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Digital systems (contd.); inverse systems, stability, FIR and IIR, recursive and non 

recursive 

 

We continue our discussion on digital systems. Today’s topics are inverse systems, stability 

criterion, difference equations, FIR and IIR, recursive and non recursive.  
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Although I have put a large canvas, we shall uncover only that part which we can do 

comfortably. In the last lecture, we had first clarified a question about time invariance and the 

example in question was an up-sampler. We showed that even if the waveform is preserved, the 

number of samples by which the output is delayed is not the same as the number of samples by 

which the input was delayed. Then we introduced the terms impulse response and step response 

and commented that the two responses are intimately related to each other. We illustrated the 
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impulse response and step response by various kinds of accumulators. We also took an example 

of up-sampler and an interpolator. Then by simple reasoning, we derived a convolution equation 

for an LTI system and we said that if y(n) is the output to the input x(n), then all have to do is 

x(k) × h(n – k) and sum it up from k = – infinity to + infinity. For special cases, the limits 

change. For example, if x(n) is casual, then the lower limit becomes 0. If x (n) is casual and h (k) 

is also casual, then the lower limit is 0 the upper limit becomes n.  
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Then we took an example of calculation of the convolution sum by the usual graphical method, 

that is shifting one of the sequences one step at a time either to the right or to the left depending 

on which particular sample of the output you wish to compute. I also introduced a trick by which 

this graphical step by step procedure is not needed. That was simply the same process as that of 

arithmetic multiplication except that there is no carry and except for the fact that you must keep 

track of your reference, that is the pivot y (0). That occurs when the sum of indices of x and h 

equals zero. If it is x-1, the corresponding h term must be h1 and so on. Then you go to the right 

one step and you get y(1); and two steps to the right gives you y(2) and so on. I would like to 

introduce you to a third trick which is equivalent to the trick that I mentioned earlier. But it is 

interesting from the point of view of history of DSP.  

 

2 
 



The Geophysicists were the first ones to use DSP without knowing that they were doing digital 

signal processing. Let us take the same example: x(n) = {x – 1, x0, x1, and x2}. The geophysicist 

said that instead of writing the sequence, let us write it in the form of a polynomial. They 

introduced an arbitrary variable; let us call this variable as p. The polynomial form of x(n) is then 

X(p) = x-1(p to the power minus 1) plus x0 (p to the power zero) plus x1p plus x2(p to the power 

2). Please follow this carefully and appreciate how intelligently they hit upon what is now known 

as Z- transform. They did not know the Z-transform. Z–transform came much later, in 50’s, 

whereas geophysicists did this in 40’s. They said that we will convert x(n) into a polynomial 

X(p). The power of the variable indicates the position of the sequence. Since p0 is 1, we have 

X(p) = x – 1 p – 1 + x 0 + x1 p + x2 p2. They were also required to do convolution for finding some 

geophysical parameters of interest and importance. Similarly, if our h sequence was: {h–2, h–1, h0, 

and h1}, the corresponding polynomial will be H (p) = h –2 p–2 + h –1 p–1 + h0 + h1p. The power of 

the variable indicates the position of the number in sequence. They said that, in order to find the 

convolution summation, you multiply X(p) by H(p). 
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Then you get X(p)H(p) = (x – 1 p – 1 + x 0 + x1 p + x2 p2 ) × (h –2 p–2 + h –1 p–1 + h0 + h1p); 

expanding this, you will also get a polynomial in terms of powers of p. Precisely, X(p)H(p) = h–2 
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x–1 p–3 + (h –2 x 0 + h –1 x – 1 )p–2 +(h–2 x1 + h –1 x 0 + h 0 x-1 )p–1 + ... Don’t you see that the 

coefficient of p to the power minus 3 is y(–3), that of p to the power minus 2 is y(-2), that of p to 

the power minus 1 is y(-1) and so on? Thus X(p) H(p) = Y(p) and the output sequence is 

obvious.  

