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Equalization and Diversity Techniques for Wireless Communications (Continued) 

 

Welcome to the next lecture on wireless communications. Today we will look at equalization 

techniques, first a brief outline for today’s talk. 

 

(Refer Slide Time: 00:01:27 min) 

 

 
 

We will start with a brief survey of equalization techniques followed by a study of linear 

equalizers then we will move into the domain of non-linear equalizers. We will look at the 

decision feedback equalizer or DFE. Then the maximum likelihood symbol detection and finally 

the maximum likelihood sequence estimation. Finally we will talk about algorithms for adaptive 

equalizations, the three important algorithms that we will study are the zero forcing, the least 

mean square or LMS and finally the recursive least square algorithm. So this is the brief outline 

for today’s talk. Let’s recap what we have learnt so far. 

 

In the previous lecture we saw that the channel impediments because of multipath and hostile 

mobile environments can be overcome using one of the three techniques equalization, diversity 

and error control coding. However we can use them individually or in tangle. Then we looked at 

the basic fundamentals of equalization followed by a brief structural investigation of the adaptive 

equalization technique. 
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(Refer Slide Time: 00:02:17 min) 

 

 
 

Now what is the block diagram for a generic adaptive equalizer? We saw last time that the 

original baseband signal x(t) goes through a modulator then through a transmitter finally through 

the radio channel wherein there is a distortion and noise and also fading effectswhich is received 

back at the receiver, RF receiver front end down converted to IF stage followed by the detector 

matched filter. Finally there is an equivalent noise added and it goes through the equalizer, the 

job of the equalizer is to undo the effect of intersymbol interference. Now please note that this 

reconstructed message data dt that you saw last time is an estimate and should match x (t). If we 

use dt and use it in a feedback loop so adjust the weights of the equalizer we get into the domain 

of non-linear equalizer. 

 

(Refer Slide Time: 00:02:54 min) 
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However if this feedback is not there we just have a feed forward loop then it is a linear 

equalizer, we will talk about these two in greater detail today. 

 

(Refer Slide Time: 00:04:15 min) 

 

 
 

Now last time we also saw the simple working of an adaptive equalizer why, adaptive because 

the channel is changing with time and so the weights must be updated periodically. So the 

received signal y(t) is the convolution of x(t) and the composite impulse response f
*
(t) plus 

added with the baseband noise nb, everything is analog in time domainand we saw that if the 

impulse response of the equalizer is h equalizer t, the output of the equalizer is simply given by 

this equation x(t) convolved with an effective g(t) plus nb (t) convolved with h equivalent t. 

 

(Refer Slide Time: 00:05:10 min) 
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If you do the basic mathematics, we saw that in time domain in order that the equalizer must 

work in the absence of noise nb (t) is equal to zero, in that ideal scenario only, when only the 

distortions are because of channel effects, you have g (t) should be equal to the impulse function 

delta t and in the frequency domain it should be H equivalent F
*
(-f) =1. So if you have this 

condition satisfied in the frequency domain, then you are in business you can equalize the 

channel. In a Layman’s language equalization undo’s what the channel does, it is an inverse 

function it is an inverse filter which has a problem also because if you have deep nulls in the 

frequency spectrum of the channel then you tend to amplify the noise in those areas as well and 

therefore they need for a non-linear equalizer. 

 

(Refer Slide Time: 00:06:15 min) 

 

 
 

So we realize that equalizer is in fact an inverse filter of the channel but in the absence of noise. 

So clearly if noise is present there will be some predictive error which you cannot remove 

completely. If a channel is frequency selective what does the equalizer do? It tries to undo the 

effects of channel that is it enhances the frequency components with small amplitudes and at the 

same time attenuates the strong frequencies in the received frequencies spectrum.  

 

So it reverses whatever is done by the channel and this is done in order to provide a flat 

composite received frequency response as well as a linear phase response. Now mobile channels 

are time varying, so for a time varying channel the equalizer is designed to track the channel 

variations so that the above equation given here in frequency domain is approximately satisfied. 

