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This is the 7th lecture on DSP and we propose to discuss FIR and IIR types of digital systems, 

and recursive and non recursive realizations and we wish to gain an entry to the frequency 

domain. In the last lecture, we had reviewed the trick for convolution that I talked to you about in 

lecture 5. Then I said it can be done also by polynomial multiplication and we saw that the 

results are the same; they have to be the same. We discussed what an inverse system is and we 

gave an example of an inverse system. Then we also mentioned that parallel interconnection 

adds up the impulse responses. It is very important in practice because parallel processing speeds 

up the operation. So for fast DSP, you have to use parallel decomposition. Then we talked about 

stability in terms of h(n) and we said that the system is stable if the impulse response is 

absolutely summable. The limits are from – infinity to + infinity and we ended up in discussing 

difference equations which are very similar to differential equations in the continuous time 

domain. Then we said that the solution to a difference equation consists of two parts: the 

complementary part and the particular solution. And I also made a strong point about the 

common mistake that people do to evaluate the constants of the solution. The constants should be 

evaluated only after adding the particular solution. The particular solution is of the same form as 

that of the excitation except for cases where the excitation also contains an eigenvalue of the 

system. The eigenvalues are the roots of the characteristic equation or the zeros of the 

characteristic polynomial. We discussed the cases of distinct roots, and repeated roots, and then 

we took an example of an excitation containing one of the eigenvalues.  
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There is another method that is followed in practice, particularly in systems engineering because 

of its physical interpretation. This other way is to view it as a problem of superposition. The 

response of a system depends on the input as well as the initial conditions. Initial conditions are 

also known as initial states of the system. That is, if you specify initial conditions, then you know 

what is the condition of the system before the excitation has been applied. The superposition 

principle says that if it is a linear system, then the response would be due to each excitation 

applied separately and then you add up all of them. Now the excitation in a difference equation 

or a digital system consists of two parts, namely the input x(n) and the initial states. Therefore 

the output response y(n) shall be the sum of two components: zero input response plus the 

component due to zero state. This is another way of looking at the complete solution. However, 

the zero input solution is not the same as the complementary function, there is a difference.  The 

solution under zero state conditions is not the same as the particular solution; one has to 

distinguish between the two. I want you to follow this carefully and then I will tell you which 

procedure I prefer. The output under zero input condition is the solution to the equation with x(n) 

= 0. Therefore the form of the solution shall be the same as the form of the complementary 

function. The difference is that this solution now shall be totally determined from the initial 

conditions. Call this solution as yzi(n). 
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In our previous procedure, I warned you that the initial conditions have to be evoked only after 

adding the complementary function to the particular solution. In this alternative procedure, the 

zero input condition is the output with x(n) = 0 with the constants determined from the initial 

conditions. Naturally this will be different from the complementary function. Zero state 

condition says that initial conditions are 0. You find the solution to the equation, which will 

consist of a complementary part and a particular solution. And then evaluate the constants by 

putting initial conditions equal to 0. Call this solution as yzs(n). yzi(n) is simply the 

complementary function with constants determined from the initial conditions, yzs(n) is the total 

solution to the equation that is complementary function plus particular solution with constants 

determined from  zero initial conditions. These are two different procedures for finding the 

solution to a difference equation. This is what the system theorists prefer because both zero state 

conditions and zero input conditions are realizable in practice and in an experimental situation, 

this is to be preferred. As far as theoretical computation is concerned, I prefer the previous 

procedure because in the alternative procedure, you have to find the constants twice. In the 

former procedure, the constants are evaluated only once.  
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But you should understand what we mean by zero state and what we mean by zero input 

condition. You take any of the examples that we did last time and you work out according to this 

procedure and then verify that the ultimate solution is the same. It has to be the same, there is no 

other alternative. But as far as computation or calculation on paper is concerned we prefer the 

previous procedure because the constants have to be determined only once. As an example of 

zero state response, you know that if I feed an impulse function δ (n) to a digital system, which 

is linear, time invariant and causal, then h(n) = 0, for n less than 0. It means that h(n) is the zero 

state response of the system. h(n) = 0 for n less than 0 means that the system is initially relaxed. 

