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Coding Techniques for Mobile Communications (Continued) 

 

Welcome to the next lecture on wireless communications. Today we will talk about various 

coding techniques for mobile communication. First a brief outline for today’s talk. We will first 

summarize what we have learnt so far followed by a study of the Galois field. We will then move 

over to an interesting domain of cyclic codes which happens to be a sub class of linear block 

codes and finally we will talk about the BCH codes.  
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In the previous lecture we talked about linear block codes, we realized that linear block codes are 

LBC’s have a fixed block length N and you can have a generator matrix to generate the entire set 

of code words. We then visited briefly Galois field and had a very short introduction to cyclic 

codes. 
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Now let us refresh our memories about the Galois field theory, we know that a field F is a set of 

elements with two operations addition and multiplication and the elements satisfy the following 

8 properties. First of all F is closed under summation and multiplication that is a + b and a into b 

are contained in the set. Also for all a, b and c within F the commutative law, the associative law 

and the distributive law holds good which is a + b is equal to b + a, (a + b) + c is equal to a + 

(b+c) are equal, under distributive law a times (b + c) is a times b + a times c these must hold. 

Further two interesting identity elements exists, one is a +0, the 0 should give back a and a times 

1 should give back a; also there exists an additive inverse and the multiplicative inverse if we 

have to talk about a field.  
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If the last property doesn’t hold for the elements that is there is not the presence of multiplicative 

inverse but only an additive inverse we call it a ring. If only the first 7 properties are satisfied it 

is called a ring otherwise it’s a field. Now we learned last time that the objective of error control 

coding is to add redundancies in a known manner; in a known manner such that there is enough 

structure, algebraic structure within the code and whenever there is an error this structure breaks 

and if we are smart enough we should be able to detect an error and hopefully reconstruct it 

back. So that is the whole idea of adding structures. 

  

(Refer Slide Time: 00:03:54 min) 

 

 
 

Cyclic code is one step forward, it is a sub class of linear block code that it has one additional 

requirement an additional constraint, an additional structural requirement. What is that? A code 

C is cyclic if C is a linear code and on top of that any cyclic shift of a codeword is also a 

codeword. So if a0 a1 so and so forth till an-1 forms a elements of codeword then any cyclic 

rotation if you put an-1 before like this and then a0 a1 up to an-2 this itself is also a valid codeword 

if it is a cyclic code. 

  

Here is an example of binary cyclic code; here if you can see all of the elements if you rotate 

them to the left or to the right, you end up with another valid codeword. Please note this is 

another example of a linear block code but here it is not a cyclic code. The two properties of a 

linear block code are, the all zero codeword must exists as a valid codeword and some of any 

two codewords is also a valid codeword, on top of that any cyclic rotation of a codeword gives 

you another valid codeword that makes it is a cyclic code. 

 

 

 

 

 

 

 



4 
 

(Refer Slide Time: 00:05:57 min) 

 

 
 

Now let us take a brief mathematical detour and get into the domain of polynomials because we 

will learn that it is very easy and logical to express a codeword which is a cyclic codeword as a 

polynomial. There is a one to one correspondence. So what is a polynomial? A polynomial is a 

mathematical expression, it can be denoted as follows and the symbol X is called indeterminate 

and the coefficients f0, f1 up to fm are the elements of any GF (q), a Galois field. So we can 

define a polynomial over a field. It depends from what are you taking the coefficients from. If it 

is a binary polynomial then GF (2) is in question and then you have f0 f1 etc either a zero or a 

one, if it is GF (3) then your fi can be 0, 1, 2.  

 

If fm the coefficient of the highest power is not zero then m is called the degree of the polynomial 

as denoted by degree f (x). A polynomial is called monic if its leading coefficient is unity. So 

here is a polynomial over GF (8) so you can see the coefficients can take values some 0, 1, 2 up 

to 7 but the highest power X
6
 as a coefficient unity, hence this is the monic polynomial of degree 

6.  