 

In this slide given below we have a generic block diagram for an adaptive equalizer. Please note 

that the weights here have two indices 0,1,2,3,4 for the different weights and the K represents the 

time index, Z inverse implies the delay yk is in the input and this is multiplied by the weights 

added to get an estimate d hat k.  
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(Refer Slide Time: 00:07:29 min) 

 

 
 

So an adaptive equalizer is a time varying filter which must be constantly retuned. How do we 

retune it? We will look at some popular algorithms today. In the block diagram the subscript K 

represents discrete time index. It can be seen from the block diagram that there is a single input 

yk at any time instance and rest are the delayed versions. Exactly how many delay delays do we 

need, how many tap points do we need? It depends on what is the root mean squared delay 

spread of a channel. 

 

(Refer Slide Time: 00:08:03 min) 
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If you can have a very large root mean square delay spread of the channel then you need to have 

more number of delays and more number of tap points. It can only equalize to the delay built into 

the equalization. So that is a direct correlation between the delay spread of the channel and how 

many weights in the equalizer and what are the delays here should there be. In fact this 

necessitates the need to have some kind of an adaptive equalizer where the channel if it has a 

very large delay spread I should be able to use more number of delay elements and more number 

of tap points and then when my mobile moves to a region where the delay spread is much 

shorter, I should be able to undo some of the stages and retain only the necessary number of tap 

points. 

 

We will see today that there is one kind of an implementation that precisely does that but in 

general the block diagram shown just before which is called transversal filter, it has N delay 

elements and hence N +1 taps and consequently N +1 tunable multipliers which we will call 

weights. Now these weights can be complex weights. As pointed out earlier the weights have a 

second subscript K to explicitly show that they vary with time and must be updated on a sample 

by sample bases or block by block bases that is for the whole weight vector. Now how do we 

retune the weights? 

 

(Refer Slide Time: 00:10:39 min) 

 

 
 

The adaptive algorithm is controlled by the error signal ek. The error signal is derived by 

comparing the output of the equalizer with some signal dk which is either a replica of the 

transmitted signal xk or which represents a known property of the transmitted signal, for example 

constant amplitude. The adaptive algorithm uses this ek to minimize the cost function and uses 

the equalizer weights in such a manner that it minimizes the cost function iteratively. So it is 

upon you to define a cost function and today we will look at a couple of definitions of different 

kinds of cost functions. One of them the least mean square algorithm searches for the optimum 

or near optimum weights. The cost function clearly is the least mean square error. 
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(Refer Slide Time: 00:11:42 min) 

 

 
 

So in an adaptive equalizer the new weight is updated as follows, new weights is previous 

weights plus some constant gain times previous error times current input vector is one possible 

implementation where previous error is previous desired output minus previous actual output. 

The constant shown here may be adjusted by the algorithm to control the variation between the 

filter weights on successive iterations. The process is repeated rapidly in a programming loop 

while the equalizers try to converge. Now please note how soon does it converge because only 

then I can have an good estimate of what was sent, if it takes too long to converge then I may not 

be able to use it in real time. This is one of the factors which will help in deciding which kind of 

equalizer to pick up, so rate of convergence. When the convergence is reached the algorithm 

freezes the filter weights. 

 

(Refer Slide Time: 00:12:58 min) 
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Now let us have a quick survey of equalization techniques. Equalization techniques can be 

broadly classified into the following linear equalizers, non-linear equalizers. These are classified 

based on how the output of an adaptive equalizer is used for subsequent control of the equalizer. 

So if we have a feedback loop, if we use the estimate of dk that is dk hat and feed it back to 

update the weights then we get into the domain non-linear equalizer whereas if you only have the 

forward loop and there is no feedback then it is a linear equalizer. We will soon see that the 

linear equalizer can be easily implemented as a finite impulse response FIR filter. In general the 

decision maker determines the value of the digital data bit being received and applies slicing or 

thresholding operation which is a non-linear operation for obtaining the value of d (t). So there is 

a thresholding operation that will happen at the decision making level and only then you get an 

estimate of d (t). 

