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This is the 36th lecture and today we will continue our IIR design example by both Bilinear and 

Impulse Invariant Transformations. Later on, we shall divorce the Impulse Invariant 

Transformation with the understanding that you go to impulse invariance only when the 

requirement is not very stiff. The advantage of IIT is its simplicity but the disadvantage is that 

there is always some aliasing and the sampling frequency usually has to be very high to be able 

to contain the aliasing distortion within permissible limits. But in common with Bilinear 

Transformation, it is a stable transformation. It is guaranteed that a stable analog filter shall 

transform to a stable digital filter. We also showed that impulse invariance does not necessarily 

imply step invariance; they are generally different. I gave you the rule for transforming an analog 

filter to a digital filter by impulse invariance.  
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(Refer Slide Time: 02:46 - 04:35 min) 

 

For a simple pole in Ha(s), the term 1/(s – pi) goes to T/(1 – ip Te
1
z
−

). 

 

 
 

We also gave two relations which we mostly use for complex poles. If I have (s + a)/[(s + a)2 + 

b2], then in IIT, it transforms to T (1 – eaT cos bT 
1
z
−

/(1 – 2
aT
e
−

cos bTz–1 + e–2aTz–2). The other 

relationship is that b/[(s + a)2 + b2] transforms to 
aT
e
−

sin bT
1
z
−

 divided by the same denominator. 

The multiplication by T comes because we take h(n) = T × ha(nT). This multiplication is needed; 

otherwise there is a problem of overflow.  

 

These are the only three things that you have to remember. Usually you will not get a case of 

repeated poles, but if repeated poles come, then the design effort may not have any advantage 

over Bilinear Transformation. It is for the simplicity in design that you are attracted to IIT. If you 

get a multiple pole, you better use the design effort with BLT and get a better filter. With the 

normalization h(n) = Tha(nT) and band limited transfer function i.e. Ha(jΩ) = 0 for Ω greater than 

Ωh which is less than π/T, your IIT digital filter shall work satisfactorily.  
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Here the sampling theorem must be obeyed. You cannot have Ha(jΩ ) = 0 over a band of 

frequencies; you have to put a tolerance may be 10–2 or 10–3. That is the limitation of Impulse 

Invariant Transformation. But as I said, in very simple situations, like you require in ECG 

filtering or a vision signal filtering where the requirements are not too stiff, you can use impulse 

invariance and the industries use this even now. On the other hand, in Bilinear Transformation, 

there is absolutely no aliasing.  
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The only disadvantage is that the frequency scale, an infinite one in the analog domain, is 

compressed into a finite scale. So, necessarily there will be crowding at one end and thinning at 

the other end; this is called warping. But warping is of no concern because by pre-warping we 

can take care of that. If we anticipate a distortion, then we pre-distort so the pre-distortion 

combined with distortion gives you a perfect result. It only complicates the design because you 

have to calculate tangents and tan inverses.  

 

And then we took a simple example. The specification was to have the magnitude between 0.8 

and 1 in the passband and ≤  0.2 in the stopband. Also, pω = 0.2π and sω = 0.6 π. We made a 

design by a second order Butterworth filter using Bilinear Transformation. Today we shall 

redesign for the same specs by impulse invariance technique. If you want to design this filter by 

IIT, the only difference is that Ωs/Ωp, that is the transition ratio for the corresponding analog 

filter, shall be simply the ratio ωs/ωp. In BLT, it was the ratio of tangents, now it is simply a 

linear relationship and this ratio = 3.  
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We still continue to use Butterworth. Here calculation gives NB ≥ 1.708 and therefore NB is still 

= 2. In order to design a Butterworth filter, you also require the value of the 3 dB cutoff 

frequency Ωc. here it is (Ωp/T)/(1/0.64 – 1)1/4 (instead of the tangent) and this calculates out as 

0.7255/T.  

 

(Refer Slide Time: 09:39 - 11:29 min) 
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Now I can immediately write Ha(s) = Ωc
2/(s2 +√2 Ωcs + Ωc

2). What we have to do is to 

decompose the denominator into the form (s + a)2 + b2. Also, we have to adjust the numerator 

constant to be equal to b, multiplied by another constant. The denominator is obviously (s + 

Ωc/√2)2 + (Ωc /√2)2.  