 

Now let’s have some definitions now let us explore the properties of f(x) which makes this F[X] 

divided by f(x) of field. So what is this capital F[X]? This is a set of polynomials and if you 

divide it by f(x) then you are doing a modulo operation that is whatever is the remainder after 

you divide any element, any symbol within this by f(x). You are left with a remainder and we are 

talking about that’s it, what we are interested in finding out is the properties of f(x) which makes 

this thing of field that is it satisfies the 8 properties of a Galois field.  
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We will shortly find out that the polynomial f(x) must be irreducible which is the polynomial 

version of non factorizable. That is you cannot represent it as a multiplication of two other 

polynomials. So polynomial f(x) in F[x] is said to be reducible if f(x) is a(x) times b(x) where 

both a(x) and b(x) are elements of f(x) and degree a(x) and degree b(x) are both smaller than 

degree f(x), it doesn’t hold then it is called irreducible. A monic irreducible polynomial of degree 

at least one is called a prime polynomial, we will use this definition many times.  
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Now continuing with our mathematical detour, the ring F[x] over f(x) is a field if and only if f(x) 

is a prime polynomial in F[x]. So we are trying to find out when will this set be a field and the 

claim is this will only happen if and only if small f(x) is a prime polynomial. So if this is true we 

have an elegant mechanism of generating Galois fields. If we can identify a prime polynomial of 

degree n over GF (q), we can construct a Galois field with q
n
 elements. Such a field will have 

polynomials as the elements of the field. These polynomials will be defined over GF (q) and 

consist of all polynomials of degree less than n. We are talking about taking modulo f (x), small f 

(x) has highest power n so you can have the coefficients f0, f1, f2 up to fn-1 and all the polynomials 

that will remain if you perform this operation, will have the degree less than n but there be n 

coefficients. Each of the coefficients can take value as one of the q elements of the Galois field. 

So there will be q
n
 such polynomials.  
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So let us denote capital F[x] over f(x) as a set of polynomials in F[x] of degree less than the 

degree f(x) with addition and multiplication carried out modulo f(x). So you divided and 

whatever may be the remainder is the element. Now if a(x) and b(x) belong to capital F[x] by 

f(x) then the sum a(x) + b(x) in F[x] by f(x) is the same as in F[x], this is because we have 

already put the degree of a(x) is less than f(x) and degree of b(x) is also less than f(x). Carrying 

on this philosophy the product a(x) times b(x) is the unique polynomial of degree less than 

degree f(x) to which a(x) times b(x) multiplication is carried out in F[x] is congruent modulo 

f(x). 

  

So capital F[x] over f(x) is called the ring of polynomials over F[x] modulo f(x). So what are we 

looking at? This capital F[x] over f(x) is a set of polynomials all of which have degree less than 

that of degree of f(x) because if it is a remainder after you carry out the division and we are 

talking about when will this set form a ring and when will it form a field. As mentioned earlier a 

ring satisfies the first seven of the 8 axioms that define a field. A ring in which every element 

also has a multiplicative inverse forms a field. 
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So now after this brief mathematical detour let’s go back to cyclic codes and see how this 

arithmetic with polynomials can help us construct cyclic codes. Now let’s fix for a change rf(x) 

the polynomial with which we divide as x
n
-1. This is very interesting as we will soon see and we 

also denote if your small f(x) is x
n
 -1 then the set capital F[x] divided by f(x) by Rn. Let’s make 

the following observation; x
n
 is 1 provided you are taking it modulo x

n
 -1. So x

n
 is unity in Rn. 

So the modulo x
n
 -1 can be reduced simply by replacing x

n
 by 1 x

n
 +1 by x and so and so forth. 

A codeword can be uniquely represented by a polynomial; this is the most important observation 

on this slide.  

 

A codeword consists of a sequence of elements and they can correspond one to one to the 

coefficients of the polynomial. So we can use a polynomial to represent the locations and the 

values of all the elements in the codeword. So if my codeword has a block length n then there are 

n elements in a codeword so we can use these elements of the codeword as coefficients of a 

polynomial. So polynomial has a unique codeword and a codeword can be uniquely represented 

by a polynomial. So for example the codeword c1, c2, up to cn can be represented by the 

polynomial c0 + c1 x + c2 x square up to cn so there is a one to one correspondence. Codeword c0 

c1 c2 can be represented like this c0 is missing.  