 

(Refer Slide Time: 00:14:25 min) 

 

 
 

In linear equalization the output signal d (t) is not used in the feedback path to adapt the 

equalizer. However in non-linear equalization the output signal d (t) is fedback to change the 

subsequent outputs of the equalizer is a basic difference. Now there are many filter structures 

that are used to implement linear as well as nonlinear equalizers and decoupled to that there are 

numerous algorithms for each structure to adapt the equalizer weights. So there are two 

components to an equalizer design, the structure and the algorithms to update the weights and 

there is no link between the two; you can choose one structure and use another algorithm to 

update the weights. Now let us classify our equalizers. 

 

So the equalizer can be broadly divided into linear and non-linear types. Linear no feedback from 

the dk, non-linear yes there is a feedback. Now let us talk about the structures, we have already 

seen the transversal structure. Again we will talk about it but linear equalizers have a transversals 

structure possible or also lattice structure possible. 
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(Refer Slide Time: 00:15:36 min) 

 

 
 

We will talk about these again in greater detail. At the other end the non-linear equalizers can 

either be a decision feedback equalizer or a maximum likelihood symbol detector or an MLSE 

sequences estimation, maximum likelihood sequence estimation. Again these three can be either 

implemented using a transversal filter or a lattice filter or a transversal channel estimator. Now 

for each of these structures you have the flexibility to use various kinds of algorithms to quickly 

update the weights. Most of them are recursive algorithms, you could either use the zero forcing 

or LMS least means square or RLS recursive least square or the variations there of. Again you 

have a possibility to use different kinds of algorithms depending upon how fast they are, what is 

the minimum error they give, how much power they can show. 

 

So we will talk about how to pick and choose an algorithm for a particular type of structure later 

today but this gives you a brief over view of how equalizers can be classified in terms of linear, 

non-linear structure and the type of algorithm used to update the weights. Now first let us talk 

about the linear transversal equalizer, one of the simplest implementation and a popular one. The 

linear transversal equalizer is the most common equalizer structure simply because of its simple 

structure. The linear transversal equalizer is made up of tapped delay lines with the taps spaced 

at a symbol duration Ts apart. So the delay element gives a delay of T (S). Assuming unity gain 

of the delay elements and the delay equal to T (S), the transfer function of the LTE which is the 

linear transversal equalizer can be written as a function of delay operator e raise to power minus j 

omega Ts denoted by Z raise to power minus 1. 
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(Refer Slide Time: 00:17:41 min) 

 

 
 

The simplest LTE uses only feed forward taps and transfer function is a polynomial of z inverse 

with many zeros but poles only at Z is equal to zero. This is called a finite impulse response or 

FIR filter. So linear transversal equalizer can be simply represented as a FIR filter, there is no 

feedback. In this slide we have a simple structure for the LTE or the linear transversal equalizer 

as you can see we have the delay elements, Ts represents the symbol duration. Here you have y 

(t) plus nb (t), nb (t) represents the baseband noise. Please remember the equalizer is designed to 

work in the absence of noise, in the presence of noise there will be some predictive error. Clock 

with period tau, here we have the tap points and based on that you can calculate and obtain your 

dk hat the estimate of dk. So this is the basic structure of linear transversal equalizer, you have 

delay elements and you have the tap points. 

(Refer Slide Time: 00:19:12 min) 
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(Refer Slide Time: 00:20:11 min) 

 

 
 

Now let us talk about the IIR filter based equalizer; if the equalizer has both feed forward and 

feedback taps, if transfer function is a rational function of Z inverse and is called an infinite 

impulse response or IIR filter with both poles and zero’s. These IIR filters tend to be unstable 

when the strongest pulse arrives after the other pulses, so IIR filters tend to be unstable 

sometimes for mobile scenarios. 

