In IIR, phase is a 

consideration but usually we design for satisfying the magnitude specs; whatever phase comes, 

we accept it and then try to compensate for the non linearity of phase by cascading all pass 

filters. All pass filters are everywhere. Whichever way you want to go, all pass filter shall 

accompany you, whether you like it or not. So the transfer function has to be found and once you 

obtain H(z), then with the knowledge you have already acquired, you realize the same either by 

software (write up a programme with a dedicated PC or use a programmable chip) or by 

hardware. If it is very complicated, then you design your own chip and fabricate.  

 

(Refer Slide Time: 23:52 - 29:00) 

 

 
 

Now, IIR and FIR design follow entirely different routes and they are very different from each 

other. IIR design usually can be made with a degree of confidence, but not FIR. Although FIR is 

advantageous from linear phase and stability considerations, it is not easy to design it. With IIR, 
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you have to check the stability. But the advantage of IIR is that you can use much lower orders. 

That is, the hardware complexity or the software complexity is much lower than that of the 

corresponding FIR filter. And the other advantage is that IIR filters usually can be designed 

analytically to the given specifications, to satisfy the specifications exactly, except for word 

length errors i.e. except for the errors arising out of using a finite number of bits. FIR filters can 

also be designed analytically but the level of confidence is much lower. The filter that you design 

may or may not satisfy the specs. What you have to do is that after you complete the design, you 

have to compute its performance and find out if it satisfies the specs. If it does not, then you go 

back and change the parameters. So it is an iterative process, whereas in IIR, it is a one step 

process and this comes about because IIR specs can be transformed to an analog filter specs by 

using a transformation from ω (normalized digital frequency) to analog frequency Ω.  

 

From the analog filter specs, by the well established approximation techniques, you can carry out 

the design to satisfy the specs. And this is normally done by transforming the analog filter specs 

to a normalized analog low pass filter and then using the transformation back. So you design 

Ha(s) and then apply another transformation to go from s to the z domain to obtain H(z). This is 

the route that is followed for IIR analytical digital filter design. One might ask, in this age of 

computers, when very large capability computers are available, why should we go through this 

analytical technique at all? Why can we not use a very blind approach?  

 

As an example, I estimate that a tenth order IIR filter should do for the given specs. Then I 

require 20 unknown constants, 10 in the numerator and 10 in the denominator. This number can 

be reduced by one by making the constant term in the denominator equal to unity; so there are 19 

coefficients. I guess these coefficients and I start with some initial values and I put it to the 

MATLAB and find out what the results are. If it does not satisfy the specs, then we keep on 

changing. We do not know whether the process will converge or diverge.  

 

In the initial stages of development of digital filters, this is what was done. However, at the 

present time, sophisticated computer programmes are available for digital filter design, be it IIR 

or FIR. Companies do use them. They are very costly because they have been derived by putting 
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many man hours. They are usually proprietory for a company who do not divulge it to others. 

There are some open programmes available on the internet which you will have to modify to suit 

your designs. But then if you can design it analytically, there is nothing like it because there is a 

measure of confidence which cannot be matched by any other filter design. The people in 

industry argue that for an engineer, something which works is good enough; why bother about 

analytical design? And fortunately since analytical designs are available, we shall use computer 

aided design algorithms only if we have to. If you do not have that much of man hours at your 

disposal, then go ahead and use analytical techniques. 

 

(Refer Slide Time: 31:10 - 36:34) 

 

 
 

Now, let us look at why is it that IIR filters are designed from analog filters. This is also 

historical. Analog filter design is an advanced art; almost everything is known about analog 

filters. They usually give rise to closed form expressions. We have discussed the Butterworth and 

Chebyshev filters; they give rise to elegant expressions and you can find out the transfer function 

exactly. Not only that, for elliptic filters, tabulated handbooks of filter designs are available and 

therefore you may not have to do the intermediate steps. You may simply consult a handbook 

and say these are the specs and there is the design.  
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So, you can take the analytical design of the analog filter, do your transformation from s to z 

plane, obtain the filter transfer function, realize it, and make an analysis with the finite number of 

bits. Find out whether they satisfy the specs or not and then make incremental adjustments. In 

analog filters also, after putting it on hardware you have to check experimentally to see if it 

satisfies the specs; if not then you have to tune the filter. Tuning is required in digital filters 

because of finite word length. Otherwise, if infinite number of bits were available, your design 

would have been perfect. So these are the reasons why analog filters form the parent filter for IIR 

digital filter design.  

 

There are various kinds of transformations that are available. The two transformations that are 

generally used go by the names of IIT and BLT. IIT stands for Impulse Invariant Transformation 

which is very simple conceptually but has its own disadvantages. And BLT is the Bilinear 

Transformation. Impulse Invariant Transformation is always amenable to aliasing distortion. 