 

Is the process clear? What we are doing exactly is arithmetic multiplication except that we are 

not putting in the form of a table, but we are doing this by algebra.  
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This is how the geophysicists used to compute convolution and this is also a trick. In graphical 

shifting, you make one mistake and your total result is shattered. As those of you, who have 

some familiarity with Z-transforms, will recognize, this is nothing but application of Z-

transform, except that instead of the variable z–1, we have used the variable p. So you can 

compute convolution by at least three techniques viz graphical, arithmetic multiplication or 

multiplication of two polynomials. If you are in doubt, check it by one more method. I have not 

completed this example which I hope you would be able to do. You show that the result is 

exactly the same as that obtained by any other method.  
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Next, we will talk about inverse digital systems. A system with impulse response h1(n) is said to 

be inverse of another system whose impulse response is h2(n) if and only if the convolution 

h1(n)* h2(n) = δ(n). If the convolution gives you a unit impulse, then the two systems are said to 

be inverses of each other. The reason for the nomenclature is very simple; if the output of h1(n) is 

connected to the input of h2(n), and input to h1(n) is x(n), then the output shall also be x(n) 

because x(n) convolved with δ(n) is simply equal to x(n). Two systems h1 and h2 are inverses of 

each other if their convolution gives rise to a unit impulse function δ(n).  
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Let us take an example. Suppose we take the accumulator y(n) = sigma (k = 0 to infinity) of x(n 

– k). We wish to find out its inverse. So the first thing we do is to find h(n) which is sigma (k = 0 

to infinity) δ(n – k). Isn’t this precisely u(n), the unit step function? If an inverse system exists 

and its impulse response is h prime (n), then h(n) convolved with h prime (n) should δ(n). In 

other words, h prime (n) convolved with u(n) should be equal to δ(n). Now δ(n) can be written as 

u(n) – u(n – 1). Thus we need u(n)*h prime(n) = u(n) – u(n – 1). Clearly, h prime(n) = δ(n) – δ(n 

– 1).  
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Thus h prime (n) consists of only two samples, one at n = 0 of amplitude 1 and the other at n = 1 

of amplitude – 1.  
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The inverse of a system may or may not exist. It does not exist, if the inverse system is unstable.  
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Next, consider a parallel interconnection: A system h1(n) is in parallel with h2(n); this is 

equivalent to a single system in which the impulse response is h1(n) + h2(n) because there is 

parallel processing. This system is very important in practice because it enhances the speed of 

processing. When h1(n) delivers its output signal, simultaneously h2(n) also delivers its output 

signal. Therefore if a complicated high order system is broken up into simpler systems and 

connected in parallel, then the speed of processing goes up. Parallel processing is important for 

digital systems and wherever possible, instead of serial or sequential processing, one resorts to 

parallel processing. What can you say about the stability of the system? That is a very good 

question. In a parallel system if h1(n) and h2(n) are individually stable is there a possibility that 

the system becomes unstable? No. Suppose one of them is unstable the other is not then the 

whole system is unstable because the unstable subsystem processes the signal independently of 

the stable one. If one system goes wild, the whole system goes wild.  
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Stability, as I have defined, is in the sense of bounded input leading to bounded output. For an 

LTI system, stability can be characterized by its impulse response h(n). I will first state a 

theorem relating to stability and h(n), and prove the necessity as well as sufficiency. It is a very 

simple theorem. It simply says that a linear time invariant (LTI) system is stable if and only if the 
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quantity S, defined as summation of absolute value of h(n), is bounded where n goes from – 

infinity to + infinity. Bounded means less than infinity. Another way of saying the same thing is 

that the impulse response is absolutely summable. Thus absolute summability of the impulse 

response ensures stability. Now we prove it in the forward direction and also in the reverse 

direction. First, we prove that if S is less than infinity, then the absolute value of y(n) is also less 

than infinity. It is very simple to prove because your y(n) is nothing but summation[x(k) h(n – 

k)]. In general, the limits of k are – infinity and + infinity.   
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As the operation of convolution is commutative, so we can also write: y(n) = summation [x (n – 

k) h(k)]. We are talking of BIBO stability. So let x(n) can be bounded by some quantity Bx, 

which is less than infinity. Then magnitude y(n) shall be less than equal to the summation 