 

(Refer Slide Time: 11:37 - 14:42 min)  

 

 
 

To bring Ωc/√2 in the numerator we write Ωc
2 = √2Ωc. (Ωc/√2). My digital filter H(z) shall be T 

multiplied by the transformed form of Ha(s). So in the numerator you get 2 cTΩ
/ 2cT

e
−Ω

× sin 

(ΩcT/√2)
1
z
−

, while the denominator is 1 – 2
/ 2cT

e
−Ω

 cos (ΩcT/√2)z–1 + 
2cT

e
−Ω 2

z
−

. Now you know 

the value of ΩcT, which we found as 0.7255. Putting this value, the final result is that the 

numerator of H(z) is simply 0.3015
1
z
−

. In the Butterworth design by BLT, we had (1+
1
z
−

)2 in the 

numerator; you see the difference. So at ω = π, BLT Butterworth was guaranteed to give 0 but 

there is no guarantee here. Here it will be a small quantity, but not 0 because of aliasing. The 

denominator is 1 – 1.0433
1
z
−

+ 0.3584
2
z
−

. You must keep as many digits as permitted by your 

calculator, because of the possibility of errors due to quantization of numbers.  
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You should keep as many digits as possible because the filter design is extremely sensitive to 

quantization or to truncation errors. For example, the dc gain H(1) should have been 1, but here it 

is 0.9568 which is quite a substantial deviation, more than 4 % from the unity value.  

 

Let us look at Chebyshev design now for the same example. Let us take a short cut because we 

have already calculated the values of transition ratio Ωs/Ωp and some other expressions. For 

Bilinear Transformation Ωs/Ωp is 4.235 and for Impulse Invariant Transformation, the ratio is 3. 

It turns out that in both cases, Nc calculates out to 2. The example was so chosen that the order is 

not changed.  
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With Nc = 2, your transfer function will have a multiplication by T in IIT, not in BLT. The 

transfer function Ha(s) have a multiplying factor 1/√(1 + ε2) for Ha(0) to be the correct value. 

 

(Refer Slide Time: 18:08 - 23:34 min)   

 

 
 

8 
 



The magnitude of even order Chebyshev designs start from the lower end of the pass band 

tolerance and therefore you must find out 1/√(1 + ε2). This is given as 0.8, and from this, ε is 

calculated (required for finding out y2, c1 and c0) as 3/4. Once again, as long as possible, keep 

numbers as fractions; then it will not give rise to truncation error. The transfer function is C1Ωp
2 

× 0.8/(s2 + b1Ωps + c1Ωp
2). In order to calculate b1 and c1 you require the value of y2. And y2 is 

(1/2)[√(1 + 1/ε2) + 1/ε)1/2 – (√(1 + 1/ε2) + 1/ε)– (1/2)].  

 

If you substitute the value of ε, y2 calculates out to 1/√3 and therefore b1 which is = 2y2 sin(π/4) 

comes out as √2/3; c1 = y2
2 + cos2 π/4 and this comes out as 5/6. We also require Ωp which is 

(2/T) tangent of 0.1π = (2/T) × 0.3249. What we require is ΩpT/2 and that is 0.3249. The transfer 

function can be written after multiplying both numerator and denominator by T2/4, and 

recognizing that (sT/2) = (1–
1
z
−

)/(1+
1
z
−

). The result is independent of T, so you do not have to 

bring T anywhere.  

 

Later on you can assume T = 2 and calculate out as if that multiplying factor is not there.  After 

skipping some of the intermediate computations, the final result is 0.052 (1+
1
z
−

)2/(1 – 1.348
1
z
−

 + 

0.608
2
z
−

).  
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The magnitude response of this transfer function, as shown in the next figure, does not start from 

0.8; it is slightly raised. The maximum also is not 1. This happens because we computed only up 

to three places of decimal.  

 

(Refer Slide Time: 25:13 - 31:17 min)   
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This is the effect of truncation error; even up to three places of decimal is not good enough. As 

far as phase is concerned, it is approximately linear up to about 0.8; radians and then the 

nonlinearity starts. So if your signal processing or pass band is confined to this limit, then you 

can be reasonably certain that there will be no delay distortion. If you go beyond this then you 

have to use an all pass filter for equalization.  

 

For IIT realization of this example, we have already calculated the order which is two, and if we 

use IIT the only change will be that Ωp, which is required in the transfer function, will now be 

0.2π/T, and not (2/T) tangent of pω /2. The same transfer function in the form Kb/[(s + a)2 + b2] 

holds here too.  

 

(Refer Slide Time: 26:49 - 29:51 min) 

 

 
 

The only thing we have to do is to change ΩpT to 0.2π. Once you do this, you appeal to the 

formula and write the transfer function H(z) as K × e–aT sin bT 
1
z
−

 divided by the quadratic 

denominator. The final result is 0.1948
1
z
−

/(1 – 1.3483
1
z
−

+ 0.5987
2
z
−

). Next, you have to put 

z= je ω , and plot its magnitude and phase.  It will be seen that it starts from 0.8 and the maximum 

is also 1 because at very low values of frequency, IIT works perfectly alright. The deviation 
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starts at higher values of digital frequency and you would see that at π, it is considerably raised; 

this is the effect of aliasing. If you had increased the sampling frequency, it would have come 

closer to zero.  

