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This is 34th lecture on DSP and our topic for today’s discussion is IIR filter design.  

 

(Refer Slide Time: 01:08- 01:11) 

 

 
 

We already started this topic in the last lecture (33rd). In the last lecture, we started with FIR 

lattice design for various situations of linear phase filters and then we went to non linear phase 

filters with highest power co-efficient = + 1 or – 1. We saw that they could be synthesized with 

advantage by using the linear phase concepts. If you decompose a nonlinear phase transfer 

function into a linear phase and a nonlinear phase filter, you can realize by using taps on the 

linear phase structure. Next we started discussion on the impulse invariant technique for IIR 

filter design.  
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(Refer Slide Time: 02:01 – 03:59)  

 

 
 

The philosophy was very simple, that is, we take an analog filter Ha(s), derive ha(t) by inverse 

Laplace transform, and then we sample ha(t) to get ha(nT) which we accept as the impulse 

response h(n) of the digital filter. And therefore if we take z transform, we get the transfer 

function H(z). This is the route we follow. So the impulse response is invariant. In other words, 

if the sampling is done properly, then you can go from ha(t) to h(n) or h(n) to ha(t). But then 

because Ha(s) is hardly ever band limited, i.e. T is never small enough to avoid aliasing, aliasing 

distortion will occur. What we have to do is to contain it to a tolerable value. 
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(Refer Slide Time: 04:03- 05:22) 

 

 
 

We expand Ha(s) in partial fractions. If there is a pole at s = pi, then in the z domain, this 

becomes a pole at e–piT. We take care of the poles but we cannot take care of the zeros. The 

transformation obviously is z = esT; we showed that this is a stable transformation. In other 

words, a stable Ha(s) leads to a stable H(z), because the left half of the s plane maps onto inside 

of the unit circle. The jω axis maps onto the unit circle and the right half of the s plane goes to 

outside the unit circle; so it is indeed a stable transformation. In other words, H(z) should be an 

approximation to the desired digital filter. If impulse response is kept invariant, does it guarantee 

that other responses are also invariant? The answer is no. To be able to demonstrate this, let us 

compare the step response of two filters.  
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(Refer Slide Time: 05:55 –11:48) 

 

 
 

One is derived in the usual manner. For the analog filter, the step response is (1/s) Ha(s). Unit 

impulse response in the frequency domain is Ha(s) and the Laplace transform of a unit step is 

(1/s). Then we expand Ha(s) into partial fraction, and get Ha(s)/s as ∑Ai/[s (s − pi)].  

 

We are trying to find out the unit step response of this transfer function and then sample that to 

get the step response of the digital filter. Now, Ai/[s (s − pi)] = (Ai/pi)[(– 1/s) + (1/(s – pi))]. 

Therefore the unit step response, which I call as ψa(t), shall be = ∑ (Ai/pi) ( ip Te  − 1)u(t).  

 

Now I want to see if we sample this, shall we get the step response of the digital filter designed 

by IIT? Now, ψa(nT) shall be = ∑ (Ai/pi)(e ip nT−1)u(n). We want to see whether this matches the 

unit step response of the digital filter that we derived from impulse invariance. From impulse 

invariance what was our digital filter? Our digital filter was H(z) = ∑ Ai/(1 – e ip T z−1). If you 

want to find out the unit step response of this digital filter, then you multiply H(z) by the z 

transform of the unit step i.e. 1/(1 − z−1). Therefore if we call that as Ψ(z), that is the z transform 

of unit step response, then this would be = ∑[Ai /(1 − e ip T  z−1)] × (1 − z−1)−1. Taking the inverse 

z-transform of Ψ(z), we shall get the step response of the filter designed by the impulse 

invariance technique. 
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We want to compare the two and if they are identical then step invariance is implied by impulse 

invariance; if they are not, then the impulse invariance does not ensure step invariance. 