There are no initial conditions; h(n) is defined like that. To find out h(n), you must first reduce 

the system to one with zero initial state. All initial conditions are made equal to 0. So we say that 

h(n) is the zero state response of an LTICDS,  that is Linear Time Invariant Causal Digital 

System. h(n) is an example of zero state response.  
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Therefore the form of h(n) shall be 
N
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same form as the complementary function because ( ) 0nδ =  for n greater than 0. Now stability 

demands that summation absolute value of h(n) should be less than infinity. If this summation is 
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Now, magnitude of alphai should obviously be finite. If iα  is not finite, then your system to 

start with is unstable. So iα  is finite and therefore n

iλ  should be less than infinity for all i and 

n. How can you guarantee this? The condition is that  || iλ  must be less than 1, for all i. If iλ = 

2, which you got earlier in an example, then the system is unstable. We took a first order system 

where the eigenvalue was – 0.5; that was a stable system. But if one of the roots of the 

characteristic equation exceeds unity in magnitude, the system is unstable. As you shall see later, 

these eigenvalues are also the poles of the system in a complex plane. So the poles should be 

confined to be within a unit circle.  
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We shall come to this later after we introduce the z - transform. But right at this stage when we 

are working in the time domain, you know that the roots of the characteristic equation must be 
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such that they are bounded in magnitude by unity. Even iλ  = 1 is not permitted, because it is 

marginally stable. We cannot work with a marginally stable system because you never know, due 

to some small perturbations, the system may go wild. 

 

Now we introduce the terms FIR and IIR. Finite impulse response and infinite impulse response 

refer to the length of the impulse response. An FIR system has h(n) which is non zero for N1 n≤  

≤  N2 and it is zero everywhere else. That is, our range of vision on the n axis is limited on both 

sides. 

 

(Refer Slide Time: 16:22 - 17:12)  

 

 
  

In a finite impulse response or FIR system, the output would be given by the convolution 

summation ∑ x(k)h(n – k). Of course, we are talking of a linear time invariant system; k shall go 

from N1 to N2; so the limits are finite and there are only N2 – N1 + 1 number of samples in the 

impulse response. On the other hand, if N1 or N2 or both go to infinity then the system becomes 

IIR. If the length of the impulse response goes to infinity, it is an infinite impulse response 

system. The moving average system y(n) = 
1

0

1 ( )
M

k
x n k

M

−

=

−∑ is an FIR system. What is the 
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sequence h(n)? The samples are: h(n) = {1/M, 1/M,……1/M} starting at n = 0 and ending at n = 

M – 1. All the samples are equal. It is a rectangular gate u(n) – u(n – M), multiplied by 1/M.  

 

(Refer Slide Time: 17:16 - 19:50)  

 

  
 

Whether it is FIR or IIR, the output can always be written as a convolution summation, that is, it 

can always be written as ∑  [x(k)h(n – k)]. The limits shall depend on the nature of x(k) and 

h(k). For example, if x(k) and h(k) are causal, that is the system is causal, and the  input is also 

causal, then k goes from 0 to n. Now in the computation of this, whether it is FIR or IIR, we are 

only using the present value of the input and the past values of input. We are not using any past 

value of the output. Therefore this computation is non recursive. The most natural way of 

computing FIR filters is non recursive; convolution summation shows that IIR filters can also be 

computed non recursively although, in general, IIR filters are more convenient to compute 

recursively. In other words, FIR is not necessarily non recursive and IIR is not necessarily 

recursive. Recursive and non recursive are the two terms which are used to describe the process 

of computation: whether you require feedback or you do not require feedback. Recursive 

computation requires feedback and non recursive does not require feedback.  
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As I have shown, the convolution operation does not make a distinction between FIR and IIR. 

Therefore IIR filters can also be computed non recursively although, in general, it is more 

convenient to compute it recursively. I have shown examples of recursive computation earlier.  

 

(Refer Slide Time: 20:03 - 22:40)    

 

 
 

What about an FIR filter? Can it be computed recursively? Let us take an FIR system y(n) = x(n) 

+ x(n – 1). Obviously the computation is non recursive. But I can also write y(n – 1) = x(n – 1) + 

x(n – 2) and I have the freedom to write y(n) – y(n – 1) = x(n) – x(n – 2). That is, y(n) = y(n – 1) 

+ x(n) – x(n – 2) and this is recursive computation. I require the present value of the input, the 

value of input two samples earlier, and the last output sample. This is computation with 

feedback. Therefore FIR filters can be computed recursively or non recursively. IIR filters also 

can be computed either recursively or non recursively. The two terms should not be confused 

with each other.  
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Take an example of a digital integrator. What is an analog integrator? Analog integrator is 

defined by y(t) = 
0

t

∫  ( )x τ  dτ . We assume that x(t) is causal. Now if I wish to do it in the sample 

domain, we can write y(nT) = y[(n – 1)T] + 
( 1)

nT

n T−∫  ( )x dτ τ . This is the exact equation; I have 

integrated  up to n – 1 times T,  then I have  integrated  between the  interval (n – 1)T to  nT. 