 

Another example of the codeword over GF (8) let’s say 207735 then we have 27735 because the 

zero is missing because it is zero times x. You can uniquely represent any codeword as a 

polynomial. Now what is interesting is multiplying any polynomial by x raises the power of each 

of this x by 1 and hence it represents a single right cyclic shift. So shifting the elements, rotating 

them by one is very simple is just multiplying the polynomial representation of the codeword by 

x. If you multiply it again you shift it one more time and so and so forth. The only problem is 

that my block length of any codeword is fixed and is n.  
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If I keep on multiplying the power of x increases, if it is goes beyond x
n
 then I am actually 

elongating my codeword, I cannot. In fact I must have a way to put the maximum power back to 

here, I must do a modulo operation and this operation of putting the highest power which 

exceeds the block length back to the first place is done by modulo x
n
-1. So as long as you keep 

on multiplying by x but finally take modulo x
n
 -1 you restrict the block length to n and at the 

same time you perform the proper cyclic shifts. So please note if you multiply c(x) by x, you 

raise the power by 1 but I need some way to put the cn back before c0 because this is clearly a 

representation of a codeword which is longer than block length n. We need to put this back here 

and this is done by modulo x
n
 -1hence the importance of modulo f(x). 
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Now here is a theorem, a code C in Rn we know is when you take modulo x
n
 -1is a cyclic code if 

and only if C satisfies the following condition, a(x) and b(x) the elements in C then a(x) plus b(x) 

is an element in C, it’s a linearity condition and a(x) element of C, r(x) element of Rn then a(x) 

r(x) is an element of C. So here is a brief proof for this one and the basic philosophy here is that 

if you have a cyclic code, it can be simply represented in Rn. So cyclic code will have 

polynomials contained in f(x) over small f(x) where small f(x) is x
n

 -1 and it will satisfy these 

following two properties; it’s easy to prove these two here. 

 

Now let us move over to a method for generating cyclic codes because all this mathematical 

tools are going to help us generate cyclic codes. First take a polynomial f(x) in Rn, obtain a set of 

polynomials simply by multiplying f(x) by all possible polynomials in Rn. So when you multiply 

f(x) by any other polynomial you do two things; you can multiply with something x raise to 

power something that will do a cyclic shift and then add it up which means that you are taking 

one codeword and adding with another valid codeword. 
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The set of polynomials obtained above correspond to the set of codewords belonging to a cyclic 

code. The block length of the code is n. Let us take a simple exercise, if f(x) is a polynomial in 

Rn then if you multiply this by x+1 which is a valid polynomial, it tantamount to first multiplying 

f(x) by x which is again a valid polynomial and then adding it to f(x) which is multiplying f(x) 

with one which also is a valid polynomial and the together the addition should also be a valid 

codeword in Rn. Hence we satisfy the definition of a cyclic code and this can be generalized for 

any complex polynomial within Rn.  
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So let C be a (n, k) non-zero cyclic code in Rn then there exists a unique monic polynomial g (x) 

of the smallest degree in C. This is the special polynomial, the cyclic code C consists of all 

multiples of the generator polynomial g(x) so we call this as the generator polynomial. It is the 

analog of the generator matrix, this has the capability to generate all the other valid cyclic code 

words. So the cyclic code C consists of all multiples of the generator polynomial g(x) by 

polynomials of degree k-1 or less and most importantly g(x) is a factor of x
n
 -1. 
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This is the most important fact, if this is true then we have a very elegant and simple way to find 

out a generator polynomial simply by factorizing x
n
 -1. In fact this will be one of a preferred 

ways to find g(x) for cyclic codes, factorize x
n
 -1. All we have to do is to factorize this quantity 

into irreducible monic polynomials. These are the conditions required for g (x). We also can find 

all possible cyclic code words of block length n, simply by factorizing x
n
 -1. Note a cyclic code 

C may contain polynomials other than the generator polynomials which will also generate C. 

However the polynomial with the minimum degree is called the generator polynomial and the 

degree of g(x) is n-k. 

  

So let us see how we can encode using generator polynomial, please note the generator 

polynomial itself is a valid codeword. If you multiplied with unity you get a polynomial g(x) 

which should be also valid codeword. A simple encoding rule to generate the code words from 

the generator polynomial is as follows; c(x) which is a codeword polynomial, we have 

established before a one to one correspondence between a polynomial and a word so c(x) be the 

codeword polynomial, i(x) be the information word and g(x) be the generator polynomial. So if 

you multiply i(x) with g(x) you would get a valid code word polynomial.  
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The error vector can also be represented as the error polynomial e (x). It should show at what 

location what is the magnitude of the error. Thus the received word at the receiver after passing 

through a noisy channel can simply be expressed as the received word v (x) is equal to c(x) the 

codeword polynomial plus the error polynomial e (x). Now let us maintain the analogy, so we 

had a generator matrix, generator polynomial we have a syndrome, we have a syndrome 

polynomial also. The syndrome polynomial s (x) is the remainder of v(x) under the division by g 

(x). 