  

(Refer Slide Time: 11:55 – 14:26) 

 
 

We have Ψ(z) = ∑ Ai/[(1 − e ip T  z−1) (1 – z−1)] which can be decomposed into partial fractions as 
1

1[ / (1 )]([1/ (1 )] [ / (1 )])i i ip T p T p T
iA e z e e z

−
−Σ − − − − . Thus the step response of the impulse invariant 

design is given by ( 1)[ / (1 )][1 ] ( )i ip T p T n
iA e e u n+Σ − − . I compare this with ψa(nT) which is ∑(Ai/pi) 

(e ip nT  − 1)u(n). Is it not obvious that the two are not the same? Therefore impulse invariance 

does not imply step invariance. To be a little more confident about this, let us take an example.  
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(Refer Slide Time: 14:28 – 17:14) 

 

 
 

If Ha(s) = 1/(s + 1), a first order filter, then its ψa(nT) is (1 − 
nT
e
−

). On the other hand, ψ(n) = [1/(1 

– 
T
e
−

)] [1 -
( 1)T n
e

− +

]. Obviously these two are quite different. Let us list the values of ψa(nT) and 

ψ(n). If n is 0 then obviously ψa is 0, but what is ψ(n)? It is = 1. If n = 1 then ψa(nT) is 1 − e−T 

whereas ψ(n) is 1 + eT; therefore ψ(n) is not equal to ψa(nT). In other words, impulse invariance 

does not imply step invariance. If we wanted a step invariant filter, then obviously what we have 

to do is to take ψa(nT), derive its z-transform and then equate that to 1
( )

1

H z

z
−

−
 to get H(z). 
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(Refer Slide Time: 17:18 -19:54) 

 

 

Ψa(z) is already known. It is = 
1 1

( / ){[1/ (1 )] [1/ (1 )]}ip T
i iA p e z z

− −

Σ − − − where the former is the z-

transform for the first term and latter is the z-transform for the second term in Ψa(nT). Now this 

must be the transfer function H(z) multiplied by 1/(1 − z−1); therefore the step invariance 

transformation gives me a transfer function H(z) which is = ∑ (Ai/pi)/[((1 − 
1
z
−

)/(1 − ip Te
1
z
−

)) – 

1].  
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(Refer Slide Time: 19:58-24:50) 

 

 
 

Note that the step invariant transformation leads to a transfer function whose poles are the same 

as in the impulse invariant transformation; only the zeros change. In addition, if you simplify 

H(z), it can  be written as H(z) = 
1 1

[ ( 1) / ] / (1 )i ip T p T
i iA e p z e z

− −

Σ − − . Comparing this with the 

impulse invariant transfer function 
1

[ (1 )]ip T
iA e z

−

Σ − , we see that the residues change and in 

addition there is a zero at z =∞ .  
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(Refer Slide Time: 24:54-26:19) 

 

 
 

Similarly you could get a ramp invariant transformation or any other performance invariant 

transformations. But Impulse Invariant transformation is generally in practice.  

 

(Refer Slide Time: 26:37 – 30:02)  
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The implication in terms of frequency response is difficult to say at this point, but for the 

Impulse Invariant Transformation, since ha(nT) = h(n), the frequency response of the digital filter 

shall be simply summation of an infinite number of frequency responses of the analog filter 

shifted by the sampling frequency, on both sides of the frequency axis.  

 

We have already derived that H(ejω) would be = (1/T) ∑ Ha(jΩ + j2πk/T). k = 0 gives the basic 

spectrum; k = 1 gives the same spectrum shifted on the left by (2π/T) and k = − 1 gives the same 

spectrum shifted on the right by (2π/T) and so on. In terms of ω, they repeat after ω = 2π. Recall 

that the relationship between Ω and ω is ΩT = ω. This is how aliasing is obtained if Ha(jΩ) is not 

band limited. Let us take this ideal case; if Ha(jΩ) = 0 for |Ω| > Ωh, then the spectra do not 

overlap and we have no aliasing distortion. 

 

(Refer Slide Time: 30:10 - 30:48) 

 

 
 

If ΩhT < π, then there is absolutely no problem with Impulse Invariant Transformation.  
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(Refer Slide Time: 31:20 – 31:40) 

 

 
 

Under this condition, H(ejω) = (1/T) Ha(jΩ) where Ω < or = Ωh and Ωh < π/T. If the analog 

transfer function is band limited, then our Impulse Invariant Transformation will work 

beautifully without any problem because in H(ejω), we are only concerned with base band – π ≤  

ω ≤  π.  This is an ideal situation never obtained in practice, and therefore we have to take care. 