[magnitude (x (n – k)) × magnitude h(k)]. If x(n) and h (n) are all real numbers and all of the 

products are positive, then we do not have to use the absolute sign. We are using the absolute 

sign, because x (n – k) as well as h(k) may be either positive or negative. Using magnitudes gives 

the upper bound and therefore |y(n)| is less than equal to the summation. Suppose we replace 

each x (n – k) by Bx that is by its upper bound. Then I can take Bx outside and then I get 

summation |h(k)|, which is equal to S; therefore if S is less than infinity then SBx is also less than 
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infinity. In other words we have proved that if h(n) is absolutely summable, then the system is 

BIBO stable. Now we have to prove it conversely. What is the converse statement? If the output 

is bounded i.e. if the absolute value of y(n) is less than infinity with x(n) bounded, then S should 

be less than infinity. In the previous step, we assumed S as less than infinity; now we assume that 

the output is bounded and prove that S is less than infinity. So let the output be bounded.  
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Let the output be bounded by some bound By less than infinity. Let us take y(n) = summation [x 

(n – k) h(k)]. Let us take x (n – k) = + 1, when h(k) is positive, and x (n – k) = – 1 if h(k) is 

negative. Depending on the sign of h(k), we choose our x(n – k) as either + 1 or – 1. Then what 

does the sum become? Under this condition, y(n) = summation |h(k)| = S. Therefore if y(n) is 

bounded, S should also be bounded. So it is a proof of the theorem that an LTI system is BIBO 

stable if and only if h(n) is absolutely summable. Absolute summation simply means that 

summation of the absolute value over all values of n is less than infinity. We shall use this a little 

while later to prove something else.  
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A digital system in general is described by a difference equation. For example, y(n) – ά y(n – 1) 

= x(n) is a difference equation; y(n) = x(n) + x(n – 1) + x(n – 2) is also a difference equation. The 

first one is a recursive difference equation while the second one is non recursive. Let me explain 

the terms recursive and non recursive. The first equation uses a past value of output; the second 

one does not. The first equation is recursive while the second is non recursive. In general, an LTI 

digital system is described by an equation of this form: y(n) + b1 y(n – 1) + b2 y(n – 2) + …… 

+bN y(n – N) = a0 x(n) + a1 x(n – 1) + ……. aM x(n – M). There is no obligation for M and N to 

be equal. M may be greater than, less than or equal to N. I have written present output y(n) with 

a coefficient of 1. If it is not, if it comes with a coefficient b0 we shall divide throughout by b0. 

So it is always possible to write it in this form and we shall always do it. It is a discipline which 

we shall follow. Now the order of the system in such a difference equation is higher of the two 

quantities M and N, i.e. order = higher (M, N).  
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Given this difference equation description of a system and given the fact that it is causal you can 

compute y(n) for any n greater than or equal to some quantity n0 provided initial conditions on 

the system are given prior to n = n0. On this topic of solution of difference equation, we shall 

spend a little time.  
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Given a difference equation for y(n) as a linear combination of x(n), x(n – j) and y(n – i), that is, 

given a linear difference equation, the solution is exactly like that of a differential equation; it 

consists of two parts, namely a part which is called the complementary function, and the other 

called a particular solution. The complementary function is the solution to the given equation 

with x(n) = 0. That is x(n), x(n – 1) and x(n – M) are all equal to 0. In the differential equation, to 

find the complementary function, you put right hand side equal to 0. It is exactly the same. Then 

you add it to a particular solution. Particular solution is the solution with x(n) ≠ 0.  

 

Now, whenever you solve an equation with right hand side equal to 0, there would be some 

unknown constants. These constants have to be found out from the initial conditions. If it is a 

second order system, then you require two initial conditions. If it is of third order, then you 

require three initial conditions. From the initial conditions, you can find out the constants in the 

complementary function yc(n). yp(n), the particular solution shall have no constants; yp(n) shall 

be completely determined from the difference equation. The constants have to be found out not 

before adding the particular solution; it is to be done after adding the particular solution. This 

point must be remembered. The equation obtained by putting x(n) = 0 in the given difference 

equation is called the homogenous equation.  

