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IIR Design by Bilinear Transformation 

 

This is our 35th lecture and in this lecture, we propose to study Bilinear Transformation. In the 

previous lecture, we explored the possibility of filter design by the Impulse Invariant 

Transformation (IIT).  

 

(Refer Slide Time: 01:24 - 02:37 min) 

 

 
 

One point that I want to emphasize in this connection is that the obtained frequency response we 

plot versus small omega which is capital omega × T. Therefore if the analog response, as we saw 

for the third order filter goes like that shown in the Figure, then when capital omega T is pi, the 

digital filter response, after showing some aliasing error, goes up again like that shown in the 

Figure. The scale is the same for the frequency axis, because ω and Ω are linearly related. In the 

Bilinear Transformation technique (BLT), we shall compress the analog frequency scale 0 to 
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infinity to 0 to 2pi in the digital filter. That is, we will compress an infinite frequency span to a 

finite span. The philosophy of BLT is the following: If you are given an analog transfer function 

Ha(s) you can always simulate Ha(s) in what used to be once upon a time a popular type of 

computer, called the Analog computer. 

 

(Refer Slide Time: 03:26 – 05:56 min) 

 

 
 

You do not have to know what analog computer is, but the basic fact is that in the simulation of 

Ha(s), you require summation, multiplication by a constant and a dynamic element, namely an 

integrator. What people used to do is to use op amps for integration and simulate any given 

transfer function by op amps only. Multiplication by a constant alpha is either a potentiometer, if 

alpha is less than 1, or an op amp if alpha is greater than 1. You can take care of both the plus 

sign and minus signs by inverting op amp and non inverting op amp. Integration is done by 

putting a capacitor in the feedback loop and the integration is usually associated with a negative 

sign before the integral. The basic fact is that if I have an adder, a multiplier and a block of 

transfer function 1/s which describes an integrator, I can simulate any given analog transfer 

function. If I simulate the given transfer function by adders, multipliers and integrators, then I 

can convert that diagram into a digital filter because in a digital filter addition and multiplication 

are the same and there is no change; the only change is that we shall require a digital integrator. 
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That is the philosophy behind the Bilinear Transformation. It has proved to be the best possible 

analytical design. Therefore we shall consider BLT in great details. What we are seeking is a 

digital integrator. If we have an integrator with xa(t) giving rise to ya(t) then ya(t) = ∫xa(t)dt.  

 

(Refer Slide Time: 06:11 - 09:13 min) 

 

 
 

To get a digital integrator let us evaluate ya(nT). ya(nT) can be written as the initial condition at 

[(n – 1)T], n is an integer, plus integral from (n – 1) T to nT xa(t)dt. There is no approximation 

here; this is exact. What I do now is to approximate this as ya[(n – 1)T] + ½[(xa(nT) + xa((n – 

1)T)]T. I approximate the integration. In digital simulation, there is no integration. Integration is 

simply finding the area by approximation. I use the trapezoidal rule i.e. I take the average value 

over the interval and multiply by the interval to approximate the integration. I have no other 

alternative, because digital hardware cannot integrate in the manner that an op amp does. This T 

is a small enough interval so that the spectrum of x is the same in the base band of the sampled 

signal. We call the quantized version of ya(nT) as y(n). If I bring ya((n – 1)T) to the left hand 

side, then you get y(n) – y(n – 1) = (T/2) [x(n) + x(n – 1)]. Now we have got a difference 

equation relating the output and input of a digital version of an Analog Integrator which we call 

as a Digital Integrator.  
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(Refer Slide Time: 09:26 - 14:56 min)  

 

 
 

If you take the z transform, then the transfer function Y(z)/X(z) = (T/2) (1 + z–1)/(1 – z–1). This 

should correspond to 1/s which is the integrator in the analog domain. Therefore s corresponds to 

(2/T)(1 – z–1)/(1 + z–1). In other words what it says is, if in an analog transfer function, instead of 

finding the impulse response, sampling it, keeping the impulse response invariant, or finding the 

step response then sampling it and saying we derive a step invariant transformation, we simply 

replace s with (2/T)(1 – z–1)/(1 + z–1). Then that should be a good digital filter because 

summation and multiplication are invariant whether the domain is analog or digital, and we 

replaced analog integration by a digital integrator. In other words, H(z) shall be Ha(s) where s = 