 

(Refer Slide Time: 00:20:56 min) 

 

 
 

Here is a block diagram of a simple IIR filter based equalizer. Please note y (t) is the input 

waveform; we have removed the noise part right here. Now here you have again the delays Ts 

then you have tap points.  
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So the a1, a2’s and so and so forth represents the forward tap points and this is the feed forward 

taps. Here b1, b2, b3 and so and so forth represents the feedback taps going here. Even though 

there is a feedback please note there is absolutely no feedback from the d hat t, the d hat t is not 

being used to update the taps at all, therefore it is still a linear equalizer. So there is a feedback 

path but feedback for the taps alone. So we have two loops the feedback taps adding up here and 

the feedback taps adding up here and the feed forward taps adding up here to give you the 

estimate d hat t. 

 

(Refer Slide Time: 00:22:22 min) 

 

 
 

Continuing with our linear equalizer; the current and the past values of the received signal are 

linearly weighted by the filter coefficients and summed to produce the outputs. So it is a very 

simple implementation and hardware, multiply with the weights and finally add them up.The 

shifting is usually done using shift registrar so it’s a very hardware friendly operation. If the 

delays and the tap gains are analog, the continuous output of the equalizer is sampled at the 

symbol rate and the samples are applied to the decision device where thresholding or slicing is 

done. If it is implemented in the digital domain, the samples of the received signal are stored in a 

shift register. 

 

Let us take another look at the linear transversal equalizer or LTE. Again we have a an input 

signal y coming in here and then there are certain number of tap points multiplied with the 

complex weights, add them up and this is the decision maker which is a thresholding device and 

output is a dk. This is simple structure of the linear transversal equalizer. [Conversation between 

Student and Professor – Not audible ((00:23:59 min))] Question being asked is can dk hat be a 

complex number? The answer is no, at this time you have taken a decision about the bit.  
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(Refer Slide Time: 00:23:19 min) 

 

 
 

So it’s already decided so this will not be complex, prior to that it can be complex. So all these 

can be complex clearly they are complex you are multiplying with a complex number but 

whatever you do at the end you have to take a decision here and for a very simplistic binary case 

you are coming up with the 1 and a 0. Here please note these are the tap points delayed by T of S 

the symbol duration and the number of delay elements would be a function of what is the delay 

spread of the channel. The weights are complex as shown here, these weights must be updated by 

some method. 

  

(Refer Slide Time: 00:25:06 min) 
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The current and the past values of the received signals are linearly weighted by the filter 

coefficients and summed to produce the output. The output of the transversal filter before the 

decision making is given by this equation d hat k is summation of the complex weights 

multiplied by the taped delay values of yk. In this equation Cn
*
 represents the complex filter 

coefficients also called as the tap weights, dk is the output at the time index k, yi is the input 

received signal at time t0 + iT, t0 is the equalizer starting time, N = N1 + N2 +1 is a number of 

taps. What are N1’s and N2’s? N1 is the number of tap in the forward portion, N2 is a number of 

taps in the reverse portion. So this sums up the general linear transversal equalizer. How you 

adjust the weights is a different story but this should give you, if the weights are correct and 

optimal a good estimate or what was transmitted. 

  

(Refer Slide Time: 00:26:31 min) 

 

 
 

Now let us talk about how good is it? The minimum mean squared error which is the expected 

value of error squared that a linear transversal equalizer can achieve can be worked out as 

follows. Expected value error squared is T over 2 pi integration minus pi by T to pi by T N0 over 

this F e raise to power j omega t absolute value squared plus N0 d omega. The derivation is not 

being given here, it is available in most of the text book for example (Not understandable) (Refer 

Slide Time: 00:27:14 min)) gives a very good derivation for this one. Here the F e raise to power 

j omega T is a frequency response of the channel. N0 is the noise spectral density, so please note 

that it depends on the noise, I can do nothing about it. If I increase the noise power I helplessly 

have to see that the minimum mean squared error goes up I can do nothing about it and if my 

channel is not so hostile if I have a flat channel then this becomes pretty handelable, you can 

work around it and you can lower your error. 