 

For example, the homogenous equation in our case shall be y(n) + b1 y(n – 1) +……. + bN y(n – 

N) = 0. The solution to this equation shall be yc(n), called the complementary function, exactly 

like linear differential equation. yc(n) in general shall contain N number of constants. These 

constants have to be evaluated from initial conditions but not at this stage. You must first find 

out what is yp(n), add yp(n) to yc(n) and then put initial conditions. This step is extremely 

important. Initial conditions are called for only after you find the particular solution and add it to 

the complementary function containing N number of unknown constants. I repeat, do not 

evaluate the constants before adding the particular solution.  
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If you have an equation y(n) + b1 y(n – 1) + … + bn y(n – N) = 0, then the complementary 

function is obtained by trial solution of the form y(n) = λ to the power n (compare with 

differential equations, where the trial solution is y(t) = e to the power mt). λ to the power n is 

also an exponential, because λ can always be written as e to the power m. If you put y(n) = λ to 

the power n in the equation, then you get λ to the power n + b1 λ to the power n – 1+ …+bN λ to 

the power (n-N) = 0. From this, obviously you can cancel λ to the power n from both sides 

provided it is not 0. If λ to the power n = 0, then you have no equation and no solution. So λ to 

the power n can be cancelled from both sides; what will you get? If you cancel λ to the power n 

and multiply by λ to the power N, then the last term would be bN and the first term would be λ to 

the power N. The second term would be b1 λ to the power N – 1. So the equation becomes λ to 

the power N + b1 λ to the power N – 1+…+bN = 0. The left hand side is called the characteristic 

polynomial of the linear time invariant system. The roots of this characteristic polynomial, or the 

solution of this characteristic equation obtained by equating the characteristic polynomial to 0, 

are called eigenvalues. The fundamental theorem of algebra says that if you have a polynomial of 

degree N, then it has N number of roots. Therefore let the roots of this characteristic equation be 

λ1, λ2, and so on, up to λN. 
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Since we had tried the solution λ to the power n and λ can take any of these values, our solution 

yc(n), which is the complementary function, would be of the form ά1 λ1 to the power n + ά2 λ2 to 

the power n+…+ άN λN to the power n. This will be the complementary function or the solution 

to the homogenous equation which contains the constants ά1, ά2… άN. It is very tempting at this 

stage to put the initial values such as: y(0), y(– 1), y(–2) and so on to find the constants, but this 

temptation must be done away with because you shall end up in a wrong result. Evaluation of the 

constants has to be done later after you have added the particular solution to the complementary 

function. In this formulation, we have assumed that none of the λ’s are identical, that is we 

assumed distinct roots. If some of the roots are repeated, for example in the equation λ square-4 

= 0, obviously λ1 = λ2 = 2; it is a case of repeated roots. We shall see a little later how to tackle 

the case of repeated roots.  
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The particular solution yp(n) is very simple to find. In general, yp(n) is of the same form as the 

input x(n). In other words, if x(n) is a constant k, then yp(n) shall also be another constant k1. If 

x(n) is sinusoidal then yp(n) is also sinusoidal. If x(n) is A cosine (n (omega) 0 + theta), then 

yp(n) would be some other constant B times cosine (n (omega)0 + phi). If x(n) is A(α)n, an 

exponential, then yp(n) also be some other constant C times α to the power n. So the particular 

solution is very easy to find. We assume yp(n) to be of the same form as given x(n) with 

unknown constants. If x(n) is k then you assume it to be k1. Similarly, if it is sinusoidal, then you 

assume two constants B and phi in the same form as the input. If x(n) is (α)n then you assume 

yp(n) = C(α)n
. You substitute the assumed yp(n) in the given difference equations and find out the 

unknown constants. When the assumed particular solution is substituted in the given equation, 

you get yp(n) completely along with its constants. After finding yp(n), you come back to the 

complementary function. That is you add yp(n) to the complementary function and then you 

invoke the initial conditions. We shall take one or two examples, but before I do that, I would 

like to talk about the case of repeated roots.  