Now, I have to approximate 
( 1)

nT

n T−∫  ( )x dτ τ  because x(t) is known only at (n – 1)T and nT. I do 

not know the value in between, it is not defined for a digital signal. Therefore  I can  approximate 

y(nT) as y[(n – 1)T] + ½[x(n – 1)T + x(nT)]T. This second term is T multiplied by average value 

of x(t) between the two limits. This is how integration is carried out by a digital computer. A 

digital computer handles only digital numbers. This is called a numerical approximation 

procedure. There are many algorithms for numerical integration; this is one of them, perhaps the 

simplest. You just take the average value and then multiply by the interval. If I translate this in 

the digital domain, I shall drop T from the arguments and write y(n) = y(n – 1) + (T/2)[x(n) + x(n 

– 1)].  
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Let me write it again y(n) = y(n – 1) + (T/2)[x(n) + x(n – 1)]. From this equation can you guess 

whether it is an FIR or an IIR system? It is not obvious, the only thing I know that it is being 

computed recursively because I require a y(n – 1). Incidentally, this is what forms the basis of 

the so called bilinear transformation which we shall discuss at a later date. But let us assume that 

the system is causal. Causal means h(n) = 0 for n less than 0. Now h(n) = h(n – 1) + (T/2)[δ (n) + 

δ(n – 1).  Because h(n) = 0, n 〈 0, we start computing from n = 0. Since h( – 1) = 0; δ(0) = 1, and 

δ( – 1) =  0, h(0) is simply (T/2). What is h(1)? h(1)  = h(0) + T/2 = T; h(2) = h(1) + a term which 

does not contribute anything beyond n = 1 and therefore it is simply equal to T and this 

continues. Thus h(n) = T  for all n greater than equal to 2, continuing to n = infinity. Therefore 

the impulse response is of infinite length.  
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If you so desire, you can write this as h(n) = (T/2) δ(n) + Tu(n – 1). Is there some other way I can 

express this? Yes, you can write h(n) = Tu(n) – (T/2) δ(n). There are many ways of expressing 

the same result; you can use the suitable one.  

 

(Refer Slide Time: 30:17 - 31:16)  
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This is an infinite impulse response system. Recursion and non recursion have nothing to do with 

the length of the impulse response. A system with any length of the impulse response can be 

computed recursively as well as non recursively.  

 

Now it is time to enter into the frequency domain representation of digital signals.  In the analog 

domain, there are various kinds of transforms which takes t, the time variable, to a frequency 

variable. The latter can be ω if it is Fourier transform or the complex variable s if it is Laplace 

transform. In the digital domain, the Fourier transform is the most important one, while 

corresponding to the Laplace transform, we have the z transform. We shall talk about both but it 

is important to recognize that we use the same term, viz. Fourier transform for both analog and 

digital signals. Most of the text books write this as discrete time Fourier transform (DTFT). I find 

this pretty confusing because we shall also introduce what is DFT. DTFT and DFT are very close 

to each other; so instead of discrete time Fourier transform, I shall simply call it as Fourier 

transform. DFT is something else we shall define at a later date. The Fourier transform of an 

analog signal x(t), as you know, is X (jΩ ) = 
∞

−∞∫  ( ) j tx t e− Ω dt. We have used capital Ω  instead of 

the usual small ω, because small ω is a symbol we have reserved for normalized digital 

frequency. This involves integration. In the digital signal domain, the Fourier transform of a 

sequence x(n) is very simply defined as the summation x(n) e–jωn; here ω is normalized digital 

frequency; n, in general, goes from – infinity to + infinity. This is the definition of the Fourier 

transform. You see that the FT is a series in ejω. Hence the argument of X is taken as ejω. Note 

this difference in notation.   
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Let me write this again: X(ejω) = ( ) j n

n
x n e ϖ

∞
−

=−∞
∑ ; it is a much simpler expression than the analog 

FT. In general X(ejω) is a complex quantity because ejω is cosω + jsinω. Therefore I can write 