  

Clearly if g (x) completely divides c (x) that is the remainder is zero then you have a valid 

polynomial. Whatever be the residue that is the remainder after dividing by g (x) is the syndrome 

polynomial. Please note s (x) is the remainder if you divide by g (x), what v (x) which is nothing 

but remainder when you divide by g (x). What is v (x), nothing but c(x) plus e(x) and then by 

simple rule you can separate them out but c (x) when divided by g (x) should be zero by 

definition because g(x) times i(x) is c (x). So what you get is the remainder of e (x) when you 

divide it by g (x). Thankfully the syndrome depends only on the error polynomial as it should 

and has nothing to do with the code word polynomial. Just as a syndrome or a symptom of a 

disease tells about the disease, similarly the syndrome polynomial should tell us what kind of an 

error you have encountered. If you have a one to one mapping for every error pattern a unique 

syndrome then it is very easy to map back. 
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It is also possible to have a matrix description of cyclic codes simply because it is a sub class of 

linear block code and must have a generator matrix but the generator matrices very easy to 

represent, once you have the generator polynomial and you have the generator polynomial which 

is very easy once you can factorize x
n
 -1, n is your block length. So if I give you a block length 

we can immediately take x
n
 -1 factorize it, get g (x) as a polynomial which can generate all the 

valid code words, once you have g (x) you can have generator matrix which is simply written as 

the shifted coefficients of g (x) in the various rows, is again a k by n matrix for (n, k) code. It is a 

one to one correspondence here if you have g (x) you can write the generator matrix. 
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Now just like we have a parity check matrix, we have a parity check polynomials for a valid 

cyclic code. What should it do? If you multiply it with the valid codeword you should get a zero 

and otherwise you should get a non-zero syndrome of sorts. So we already know that g (x) is a 

factor of x
n
 -1 hence you can write x

n
 -1 is equal to h (x) times g (x), so factor after all. Now h 

(x) is some polynomial, it’s kind of a dual so the following can be concluded simply by 

observing the above equation. Since g(x) is monic, h(x) has to be monic because x
n
 is, the 

highest coefficient is one but please note here we are not talking only of binary cyclic codes, this 

is valid for all Galois fields. 

  

So even if I am talking about cyclic codes over g (8), g (16) this will still hold good but g (x) 

must be monic. There is the highest coefficient should have coefficient equal to one, the highest 

power of x. So since g(x) is monic h(x) has to be monic because the left hand side of the 

equation is also monic. Since the degree of g (x) is n- k, the degree of g(x) must be the degree of 

h(x) must be k (Refer Slide Time: 28:47). Suppose C is a cyclic code in Rn with generator 

polynomial g (x) recall that we denoting F[x] by small f(x) by Rn where f(x) is x
n
 -1. Then any 

codeword belonging to C can be written as c(x) is equal to a(x) times g (x), we have noted this 

before where the polynomial e (x) is within Rn.  

 

Therefore within Rn c(x) times h (x) is equal to a(x) g(x) h (x) but for every valid g(x) and h(x) it 

should be zero, so it is zero. That means if you multiply c(x) with h(x) you end up with a zero, 

just like the parity check matrix we multiplied with the codeword vector, you end up with a zero 

vector; if you multiply the parity check polynomial with a valid codeword polynomial you end 

up with the zero polynomial. Had there been an error you will get a non-zero polynomial and that 

will form your error polynomial. 
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So let’s look at an example for binary codes of block length n =7, we have x
n
 -1is equal to x

7
 -1 

and the first step always in the search of cyclic codes is to factorize this. In a previous lecture we 

had looked at certain factorizing techniques. 
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So the first step is simple x
7
 -1 is x -1 times x

6
 +x

5
 and so and so forth up to x

0
 which can be 

further factorized into these two terms. So we done the factorization and all of them are 

irreducible, they cannot be factorized further which means the three of them and any product 

thereof can form a valid generator polynomial, it has to be a factor of x
7
 -1. So just consider x

3
 

+x +1 since g(x) is a factor of x
7
 -1 is a cyclic code that can be generated by it. Now having 

found out a generator polynomial which in our case here is x
3
 + x+1 I can simply write the 

generator matrix by using the coefficients 1 1 0 1 are the first three coefficients in the decreasing 

order because the coefficients of x
2
 is zero here which is reflected here. So x0 x1 x2 and x3 and 

then a cyclic shifted (Not understandable) (Refer Slide Time: 00:31:57 min) another one and 

another one. 