 

 

 

15 
 



(Refer Slide Time: 45:35 - 49:50) 

 

 
 

Suppose in the Nth order equation that we had, one of the roots λ1 is repeated L times, then you 

have the other roots as λL+1, λL+2,…λN. The total number is N. L of them is repeated and N-L are 

distinct. If that is the case, then your complementary function will be of the form [(α1) + n(α2) + 

n2 (α3)+…+ nL–1 (αL)] 
1

nλ + (αL+1) (λL+1)n +…..+ (αN) (λN)n. How many constants have we used? 

It is exactly N of course. If a root is repeated twice, for example, then you simply use (α1 + n α2) 

λ1 to the power n. The highest power of n in the polynomial multiplying λ1 to the power n is 1 

less than the number of repetitions. This is in general the solution for the complementary 

function. For the particular solution, you simply put y(n) of the same form as x(n) and find out 

what the constant is. That would be the complete particular solution. Particular solution should 

have no constants. Add that to the complementary solution and then invoke N number of initial 

conditions to find out the N number of constants α1, α2 and so on. Let us take an example. 
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We take y(n) + 0.5 y(n – 1) = 2u(n) and the problem is to find y(n) for n greater than or equal to 

0. It is a first order equation and you require one initial condition, and it is given that y(– 1) = 2. 

For the complementary function, the equation to be solved is (λ)n + 0.5(λ)n–1 = 0. This gives you λ 

= – 0.5. Therefore yc(n) is of the form k (– 0.5)n
. I do not evaluate k by invoking initial 

conditions; rather I first find the particular solution. To find out the particular solution, I assume 

it to be of the same form as the given input which is a constant equal to 2.  
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So I assume yp(n) = some constant k1. Substitute it in the original equation. The equation is y(n) 

+ 0.5 y(n – 1) = 2. So I get k1 + 0.5k1 = 2. y(n – 1) is also k1 because yp(n) is a constant. So k1 = 

2/1.5 = 4/3. I do not write it is as 1.3333 recurring. In a DSP system, you must be careful; 

maintain a fraction till you are forced to change it because as soon as you make a truncation you 

make an error. Truncation will have to be done because of finite word length. 4/3 cannot be 

represented by a binary number, so you will make error there. Why introduce an error at this 

stage? In the calculation you keep the number as a fraction as long as you can. If it is 1.73 then 

you are permitted to do that. But if it is recurring then you do not. Pi: keep as pi; exponential e: 

keep as exponential e as long as you can. So what we do now is, yc(n) = k(– 0.5)n, the 

complementary function and I add it to 4/3. Then I put the initial condition, that is y(–1) = 2 = k( 

– 0.5)–1 + 4/3 and you can very easily show that k comes as – 1/3.  
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Therefore my total solution is: y(n) = – (1/3) (–0.5)n + 4/3. Now I am tempted to take another 

complicated example in which the input is of the same form as one of the eigenvalues. Let us 

take x(n) as (– 0.5)n u(n). Now you have a problem, input is of the same form as the 

eigenfunction of the system (λ)n. The complementary function is the same. What is the 

complementary function? yc(n) = k(– 0.5)n and yp(n) you assume as k1n(– 0.5)n because it is an 

eigenfunction of the system. What you do is exactly like the case of repeated roots. Substitute it 

in this equation to find k1, but I will omit the calculation. If you substitute that we get k1 = 1.  
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Thus the total solution is y(n) = (k + n) (– 0.5)n
. And at this point you introduce the initial 

condition y(– 1) = 2. If you put this you get (k – 1) (– 0.5)–1 = 2. Our equation now becomes 2 = – 

2k + 2. What does this give for k? It gives k = 0. The complementary function therefore does not 

exist. That means there are no transients in this system for this input. It is a very interesting case. 

I think we should stop here.  
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