 

As far as the phase response is concerned there is nothing much to choose; again up to about 0.8, 

it is approximately linear. For any design, although your emphasis is on the magnitude response, 

the desirable results may not be obtained because of extraordinarily large delay distortion. If you 

are doing the magnitude calculation on MATLAB, there is no reason why you cannot use it to 

find the phase response also. Next we take a higher order design example. We now require 1 dB 

tolerance in the pass band that extends from 0 to 2.5 kilo Hertz. 

 

(Refer Slide Time: 31:46 - 35:50 min) 

 

 
 

Beyond 3 kilo Hertz, the magnitude response must be down by at least 10 dB. One could expect 

that this would be satisfied by a sufficiently low order filter but you must also see that the 

transition band is pretty narrow. The stopband end is 5 kilo Hertz which means that the sampling 

frequency, FT must be 10 kilo Hertz.  
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The first thing you do is to convert these specifications in terms of ω, the normalized digital 

frequency. 5 kilo Hertz must correspond to π; 2.5 kilo Hertz must correspond to π/2 and 3 kilo 

Hertz must correspond to 0.6 π. Then the next thing to do is to convert ω’s to Ω’s and we will 

work this out for Bilinear Transformation only. Therefore Ω = 2/T (= 2 × 104) tangent of ω/2. 

Obviously π corresponds to infinity, 0.6 pi corresponds to 1.376 × 2 × 104 (with a little bit of 

practice we can even omit 2 × 104). We could assume T = 2, because the final transfer function is 

independent of T. So Ωs/Ωp, tangent of π/4 being unity, is 1.376, which is sufficient to design the 

filter.  

 

(Refer Slide Time: 35:56 - 37:23 min)   

 

 
 

I must convert tolerances given in dB to corresponding ratios. – 1dB is equivalent to 10–1/20 and 

this comes as 0.891. – 10dB will correspond to 10–1/2 = 1/√10 and this comes as 0.316. 

Obviously, 1/√(1 + ε2), if I am asking for a Chebyshev design, is 0.891 and therefore I can 

calculate ε which is required for calculating yN. I do not know yet what is N but ε comes out as 

0.509. I truncated at the third place. Once we have found ε, the other parameter is Nc and Nc ≥ 

cosh–1 [((1/0.316)2 – 1)/((1/0.891)2 –1)]/cosh–11.376. This calculates out to 2.92. Use the log 

natural to calculate cosh–1. Do not use those simplified procedures I showed you earlier because 

digital filter design is prone to so many errors at many stages.  
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(Refer Slide Time: 37:31 - 39:57 min) 

 

 
 

For example, if this came out as 2.99 then you do not know whether it is 2.99 or 3.01. If it comes 

out as 2.001 then you are in deeper trouble so you will have to use as many digits as are 

permitted by the calculator to calculate this. Here Nc = 3 and once I have got Nc, I can write 

down the expression for Ha(s). Since it is third order; the magnitude starts from 1 at Ω = 0 and 

therefore the denominator is (s + c0Ωp) × (s2 + b1Ωps + c1Ωp
2) and the numerator will be c0c1Ωp

3. 

I know the value of Ωp but you require only ΩpT/2 and that is equal to 1. We have to calculate y3 

which is the same as c0. 
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(Refer Slide Time: 40:14 - 41:24 min)  

 

 
 

y3 = ½[(√(1 + (1/0.509)2) + (1/0.509))1/3 – (√(1 + (1/0.509)2) + (1/0.509))–1/3]; my calculation 

gives this as 0.494. Now you have to calculate b1 and c1 where b1 is 2y3 sinπ/6, which simplifies 

to 0.494. And c1 is (0.494)2 + cos2 π/6 = 0.994. 

 

(Refer Slide Time: 41:28 - 44:08 min)  
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It is very close to 1 but not exactly 1. You can now substitute ΩpT/2 and sT/2 and so on. The 

final result is 0.491 (1 + z–1)3 (if it does not come then you have made a mistake) in the 

numerator and in the denominator, it is 1 – 0.343z–1 + 0.604z–2 – 0.204z–3.  

 

Now it is up to you to put z = ejω, find its magnitude response and see how much is the deviation 

because of truncation upto the third place of decimal. You can also see, if you use a MATLAB, 

how the error gradually diminishes by extending the number of digits to the right. We shall close 

this example here. 