X(ejω) as a real part (Xr) plus an imaginary part jXj. Both Xr and Xj are real quantities. I am not 

writing the argument, which is ejω. X(ejω) can also be written in terms of magnitude and phase, 

that is you can write this as |X| je θ where θ  is the angle of X. Let us write this as jMe θ . If you 

look at the definition carefully, you observe that X(ejω) is a continuous function of ω. Although 

x(n) is a discrete signal, it exists only at n = 0, ±  1, ±  2 etc, in the frequency domain it is a 

continuous function of ω. It also shows that if ω is increased or decreased by 2π or any multiple 

of 2π, the function does not change because ( 2 )j ke ω± Π  = je ϖ . Therefore X(ejω) is a periodic 

function of period 2π and this strengthens our earlier statement that our range of vision is from – 

π to + π. We do not have to go beyond that because we have a periodic function.  

 

The other thing one should remember is that in the real part, if ω changes to – ω, it does not 

change. It is an even function of ω because the magnitude is even and cosӨ is an even function. 

The real part is nothing but magnitude M multiplied by cosӨ. The magnitude is even, while the 

phase is odd; if you change ω to – ω, sign of the phase changes. The magnitude and real part are 
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even functions. The imaginary part and the phase are odd functions. Further, notice that Ө is also 

periodic with a period of 2π. If theta is incremented by 2π neither cosine changes nor sine 

changes and therefore, while M (ω) can be found uniquely, there exists a fuzziness or uncertainty 

about the actual value of Ө. If you find Ө = – 45°, it could also be 360° – 45° or 720° – 45° or – 

360° – 45°. Therefore about the phase, there is an uncertainty. We cannot work with uncertainty 

in the laboratory, in hardware, therefore we decide once for all that we shall only consider the 

principal value. Principal value is the value which lies between – π and + π.  

 

(Refer Slide Time: 35:20 - 40:29)  

 

 
 

Why does one go to the frequency domain at all?  Frequency domain is complex. There is a real 

part and there is an imaginary part. Why does one complicate life? It is because it simplifies life 

in some other fashion. Processing of a signal in time domain is much more complicated than 

processing in frequency domain. For example, convolution requires summation of multiplication 

of two signals; on the other hand, convolution operation is equivalent to multiplication in the 

frequency domain. You do not have to do this graphical shifting etc. So one goes to the 

frequency domain and intentionally complicates life in order to be able to simplify life in some 

other fashion. Be it design, or analysis or synthesis, everything is much simpler in the frequency 

domain than in the time domain.  
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We take an example of Fourier transform. The simplest signal is x(n) = δ(n) which is an impulse 

function. Now δ(n) exists at n = 0 only and therefore this summation in X(ejω) shall be replaced 

by a single term and that is equal to 1. So the Fourier transform of δ(n) is 1. We write this as δ(n) 

⇔ 1. Notice the symbol I have introduced here: a double sided arrow; it means that the Fourier 

transform is unique. In other words, if the Fourier transform is given, you should be able to go 

back to the time domain uniquely; there should be no arbitrariness, no confusion and no 

uncertainty. It must be a one to one representation, otherwise it is invalid. This is why we 

insisted that phase should be viewed only in the principal domain, otherwise there is uncertainty 

and we cannot work with uncertainty.  

 

(Refer Slide Time: 41:36 - 43: 10)  

 

 
 

Let us take a second example: x(n) = (1/2)n u(n). The Fourier transform is X(ej ω) = 

summation[(1/2)n e–j n ω] where n = 0 to infinity which I can write as  summation ([e–jω/2]n) where 

n = 0 to infinity. Does this summation converge?  If it does not, if it diverges, then the Fourier 

transform does not exist. The existence is guaranteed here because the magnitude of (e–jω) is 1. 