  

The number of rows is 4, the number of columns is 7, n =7 and k =4 and n- k is the highest 

power of x0. If you know G you can also find out the parity check matrix so this is nothing but 

whatever is remaining. So if you multiply x -1 with x
3
 + x

2
 +1 you get this one and this 

corresponds to the coefficients of the parity check matrix. The number of rows is n – k is equal to 

3, the number of columns is equal to n =7.  So this is the G and the H matrix for your cyclic 

code. Please note here we have a recipe to make as many generator polynomials as possible. In 

fact 1, 2, 3 are clearly visible. Then product of these two 4, product of these two 5, product of 

these two 6 and then there are two more factors for x
7
 -1, one is unity it’s also a factor and itself 

x
7
 -1 that’s also a factor of x

7
 -1.  

 

So you have 8 possible generator polynomials out of x
7
 -1. [Conversation between Student and 

Professor – Not audible ((00:33:30 min))] Question is being asked about h(x), h(x) as we know 

has a very interesting property. We have denoted h(x) times g(x) is equal to x
n
 -1. So if I choose 

my generator polynomial for an instance as x
3
 + x+1 then whatever other two terms left their 

product is h (x). Had I chosen my generator polynomial is x
3
 +x

2
 +1 it’s also valid generator 

polynomial because it’s a fact is a monic, is a factor of x
7
 -1. In that case the product of x -1 and 

x
3
 + x+1 the first two terms would have been h (x), so g (x) times h (x) is x

n
 -1. So after the 

effort that we put in, to figure out factorization of polynomial it is now a piece of cake to figure 

out how to get to the various kinds of generator polynomials. 

  

In fact once you factorize, you found out all possible generator polynomials for the block length 

7 because I factorize x
7
 -1 once. In fact I have not one, not two but the existence of 8 possible 

cyclic codes here, of course some of them are trivial. So the minimum distance of this code is 3 

and if you observe it carefully this happens to be the (7, 4) hamming code. So the hamming code 

which is also perfect code also happens to be a cyclic code, a very versatile code. Now let us 

give a flavour to this error control coding from the perspective of mobile communications. In 

mobile communications we have already encountered that the wireless channel is a very hostile 

channel, it goes through deep fades and whenever we pass through a fade, we have a burst of 

errors.  

 

It depends upon the fade duration, if the fade duration is large then we have several bits wiped 

out at a time and these are consecutive bits so far the philosophy of error control coding has been 

that we can handle random errors but if the errors start happening in bursts that is all the errors 

are situated next to each other then we are in problem.  
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Then we must device some smart techniques to overcome the burst errors as we will see cyclic 

codes are phenomenally good in overcoming burst errors. In many real life channels as we know 

in wireless channels errors are not random but occur in bursts. For example the mobile radio 

channel, when errors occur at a stretch as opposed to random errors we call them burst error. A 

cyclic burst of length t is a vector whose nonzero components are among the t successive 

components but note the first and the last of which are nonzero. So if you say it’s a burst of 

length t then the first and the last elements in the error pattern should not be zero. Let’s take a 

small example that the transmitted sequence of bits transmitted at 10 kilobits per second over a 

wireless channel be follow.  
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Suppose after 0.5 millisecond of the start of transmission, the channel experiences a fade of 

duration one millisecond. Now we have already devised mathematical tools to predict the 

average duration of fade. Let this be a measured quantity one millisecond. So during this time 

interval the channel corrupts all the transmitted bits so here is a start of fade and the fade lasts for 

so long and then the fade ends because we know that the data rate and we also know how long 

the fade last here this is kind of an error patterns. So all the bits within this fade have been 

flipped but clearly we do not know the fact that all of them have been flipped. If you knew it will 

just flip it back and a problem is solved. So fade doesn’t mean that the all the bits are exactly 

flipped.  

 

In fact we do not know whether the bit is flipped or not but there is a possibility have been 

flipped but most importantly for the burst of length t, the first and the last should not be zero, rest 

all can be zeros. It could have been 1 0 0 0 0 0 0 up to here and then one again it will still qualify 

as a burst of length t. This is an example of a burst error where a portion of the transmitted 

sequence gets garbled due to the channel; here the length of the burst is 10 bits. 