 

So far we have confined to only low pass filter. How do you design other kinds of filters like 

high pass, band pass and band stop? In general, the specs are ωp’s, ωs’s, δp‘s, and δs’s. Multiple 

values of each spec are needed. For example, even a simple band pass filter has ωp1 and ωp2, ωs1 

and ωs2, δp, and δs1 and δs2. 

 

(Refer Slide Time: 46:14 - 48:49 min) 

 

 
 

In multi-band pass filter, δp may be different in different pass bands; then you choose the 

minimum tolerance. But if it is a stiffer requirement, then you may have to use a different kind of 

transformation from S to s; simple band pass or band stop transformation may not suffice. You 
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may have to find your own transformation. What you do is you convert ωp and ωs into Ωp and Ωs. 

δp and δs remain the same and from these, you find out the Normalized Analog Low Pass Filter. 

For the Normalized Analog Low Pass Filter, δp and δs are known, Ωp the end of the pass band, is 

1. So all that you have to find out is the transition ratio, for which you require Ωs, the beginning 

of the stop band of the normalized filter. From this Normalized Analog Low Pass Filter, you use 

the transformation S to s and therefore you get Ha(s). Then you obtain the digital filter by using 

the Bilinear Transformation: s = (2/T) (1–
1
z
−

)/(1+
1
z
−

). Now let us recall the transformations. If in 

the Normalized Analog Low Pass Filter the frequency variable is S, then from here to a de-

normalized LPF, we simply put S = s/Ωp. If it is analog high pass filter, then we use S = Ωp/s. 

Here Ωp is the required cutoff frequency in the transformed filter. 

 

(Refer Slide Time: 48:57 - 51:02 min)  

 

 
 

If it is analog band pass filter, then we use s = (s2 + Ω0
2)/(Bs). If it is analog band stop filter, then 

we use the reciprocal of this, which is Bs/(s2 + Ω0
2) where the specs may not ensure geometric 

symmetry. But you have to ensure that the product Ωp1 Ωp2, which is equal to Ω0
2 should be 

equal to Ωs1 times Ωs2. If it does not happen, then for a bandpass case, either decrease Ωs2 or 

increase Ωs1 but do not do the reverse. Now, in order to illustrate the process we shall completely 

work out a fairly complicated example. We take a band stop filter design of fairly stiff 
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tolerances. The tolerance is 0.3 decibel in the pass band and the pass band extends from 0 to 100 

radians per second. From 200 to 300 rad/sec, the attenuation must be at least 35 decibels. For the 

other pass band, fortunately the tolerance is the same, and it extends from 700 to 1500 rad/sec 

which means that the sampling frequency FT = 3000 radians per second.  

 

(Refer Slide Time: 51:26 - 54:02 min)        

 

 
 

So 3000/(2π) Hertz is the sampling frequency. And T is π/1500. First thing to do is to convert the 

specs to normalized digital filter specs. And ω would be π at 1500 rad/sec, and 7π/15, 3π/15 

(which is π/5), 2π/15 and π/15 would correspond to 700, 300, 200 and 100 rad/sec. The next step 

is to calculate the Ω for the analog filter corresponding to pass and stopband edges, by using Ωi = 

(2/T) tangent of ωi/2. My calculation gives π/15 converting to 100.367 (this is Ωp1), and 2π/15 

converting to 202.977 (this is Ωs1). 
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(Refer Slide Time: 54:09 - 57:17 min)  

 

 
 

Similarly, π/5 converts 310.275 (this is Ωs2) and 7π/15 converts to 859.823 (this is Ωp2). Now we 

should calculate Ω0
2 from Ωp1 and Ωp2 and this comes out as (293.765)2 (radian per second)2. 

Then you also have to find out the square root of Ωs1 Ωs2 and see whether geometric symmetry 

exists or not. And if you put down the values my calculation gives 250.956 radians per second.  

 

(Refer Slide Time: 57:24 - 59:01 min)  
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Obviously geometric symmetry does not exist but you have to bring geometric symmetry and Ωs2 

has to be increased. So change Ωs2 to Ωs2′ = (293.765)2/202.977 and this comes out as 452.162 

radians per second. After you have done this, now you are in business and if you want to take a 

stock of this situation you draw the analog filter characteristic. Incidentally when you do this, 

convert 0.3 dB to a fraction; by the usual calculation, this comes to 0.966, a pretty stiff tolerance 

and this frequency now corresponds to 100.367 in radians per second. Ωs1 remains the same at 

202.977 but Ωs2 has now changed to 452.162. The stopband tolerance is 35 decibel, which comes 

as 0.0178, and Ωp2 is 859.823. We shall proceed next time starting from this.  
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