The sum is 1/(1 –  [e –j ω/2]). So the Fourier transform does exist and this is the value.  
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For X(ejω ) = 1/(1 –  [e–jω /2]), I can find the magnitude and phase of this function. I can write this 

as 2/[2 – cosine(ω) + jsine(ω)]. So the magnitude I can write as magnitude of the numerator 

divided by the magnitude of the denominator and the magnitude of the numerator is 2. The 

magnitude of the denominator would be square root of [5 – 4cosine(ω)]. This is obvious. And the 

phase is equal to the phase of the numerator, which is 0, – the phase of the denominator, which is   

tan-1 of imaginary part / real part, that is tan-1 {sine (ω)/[2 – cosine (ω)]}. If you look at these 

expressions carefully, X magnitude is obviously maximum when cosine (ω) is 1. You want the 

denominator to be as small as possible, so the maximum occurs at ω = 0, the value is 2. What is 

the minimum? The minimum occurs at ω = ±  π, so it will be 2/3. Thus the magnitude varies 

between 2 and 0.666. What can we say about the phase? What is the phase at ω = 0? It is 0 

because X(0) is a real quantity. So the phase starts from 0 at ω = 0.  
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I have got here a plot of the magnitude and phase of this quantity 1/(1–0.5 e– jω). This picture is 

worth 1000 words, if not more. Look at the picture; I have highlighted the important parts with 

colour. The magnitude is periodic and the range of vision is this red marked region – π to + π. In 

fact if you plot from 0 to π, this is good enough because |X| is an even function and the range –π 

to 0 can be easily taken care of. So we shall basically confine to the range 0 to π. And if you look 

at the range 0 to π what can you say about the spectrum of the signal? The signal x(n) = (1/2)n 

u(n) is clearly a low pass signal. The phase, on the other hand, is odd. The phase from 0 to – π is 

the negative of the phase from 0 to + π. The phase is an odd function. It is not sinusoidal, it is a 

slanted sinusoid. It can be of any arbitrary shape but there is a maximum and there is a minimum. 

Again in phase we confine to – π to + π and since we know phase is an odd function of 

frequency, we simply plot from 0 to π. We remove all uncertainties by confining the phase value 

also between π and – π.  
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Now I come back to definition of the Fourier Transform, X(ejω) = summation x(n) e–j n ω where n 

= – infinity to + infinity. I have already made the point that if the Fourier transform is to be of 

any use then it must be unique and one to one. That is, given x(n), you should be able to find X 

(ejω). There cannot be two answers. In a similar manner, if the signal is given in the frequency 

domain, you should be able to go back to x(n). And if you look at the summation, and recall what 

Fourier series is, you would recognize that X is a Fourier series, not of a time function, but of a 

frequency domain function. It is periodic of period 2π and it is expressed as the sum of 

exponentials with coefficient x(n). Therefore x(n) must be given by the formula for evaluation of 

Fourier coefficients that is x(n) = [1/(2π)] integral (over one period – π to + π) X(ejω) ejnω 

integrated over d ω. So this is the inverse Fourier transform relationship. Now, the two are not 

independent of each other. This is another point I want to make very clearly and very loudly. The 

two are not independent of each other because we require one to one transformation. In other 

words, if X is given, x(n) can be derived and if x(n) is given, X can be derived; so both are not 

matters of definition. Only one of them can be defined, the other should follow. The derivation is 

extremely simple; what you do is to substitute for X from its definition and then evaluate. You 

will get an integral of the form – π to π ejω (n – m) dω. If you substitute for the X(ejω) you cannot 
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retain small n because this summation  and integration are independent of each other. The 

integration contains ejnω, so you must change this dummy variable n to m.  

 

ej (n – m) ω, as you know, consists of cosine and sine; so for one period the cosine integral will 

become 0 and integral sine will also become 0, except in the case n = m. In that case, the integral 

simply becomes x(n) 2π and divided by 2π, it becomes x(n). 

 

(Refer Slide Time: 50:35 - 53:55)  

 

 
 

In conclusion, recursive is not necessarily IIR, non recursive is not necessarily FIR and vice 

versa. Why do we go to Fourier transform? We go to Fourier transform, although it is complex, 

because analysis, design and synthesis become much simpler in the frequency domain. But the 

frequency domain has to be handled with care because of uncertainty in Ө, the phase. There is no 

uncertainty in magnitude but Ө can be multi-valued because addition or subtraction of 2π does 

not matter. The third point is, in Fourier transform relationship, Fourier transform and Inverse 

Fourier transform are not independent of each other, one depends on the other. It has to be so for 

it to be useful to us. If it has to be useful then the transformation must be unique. That is, given 

one, you can find the other. So, one is a matter of definition, the forward transform or the reverse 

transform. How did I find IFT? By comparison to Fourier series. That was also somewhat 
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unconventional because Fourier series is usually written as periodic function in time. Now here 

we identify a periodic function in frequency. So it was not difficult for us to find out what the 

inverse Fourier transform is. We shall look into more details next time. 
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