But even in the ideal case we have a problem in practice.  
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(Refer Slide Time: 32:53- 37:06)  

 

 
 

The problem arises because of the factor 1/T. Even if the original spectrum was band limited and 

sampling was done according to the sampling theorem, when T is small the maximum amplitude 

of the digital filter transfer function shall be large. That means that there shall be definitely 

problems of overflow. We cannot allow the signal to grow indefinitely. You would like T to be 

as small as possible that is sampling frequency as high as possible to avoid all aliasing, but it 

may create a problem of overflow. To avoid this, what is done in practice is to multiply the 

impulse response of the analog filters by T, and if I do that then H(ejω) = Ha(j ω/T) in the base 

band and there shall be no problem of overflow. So you take the analog filter, obtain its impulse 

response; sample the impulse response, then multiply by T and then take the z transform. In other 

words H(z) for our digital filter would be Σ  AiT/(1 − ip Te z−1). This comes from practical 

consideration.  
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(Refer Slide Time: 37:20 - 39:47) 

 

 
 

Our derivation so far has been for distinct poles that is Ha(s) = ΣAi/(s − pi), i = 1 to N. Now what 

happens if the pole is repeated m times? In the partial fraction expansion, it requires m number of 

components corresponding to this pole only; you shall have
( )

k
k

i

A
s p

Σ
−

 , where k goes from 1 to 

m. One simplification we have not mentioned is that if you have complex poles, then you 

combine each pole with its conjugate to get real coefficients. 
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(Refer Slide Time: 40:16- 42:20) 

 

 
 

If you have a function with pair of complex conjugate poles at − a ±  jb and the numerator is s + 

a then this goes in the z-domain as (1 − e−aT cosbTz-1)/(1 − 2 e−aT cos bTz−1 + e− 2aTz−2). If the 

numerator in the z-domain is a constant and the function of s is of the form b/[(s + a)2 + b2], then 

this goes in the z-domain as (e−aTsinbTz−1) divided by the same denominator. You have to 

multiply each such factor by T because you took h(n) as T × ha(n) and then you take the z 

transform. We will now take a fairly illustrative example.  
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(Refer Slide Time: 42:30 – 44:12) 

 

 
 

Our example is a third order low pass Butterworth function. You know that the transfer function 

Ha(s) is 1/[(s + 1)(s2 + s + 1)] and the partial fraction expansion is [1/s + 1] – [s/(s2 + s + 1)]. I 

can write the second term as 2 21 1 1[( ) ] / [( ) ( 3 / 2) ]
2 2 2

s s+ − + + . In order to use the last two 

transforms, I identify a as ½ and b as √3/2.  
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(Refer Slide Time: 44:19- 47:04) 

 

 
 

The second term in the numerator, i.e. 1
2

can be written as (1/√3) × (√3/2). My scaled transfer 

function H(z)/T would therefore be equal to [1/(1 − e−T z−1)] – [(1 − e−T/2 cos (√3T/2)z−1)/(1 − 2 

e−T/2cos (√3T/2)z−1 + e−T z−2)] + (1/√3) /2Te− sin(√3T/2)z−1 divided by the same denominator. I 

have obtained the transfer function. Obviously you can bring these last two terms under the same 

denominator, then you can put z = ejω and find out the frequency response. The frequency 

response that I want is a third order Butterworth low pass response. And if it is identical with the 

analog response then my job is done, but if it is not, then I have to do something else. Now look 

at the frequency responses I plotted for this filter.  
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(Refer Slide Time: 47:26 – 50:20) 

 

 
 

What I have plotted here is versus ω = ΏT. Now obviously the transfer function depends on T. If 

you sample at a very low frequency you are asking for trouble. You have to choose a good 

enough high frequency sampling. If T is large, then what you get may be is a band pass filter. T 

has to be small enough to get a low-pass response. As shown in the figure, with T = 0.25sec, 

corresponding to a sampling frequency 4Hz (4Hz is not a practical value; it comes because we 

took a normalized analog filter whose cutoff was at 1rps) the response is almost indistinguishable 

from that of the analog filter. You shall have to use MATLAB to draw or watch on the monitor 

the response, and you have to adjust your T in such a manner that you get a fairly good match 

with the given analog filter. What will happen beyond π? The response will rise because it is 

periodic but we are not concerned about it because we are concerned with a match only in the 

base band. We will stop here.  
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