 

Now let us look at another implementation in terms of structure for a linear equalizer, we will 

call it the lattice equalizer. There is a lot of information on this slide let us try to understand what 

is going on. Here you can see y the input, now this input has been judicially divided into two 

branches. Here is the forward loop, here is the backward loop. The forward loop is been 

characterized with f1 (k), f2 (k) so on and so forth till fn (k). 
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(Refer Slide Time: 00:28:11 min) 

 

 
 

The backward loop as its coefficients b1 (k-1), b2 (k) and so and so forth till bnk. The delays are 

here C1, C2 up to Cn and this particular structure is called the lattice structure where this 

reflection coefficients K1, K2 up to Kn-1, you add them up and you get d1 (t) you’ll just now show 

the despite the structure the d1 hat will come out to be nothing but the delayed version of yk’s 

multiplied by the appropriate complex weights but there are certain very good advantages of the 

lattice equalizer which will talk about, so each stage of the lattice is characterized by the 

following recursive equations. 

 

(Refer Slide Time: 00:29:38 min) 
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So if you go back and forth between the last slide and this slide you can easily correlate that f1 

(k) is b1 (k) is y (k) that is the initialization factor and then you have a recursive equation fn (k) is 

yn k minus summation i is equal to one through n is reflection coefficient ki y (k- i) is equal to 

this expression. So if you go back here and try to correlate, you will be able to figure out how 

you can write y (k) in terms of the previous values. Similarly bn (k) is written by y (k- n) minus 

summation i is equal to one through n ki y (k-n+1). Again comes from the lattice structure this 

can be written as bn (k) is equal to bn-1 (k-1) + kn-1 (k) fn-1 (k), very simple relationship. Here k 

subscript nk is the reflection coefficient for the nth stage of the lattice. The backward error 

signals bn are then used as inputs to the tap weights and the output of the equalizer is finally 

given by dk hat is summation n =1 through n cn (k) bn (k) exactly what we are looking. 

 

(Refer Slide Time: 00:31:31 min) 

 

 
 

So why do we have to go through that complex structure? We finally getting what we expect but 

why do we have to go for that structure? The first thing is there is a lot of numerical stability, we 

saw the IIR filters tend to get unstable mathematically, here the lattice equalizer has numerical 

stability then it has a faster convergence time very important. It’s unique structure allows 

dynamic assignment of the most effective length of the lattice equalizer. This is for the first time 

we are talking about the effective length required for the equalizer structure which should be 

matched to the delay spread of the channel. When the channel becomes more dispersive the 

mobile enters in a densely packed urban environment, the length of the equalizer can be 

increased by the algorithm without stopping the operation of the equalizer. On the other hand 

only a fraction of stages is used if the channel is not very time dispersive. What is the main 

disadvantage? It is obvious the main disadvantage of the lattice equalizer is its complex structure 

but this is again a good linear equalizer that is used. 
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(Refer Slide Time: 00:33:06 min) 

 

 
 

But in general linear equalizers have certain disadvantages. What are these? The linear equalizers 

do not perform well on channels which have deep spectral nulls in the pass band. After all what 

is an equalizer doing? It is trying to make an inverse filter undo the effects so in the frequency 

domain wherever there are deep nulls which there are in most hostile wireless channels, it will 

try to have a very high value in the frequency domain there by giving a lot of importance to the 

noise present at those frequencies, it’ll amplify the noise immensely. To compensate for 

distortions linear equalizer places too much gain in the vicinity of these spectral nulls and thus 

enhances the noise present in these frequencies, not good. So non-linear equalizers are used 

where channel distortions are too severe for linear equalizers to handle that’s where this step in. 