(2/T) [(1 – z–1)/(1 + z–1)]. The transformation from s to z is called a Bilinear Transformation 

because it is a rational function, with a linear term in the numerator and a linear term in the 

denominator. The technique is called Bilinear Transformation Technique or simply BLT. In 

order for it to be useful, first condition is that H(z) must be stable. In order to examine whether 

this transformation is stable or not let us invert the relationship s = (2/T)(1 – z–1)/(1 + z–1). That 

is, I find z in terms of s. the result is: z = [1 + sT/2]/[1 – (sT/2)]. The magnitude of z would be 

equal to magnitude of (1 + sigma T/2 + j omega T/2)/(1 – sigma T/2 – j omega T/2). This is 

equal to square root of [(1 + sigma T/2)2 + (omega T/2)2]/[(1 – sigma T/2)2 + (omega T/2)2].  
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If sigma is less than 0, i.e. sigma is negative, then obviously the numerator will be less than the 

denominator and therefore this corresponds to mod z less than 1. If sigma is equal to 0, then 

correspondingly, mod z = 1; and sigma greater than 0 corresponds to mod z greater than 1. 

Therefore it is a stable transformation. That is, left half of s-plane is transformed to inside the 

unit circle. In order that Ha(s) is useful it must have all its poles in the left half plane. So analog 

poles are transformed to inside the unit circle in the z-plane. The imaginary axis sigma = 0 is 

transformed to the unit circle and the right half plane is transformed to outside the unit circle, 

exactly like the Impulse Invariant Transformation and therefore it is a stable transformation. 

Here is the figure showing this fact. 

 

(Refer Slide Time: 15:06 - 16:49 min)     

 

 
 

The imaginary axis transforms to the unit circle. The left half plane transforms to the inside of 

the unit circle and the right half plane transforms to outside the unit circle. This is a picture of the 

important fact that the BLT is a stable transformation. In particular, sigma = 0 leads to mod z = 

1, which means that z = ejomega. In other words, a point on the imaginary axis (sigma = 0) will 

transform to some point on the unit circle whose angle is omega; only then mod z can be = 1. If I 

write this in the equation s = 2/T(1 – z–1 )/(1 + z–1), s = jΩ, then I should write z = ejω, so jΩ = 

(2/T) (1 – e–jω)/(1 + e–jω).  
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(Refer Slide Time: 16:57 - 18:15 min)    

 

 
 

It requires a little bit of manipulation to put it in terms of a real quantity. If you do that, you get 

Ω = (2/T) tangent of ω/2.  

 

(Refer Slide Time: 18:22 - 20:28 min) 
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There are several things to observe at this point. One is purely a point of academic interest, that 

is if 0 ≤  Ω ≤  ∞ , then correspondingly, 0 ≤  ω ≤  Π . Thus the positive jΩ - axis goes to the 

upper half of the unit circle. Similarly, the negative part of the jΩ - axis will go to the lower half 

of the unit circle. It has no other implication or import on digital filter design, but is just an 

observation. The other observation is that this relationship is a nonlinear one, but one to one. In 

other words from this, you can get ω as equal to twice tan inverse Ω T/2. Now, if you plot ω 

versus Ω, then the plot becomes like one shown in the figure. 

 

(Refer Slide Time: 20:33 - 22:28 min) 

 

 
 

Unlike Impulse Invariant Transformation where the relationship was simply ω = ΩT as indicated 

in the figure, in BLT, there is a deviation from linearity because the relation between Ω and ω is 

nonlinear. This is how an infinite axis is compressed to a finite axis, that is 0 to infinity is 

compressed to 0 to pi; this phenomenon is called Warping. So frequency scale is warped which 

is a disadvantage unless you take care of it in the appropriate manner. We shall do pre-warping 

or anti-warping so that the effect of warping ultimately is canceled and we get what we want. 

What we do is the following. Given a digital filter spec, i.e. delta p’s, delta s’s, omega p’s and 

omega s’s, you transform ωp’s to  Ωp’s and ωs’s to Ωs’s (there can be several of them in a 

multiple passband and/or multiple stopband filters) by using Ω = (2/T) tan ω/2. 
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(Refer Slide Time: 22:39 - 24:35 min)     

 

 
 

In the figure, I put a bar below each spec to indicate this possibility of multiple specs inδ ’s and 

ω’s. Delta p’s and delta s’s shall remain invariant, but ωp’s and ωs’s are transformed to Ωp’s and 