Aliasing cannot be avoided in impulse invariant transformation whereas bilinear transformation 

is free from aliasing error. Even then why do we discuss IIT? It is because IIT is very simple 

conceptually and the calculations are also much simpler; so if the distortion can be contained 

within a reasonable limit then it does the job. For most of the IIR filters for bio medical signal 

processing, for example, people do not want to go into the complication of bilinear 

transformation. They simply use impulse invariant transformation and for an engineer, anything 

that works is good enough. So people still use IIT.  

 

Mitra’s second edition, does not discuss IIT at all. In Impulse Invariant Transformation, one 

takes a given analog filter obtained in the same manner as discussed earlier. That is, by using 

some transformation, you transform ω to Ώ; then you decide on an analog filter Ha(s). Obtain its 

impulse response ha(t) and then sample it. Sample the impulse response to get ha(nT) and call this 

h(n). From h(n), take z transform and obtain your H(z). The distinctive characteristic of this 

procedure is that the impulse response remains invariant. That is, the digital filter impulse 

response is the sampled version of the analog filter impulse response. And if sampling theorem 

has been respected in the process, then they should be a one to one representation. That is, given 

h(n), you should be able to construct ha(t) and given ha(t), you should of course be able to obtain 
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h(n). The problem of aliasing occurs because no transfer function in practice is band limited. If 

you want to respect the sampling theorem, the sampling must be such that the sampling 

frequency is greater than or equal to twice the highest frequency contained in Ha(s). No transfer 

function can stop abruptly at a particular frequency because they would disobey the fundamental 

Payle-Wiener criterion. They would be non causal and unrealizable. No transfer function is 

therefore band limited which means that some amount of aliasing distortion is bound to occur. So 

long as you contain this to within the tolerable limits, it can be used.  

 

(Refer Slide Time: 39:07 - 44:01)  

 

 
 

The procedure is extremely simple. Suppose Ha(s), for simplicity, has only distinct poles pi, i = 1 

to N. Then Ha(s) can be expanded in partial fractions as ∑ Ai/(s − pi). What happens when I have 

repeated poles? We will come back to it later. Suppose we have N number of poles in the 

transfer function which are distinct; pi can be real or can be complex. But the real part of pi, if it 

is complex, must be negative, i.e. poles must be in the left half of s plane. Now for simplicity, I 

shall write only summation, I will not put the limits which shall be from 1 to N. ha(t) therefore 

shall be ∑ Ai ip te u(t). And if I sample this at intervals of T, then obviously what I get is, ∑ 

Ai ip nTe u(nT). I identify this as my h(n), so my transfer function becomes H(z) = ∑ Ai/1 - 
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ip Te z−1). From the given analog transfer function, I go to the digital transfer function in a very 

simple manner. What do I do? I replace 1/(s - pi) by 1/(1 - ip Te z−1). 

 

(Refer Slide Time: 44:09 - 46:40) 

 

 
 

This means that the pole at s = pi is transformed to the pole at z = ip Te . If this transformation is to 

work, then a stable analog filter should be transformed to a stable digital filter. The 

transformation we are using is z = esT, which I can write as eσTejΩT. And therefore magnitude z ≥ 

or < 1 for σ ≥  0, or σ < 0. This means that a pole in the left half of the s plane transforms to a 

pole inside the unit circle. The jΩ axis transforms to the unit circle and the right half plane 

transforms to outside the unit circle. Thus a stable analog filter shall transform to a stable digital 

filter. We look at it again. When σ is < 0, that is the pole is in the left half plane, then magnitude 

z < 1; therefore this transforms to a point inside the unit circle. Thus a stable pole goes to a stable 

pole. The jω axis for which σ = 0 goes to magnitude z = 1 which is the unit circle. And the right 

half plane where no poles should be located goes outside the unit circle. So a stable filter 

transforms into a stable filter.  
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The weakness of this transformation is that Ha(s) may not be band limited. How does it reflect in 

the transformation 1/(s - pi) to 1/(1 - ip Te z−1)? For the pole at s = pi, we find the corresponding 

pole in z plane; we have no control over the zeros of the transfer function. Zeros from the analog 

plane are not transformed according to this relation. Whatever zeros come, we will have to 

accept and these arise because Ha(s) is not band limited. This is how it is reflected. Since we 

have no control over the zeros, the transfer function we get shall not be exactly what we wanted. 

There are two ways of looking at it. One is aliasing point of view and the other is that we have no 

control over the zeros.  

 

On the other hand, in bilinear transformation, we transform poles as well as zeros. In the Impulse 

Invariant Transformation, if I have a normalized first order analog filter, it transforms to 1/(1 –
T
e
−

z-1) = Y(z)/X(z). The difference equation would be y(n) = x(n) + 
T
e
−

y(n − 1); this is of first 

order. First order digital filter is derived from first order analog filter. There is no order change.  

 

Similarly, in the bilinear transformation also, there is no order change as we shall see. If the 

impulse response is invariant, does it imply that the response to a unit step is also invariant? In 
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other words is the step response invariant? The answer is no. The step invariant transformation is 

quite different. We shall demonstrate this in the next class and that is where we stop today.  
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