 

(Refer Slide Time: 00:34:24 min) 
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So let us now move into the domain of non-linear equalizers, the three effective non-linear 

equalizer methods are as follows. The first which is also a very common one is the decision 

feedback equalizer DFE. We will talk about DFE in detail followed by the maximum likelihood 

symbol detection technique and then the maximum likelihood sequence estimation MLSE will 

talk about MLSE also. 

(Refer Slide Time: 00:35:00 min) 

 

 
 

First lest us look at the decision feedback equalizer the DFE. This is the general structure of 

DFE, the input signal comes in here and then it is delayed as always then you have the complex 

weights Cn (1), Cn+1 and so and so forth. This is your feed forward filter also called as FFF or 

triple F. At this juncture you have dk and then you have a thresholding device and then you get 

an estimate. Now what is interesting is for the first time we take this dk after the decision device 

and feed it back to the feedback filter FBF shown here.  

 

Again this has several delay elements and then the feedback filter coefficients F1
*
 and so and so 

forth adding up and going in. Somewhere the philosophy is to estimate the intersymbol 

interference because you have already detected the past symbols so you can predict what are the 

intersymbol interference it will cause to the subsequent symbols and subtract it out. So if you can 

estimate the intersymbol interference that will be induced by the current decoded symbol and if 

your decision is correct then it is possible for you to subtract out the ISI. So that is the smart 

move that DFE does. 

 

So in DFE the intersymbol interference the present symbol induces is estimated and subtracted 

out before the detection of subsequent symbols, fairly simple philosophy. If you already have the 

information why not use it to cancel out the intersymbol interference it will induce. Now the 

direct transversal form of the non-linear equalizer consists of as we have seen the feed forward 

filter FFF, it is same as a linear transversal filter we have learnt so far and then there is this new 

element called the feedback filter FBF driven by the decisions on the output of the detector and 

its coefficients are adjusted to cancel the ISI on the current symbol from the past detected 

symbols. 
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(Refer Slide Time: 00:36:59 min) 

 

 
 

For DFE the output is given by d hat k equal to summation n is equal to minus N1 through N2 

complex weights multiplied by the appropriately delayed input plus this feedback filter 

coefficients Fi multiplied by dki. Please note here you are working on the delayed version of the 

decisions. What is your dk? The dk is a decision on a symbol being transmitted and as you can 

take dk-i you delayed the previous. So based on the previous symbols you adjust the weights and 

subtract the ISI. Here Cn
*
 and Yn are tap gains and the inputs respectively to the forward filter 

and Fi
*
 are the tap gains of the feedback filter and di where i is less than k is the previous 

decision made on a detected signal. Note, feed forward filter has N1+ N2+1 taps whereas the 

feedback filter has N3 taps.  

 

(Refer Slide Time: 00:39:26 min) 
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Now again we have to talk about how good or bad is your DFE. So we have to resort to the 

minimum mean squared error. So the minimum mean squared error for DFE can be given by the 

following equation, expected value of error squared minimum is e raise to power T over 2 pi 

integration minus pi by T to pi by T log of this expression. Please note we had a previous 

expression where both the exponential and logarithmic were missing. It can be shown that the 

minimum square error of DFE is always smaller than that of the linear transversal equalizer LTE 

except when the absolute value F e raise to power j omega T is constant, this value; there is a 

transfer function of the channel, N0 is the noise.  

 

Again we’ll helpless as noise goes up, noise power goes up then your minimum mean square 

error will go up and we can do nothing about it. Now LTE performs well for flat channel 

spectrum, here F e raise to power j omega T is the channel spectrum that we are talking about. 

For a flat channels spectrum are general linear transversal equalizer works well but the 

movement you severely distorted wireless channels with deep nulls in the spectrum, you have to 

have the decision feedback equalizer or an non-linear equalizer to come to the rescue. What is 

important to note is the minimum mean squared error of DFE is always smaller than that of the 

LTE. 