Ωs’s by the relationship Ω = (2/T) tangent of ω/2. This is pre-warping, that is the digital filter 

frequencies are pre-warped to analog frequencies. Thus you get the specs on the corresponding 

analog filter. Design the analog filter then put the transformation s = (2/T)(1 – z–1)/(1 + z–1) 

which automatically does the warping and gives us the correct results. So we can take care of the 

warping by pre-warping. Now, in terms of filter design what I said in words is contained in the 

next diagram, where I have taken the case of an elliptic low-pass filter.  
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(Refer Slide Time: 25:16 - 27:21 min)       

 

 
 

Given the digital filter specs; delta p, delta s, ωp and ωs, as shown in the left diagram, where ω 

goes from 0 toΠ , you project ωp and ωs to the diagram depicting ω versus Ω and show the 

corresponding frequencies. In practice, you do it analytically, but to understand what is 

happening I have drawn this diagram. Project Ωp and Ωs on the analog filter response shown in 

the lower diagram, which is drawn with the same tolerances as in the digital filter magnitude 

response.   

 

In the analog filter magnitude response, we have shown only one maximum in the stopband; it 

must be understood that there is another maximum that occurs at Ω = ∞  after one minimum. 

These have not been shown to keep the diagram within the page. Now, to formalize the 

procedure for design, let us be concerned only with low pass design because we know how to 

convert a low pass into any other form.  
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(Refer Slide Time: 27:47 - 32:17 min)      

 

 
 

We shall take other examples of design later. But if I have a low pass design problem, typically 

the specs would be maximum magnitude = 1, delta p, delta s, ωp and ωs. First, you transform 

this into the analog filter diagram giving |Ha(jΩ)|. You use Ωp,s = (2/T) tan (ωp,s/2). The upper 

end of the stopband cannot be shown because it goes to infinity. Side by side, I would also like to 

keep the relationship for Impulse Invariant Transformation which is simply Ωp,s = ωp,s/T. When 

we take an example of design, we will do with impulse invariance as well as with bilinear 

transformation. We have not done any example of design so far with impulse invariance but we 

will do them together to point out the differences and advantages of BLT over IIT. Now the other 

thing that I want you to notice is that IIT actually is an approximation of BLT. If ω T/2 is small, 

then tan inverse ω T/2 is same as ω T/2. Therefore you simply get ω = ΩT. In other words, the 

initial part of the nonlinear diagram is coincident with the linear diagram, and is true for IIT, 

while the rest is valid for BLT. And because of the deviation, there is aliasing.  

 

Now I would also like to point out that there is absolutely no aliasing in Bilinear Transformation 

because the total transfer function is being transformed. In Impulse Invariant Transformation, 

only poles were transformed. In step invariant transformation also, only poles were transformed 

and additionally a zero at infinity was created. We take care of the total base band 0 to pi in BLT 
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and we pre-distort it intentionally to go to the analog domain and then the Bilinear 

Transformation takes care of distortion in the other direction so that we get what we want. In an 

analog low pass filter design, you also require this ratio Ωs/Ωp to determine the order required of 

the filter. Here Ωs/Ωp = (tangent of ωs/2)/(tangent of ωp/2) in BLT.  

 

(Refer Slide Time: 32:20 - 34:58 min)  

 

 
 

In IIT, it is simply ωs/ωp because the relationship is linear. I would like to keep both of them. IIT 

is an approximation for the BLT relationship because for small theta, tangent theta can be 

replaced by theta, which gives IIT. For small ω or Ω, IIT and BLT are indistinguishable. For 

filter design, you also require the fact that NB, the Butterworth filter order should be greater than 

equal to log10 of [((1/delta s2) – 1))/((1/delta p2) – 1))]/log10 (Ωs/Ωp). In Butterworth, we also 

require the cutoff frequency Ωc, and that is obtained as Ωp/[(1/delta p2) – 1]1/(2 BN ). These are the 

design parameters. You require the order and the cutoff frequency. What you are given is 0 – Ωp 

for a tolerance of 1 – delta p. For a tolerance of 3db, Ωp is Ωc. Nothing like this is required in 

Chebyshev.  
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(Refer Slide Time: 35:09 - 35:53 min)  

 

 
 

In Chebyshev, Nc is greater than equal to the same expression as in Butterworth with cosh 

inverse replacing log10. In computing this, you may use the relationship that cosh inverse y is 

equal to log natural (not to the base ten but to exponential e) (y + square root of (y2 – 1)). These 

are all our basic design equations. Now, we take an example and we shall follow this example 

through for designing Butterworth IIT, Butterworth BLT, Chebyshev IIT and Chebyshev BLT - 

all the four of them. Now, look at the specs, as shown in the figure. 
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(Refer Slide Time: 36:28 - 38:54 min)   

 

 
 

The frequencies are given in Hertz and the magnitude of H(ejω) is normalized to lie between 1 

and 0.8 (better than 3 db) in the passband. I want to pass only up to 800 hertz that is 0.8 kilo 

Hertz for some reason. And then 2.4 kilo Hertz to 4 kilo Hertz I want to pass with less than 0.2 

magnitude. A digital filter is to be designed such that these specs are satisfied.  