 

(Refer Slide Time: 00:41:34 min) 

 

 
 

Now let us talk about the next one maximum likelihood sequence estimation. The MLSE test all 

possible data sequence using channel response simulator and chooses the data sequence with the 

maximum probability as the output. So it was first proposed by Forney in way back in 78 in 

which he set up the MLSE estimator structure using the Viterbi algorithm. The MLSE state of 

the radio channel is estimated by the receiver using L most recent input samples. If M is a size of 

the input alphabet of modulation then the channel has M raise to power L states. The Viterbi 

algorithm then tracks the state of the channel by paths through the M raise to power L trellis and 

gives at stage K the most probable sequence. So it is some kind of a sequence estimation, 

needless to say it will be computationally very intensive but you will get a much better minimum 

mean squared error.  
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MLSE is an optimum equalizer as it minimizes the probability of sequence error. Please note that 

two things, one is the probability of sequence error and one is the minimum mean squared error. 

The bottom line is the probability of sequence error should be minimized, it so happened that in 

earlier cases we have said okay we will minimize the minimum mean squared error and then it’ll 

automatically lead me to have a low probability of error. Here for the first time MLSE works on 

minimizing the probability of sequence error, so in that sense it is an optimum equalizer. 

 

(Refer Slide Time: 00:43:48 min) 

 

 
 

So let us look at the block diagram of the maximum likelihood sequence estimation. Here for a 

change this is a different structure, there is the input y (t) goes through a matched filter and 

immediately you have a Z (t), you sample it to get Zl ((00:44:13 min)) and you work on the 

samples. So you have this maximum likelihood sequence estimation which is being implemented 

using a Viterbi algorithm and then here you have a delay channel estimator and goes in a loop 

and adjust the matched filter. Finally after K stages you get the estimated data sequence 

((00:44:43 min)). 

 

Now let us focus our attention on the various kinds of algorithms for adaptive equalizer. These 

algorithms can be used both for linear as well as non-linear equalization and we will discuss 

them here in general for linear equalizers though the analysis that we discus today can be easily 

extended for the case of non-linear equalization. First what are the factors which determine an 

algorithms performance? First is the rate of convergence, we have discussed this before all of the 

algorithms are recursive they take their own sweet time to converge.  

 

So the rate of convergence is important. What is it? The number of iterations required for an 

algorithm in response to a stationary input to converge close enough to an optimal solution. 

Algorithm of high rate of convergence adapts rapidly to a stationary environment and it’s 

important for us to have a fast rate of convergence. 
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The second point is mis-adjustment. What is that? It provides a quantitative measure of the 

amount by which the final value of the mean squared error averaged over an ensemble of 

adaptive filters deviates from the optimal mean square error. 

 

(Refer Slide Time: 00:44:46 min) 

 

 
 

Computational complexity important, number of observations required to make one complete 

iteration of the algorithm. It will clearly be correlated to the energy your equalizer consumes. 

Numerical properties; certain algorithm are prone to inaccuracies like round off noise and 

representation error in the computer and your fixed point operators. So many times you don’t 

have floating point operations possible in your digital signal processers or things like that or 

round off errors or the finite length quantization etc. So those may lead to unstable algorithms at 

a slower rate of convergence. These are the four important aspects we must keep in mind while 

taking up a certain algorithm.  

 

Let us briefly talk about the important algorithms. The three most popular one are zero forcing 

algorithm, the least mean square algorithm or the LMS and the recursive least square or RLS 

algorithm. Please note these are applicable both for the linear and the non-linear equalizers.  
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(Refer Slide Time: 00:47:20 min) 

 

 
 

First let us talk about the zero forcing algorithm. Here the equalizer coefficients Cn are selected 

so as to force the samples of the combined channel and the equalizer response to zero at all but 

one of NT spaced sample points in a tapped delay line. What does it mean? It means it is trying 

to stimulate the Nyquist’s condition where in other than its own sampling instance for all other 

instances it is forcing the value of the symbols to be zero. 