 

What is your FT, the sampling frequency? Obviously it is 8 kilo Hertz. And once you know this 

then you can convert these specs to normalized digital frequency; 4 kilo Hertz shall correspond 

to pi so 2.4 kHz will be 0.6 pi, 0.8 kHz will be 0.2 pi and 0 is of course 0. Given the actual 

frequency specs, we have to convert them to ω. It is a linear conversion; do not confuse with IIT 

or BLT.  
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(Refer Slide Time: 39:06 - 40:14 min)   

 

 
 

To design the analog filter, we have to convert ω’s into analog frequencies; for ωp = 0.2 pi, Ωp 

would be (2/T) tangent of 0.1 pi and this comes as (2/T) × 0.3249. ωs = 0.6 pi corresponds to Ωs 

= (2/T) × tangent of 0.3 pi which is = (2/T) × 1.376. You also require Ωs/Ωp which is 

1.376/0.3249 = 4.235.  

 

(Refer Slide Time: 40:18 - 45:23 min)   

 

 

14 
 



The Butterworth order NB can be calculated from the formula. It comes out as greater than or 

equal to 1.3; therefore NB = 2. Once you find NB, you have to find out Ωc, the 3 db cutoff 

frequency, which is equal to Ωp/1/(delta p2 – 1)1/(2 BN ). If you substitute numerical values, you get 

Ωc = (2/T) × 0.3752. If this figure had come lower than 0.3249, then you are assured that you 

have made a mistake. Now I can write my Ha(s) as Ωc
2/(s2 + b1 Ωcs + Ωc

2); b1 = 2 sine of pi/4 = 2 

× (1/√2) = √2.  

 

Therefore my H(z) would be = Ωc
2/(s2 + √2 Ωcs + Ωc

2) with s = (2/T) (1 – z–1)/(1 + z–1). Now you 

shall notice that T shall disappear from the result. Now we write one more step with (Ωc T/2)2 in 

the numerator, that is we multiply by T square/4. Then in the denominator I get (sT/2)2 + √2(Ωc 

T/2) (sT/2) + (Ωc T/2)2). Now we have found out Ωc to be 2/T × 0.3752 so Ωc T/2 is simply 

0.3752. Note that sT/2 is simply (1 – z–1)/(1 + z–1). Therefore from the expression, T disappears. 

It has to disappear because Bilinear Transformation suffers from no aliasing and the transfer 

function should not depend on T.  

 

Another way to do this is to assume T = 2 then the factor T/2 or 2/T disappears. You can use this 

right from the beginning but you must be aware that the value of T does not matter. We 

arbitrarily assume T = 2. After simplification, the transfer function becomes 0.08421(1 + z–1)2/(1 

– 1.0281 z–1 + 0.3651z–2).  
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(Refer Slide Time: 46:25 - 49:03 min)  

 

 
 

You notice that H(z) is 0 when  z–1 = – 1. That corresponds to ω = pi and the 0 is of multiplicity 

2, i.e. a second order 0. The analog transfer function was a second order one having two zeros at 

infinity. Infinite Ω is mapped into ω = pi, and therefore this is quite expected. If in the numerator 

(1 + z–1)2 does not appear, then you have done something wrong. The other thing is, if I calculate 

H(1), which corresponds to ω = 0, then you get the value 0.3368/0.3370 this is not exactly 1 but 

it is less than 1. Why has this occurred? It has occurred because of rounding and not because of 

aliasing. Now let us see a diagram of the magnitude plot.  
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(Refer Slide Time: 49:16 - 51:10 min)   

 

 
 

Now at pi, it should be exactly 0; therefore there is a mistake here in drawing the diagram. Here 

the phase plot is approximately linear upto a certain frequency, about 1 radian and beyond that it 

is highly nonlinear; it saturates at – pi ultimately. And if you want to use this in a situation where 

delay distortion is not permitted, then you have to use an all-pass filter in cascade. If possible, 

use a first order all-pass because that reduces the number of multipliers and the hardware 

requirement. We will close here, and next time we will continue this discussion with IIT for the 

same example and Chebyshev Design with BLT as well as ILT. 
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