 

 (Refer Slide Time: 00:47:45 min) 

 

 
 

So here is the combined impulse response as expected for any adaptive equalizer H channel (f) H 

equalizer f is equal to one.  
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The disadvantage is as follows. Since the H channel is inverse of H equalizer, the inverse filter 

may excessively amplify noise at frequencies where folded channel spectrum has high 

attenuation. This zero forcing algorithm is not used for wireless links except for static cases. It 

was originally invented for wire line applications so it’s normally not used. 
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A more popular one is the least mean square algorithm also called the LMS algorithm. The LMS 

algorithm is based on minimizing the mean square error between the desired equalizer output and 

the actual equalizer output. So it works purely on minimizing the MSE. The prediction error is 

given by ek given by dk minus dk hat which can be expressed as xk minus yk transpose, these are 

the vector transpose of the delayed inputs and this is the weight vector Wk. The mean squared 

error is nothing but expected value of ek complex conjugate ek. Now we would define for the first 

time of cost function J is the function of the weight N represents the mean square error then in 

order to minimize the mean squared error its derivative of J should be zero. So there J omega N 

this is Wn by delta Wn should be equal to zero and you get this famous normal equation where 

you have to put RNN the input covariance matrix times the weight vector equal to the PN. This is 

the correlation between the expected xk and the yk received vector. If this is set the minimum 

mean squared error of the equalizer is given by the following equation. So if we use LMS 

algorithm this is what you expect to get in terms of the minimum mean squared error. 

 

 

 

 

 

 

 

 

 

  



25 

 

(Refer Slide Time: 00:51:18 min) 

 

 
 

So to get an optimal tap gain vector WN hat Jopt solved iteratively that’s where the recursive 

nature will come until it converges to a small value, this is what we are working with. Practically 

MSE is minimized by stochastic gradient algorithm also called the least mean square LMS 

algorithm, if N denotes the sequence of iteration then LMS is computed iteratively by these 

following equations. Today these are fairly standard and you can get your weight vector by 

following. Here N is a number of delay stages in an equalizer and alpha here is a step size which 

controls the convergence rate and the stability. If you increase the alpha, the rate of convergence 

increases but your stability will not finally settle down close to the optimal value. So alpha is 

usually adaptive it can be changed on the fly. 
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Let us now come to the final RLS or recursive least square algorithm. This is an adaptive signal 

processing technique for rapid convergence rate. LMS is usually known to be slow, RLS on the 

other side is a much faster technique. Here error is measured in terms of time averages of actual 

received signal rather than the statistical averages of RLS. Here the least square error based on 

time average is defined as follows. So this is what we have to minimize. See in LMS algorithm, 

if the Eigen values of the input covariance matrix lambda vary too much that is lambda max over 

lambda min is much greater than one, it will take a long time to converge. So we have to put that 

thing into effect which is done by the RLS algorithm. The error is given by the following 

equation x (i) minus delayed version vector and the weight vector and the data input vector is 

defined as follows. To get the minimum least square error the derivative of JN is set to zero. 
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Here in this slide RLS minimization leads to the following weight equation, so we are not going 

through the whole derivation again you can consult ((00:54:18 min)) digital communications to 

go through derivations but this is the final crux of the matter. This is the weight vector definition, 

here KN is given by this following equation and RNN inverse can be expressed as follows. Thus 

the input covariance matrix and mu (n) which is used here can be found by this method. 

  

(Refer Slide Time: 00:54:51 min) 

 

 
 

So let us now summarize today’s lecture. We started off with a brief survey of equalization 

techniques, then we moved on to linear equalizers. We then looked at nonlinear equalizer 

structures and talked about the decision feedback equalizer, the maximum likelihood symbol 

detection and finally the maximum likelihood sequence estimation. We also looked at three 

important algorithms for adaptive equalization, the zero forcing algorithm, the least means 

square algorithm and the recursive least square algorithm. We will conclude our talk here. 