  

(Refer Slide Time: 00:39:07 min) 

 

 
 

So let’s look at an example for a binary code of block length n =15, consider the generator 

polynomial like this. So generator polynomial gives you a lot of information you only know 

n=15 but you know that the highest power 6 corresponds to n-k. So n-k 6 so you can find out k 

from here and then you can find out the code rate. This code is capable of correcting burst of 

length 3 or less, to prove this we must show that all syndromes corresponding to the different 

burst errors are distinct. The different bursts are burst of length one, it’s just saying that one bit 

occurs at any one of the 15 locations. What are the 15 locations? 0 through 14 so e(x) which is 

our polynomial for burst error is x
i
, bursts of length 2 can be denoted by e(x) is equal to x

i
 (1+ x) 

because they have to be two consecutive bits which are in error it’s a bursts of length 2.  
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Bursts of length 3 can be denoted as follows, there have to be 3 consecutive errors, it can be 

shown that the syndrome of all this 56 possibilities. So they have only 56 possible bursts lengths 

of burst length 1, 2 or 3. So if I say this code can correct all burst errors of up to length 3 then all 

the possible error patterns, all the possible burst error patterns must have a unique syndrome 

polynomial. How do we find out the syndrome polynomial? Take this e (x) divided by g (x), 

whatever is the remainder is a syndrome polynomial. So it can be shown it for all these cases, if 

you take it modulo g (x) you come up with unique polynomials. If we have unique polynomials 

you can map it back and hence correct all errors of burst length 3 or less. A table can be made for 

each pattern and the corresponding syndrome which can be used for correcting a burst error of 

length 3 or less can be found out. 

  

(Refer Slide Time: 00:41:54 min) 

 

 
 

Let us look at another example, a code which is good at correcting burst errors it is called the fire 

codes. A fire code is a cyclic burst error correcting code over GF(q) with the generator 

polynomial given as g(x) is equal to x
2t-1

 -1 times p (x) where p(x) is a prime polynomial over 

GF(q) whose degree m is not smaller than t and p(x) does not divide x
2t-1

 -1. So under this 

constraint whatever code you form is called a fire code. It has some very interesting properties. 

The block length of the fire code is the smallest integer n such that g(x) divides x
n
 -1. A fire code 

can correct all burst errors of length t or less so within the definition of your generator 

polynomial I have put in how many burst errors can I correct. So I have designed rule here I fit in 

a value of t, if it is 3 you have x
5
 -1times p (x) where p (x) must satisfy this property, p (x) does 

not divide x
5
 -1.  

 

 

 

 

 

 

 



18 
 

(Refer Slide Time: 00:43:25 min) 

 

 
 

What is interesting is fire codes become more efficient as we increase t. What is it mean? 

Efficiency in terms of the code rate. So if you increase this t, you have on the y axis the code rate 

and how do you get the code rate from here, n - k is the highest power of this whole thing. So as 

you increase your t on the x axis, the code rate tends to go up but your block length also tends to 

go up, so fire codes of large block lengths are very useful. 
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Let us now speak briefly into a sub class of cyclic codes which is the Bose Chaudhuri 

Hocquenghem codes or more popularly known as the BCH codes.  
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So the BCH codes are a sub class of cyclic codes which are a sub class of linear block codes. The 

class of BCH codes is one of the most powerful known class of linear cyclic block codes. The 

BCH codes are known for their multiple error correcting capabilities and the ease of decoding 

and encoding. Now there is also paradigm shift, so far our approach has been to construct a code 

and then find out its minimum distance. The BCH code tells you please tell me how much is the 

desired minimum distance of the code and it will design a code accordingly. So it’s an other way 

round so far we make a code we construct a code and then find the minimum distance and we 

talk about how many errors it can correct. If you go the other way round it tells you or it ask for 

the parameter how many errors is required to be corrected by the code and then constructs a code 

accordingly. In this case we start at the other end. 
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Now the class of BCH codes were discovered independently by Hocquenghem in 59 and Bose 

Ray Chaudhuri in 60 and hence the name BCH. The Reed Solomon codes are a sub class of BCH 

codes but an important sub class with a wide range of applications in digital signal processing is 

to communications and data storage. The Reed Solomon codes were discovered by Reed and 

Solomon who published a five page paper in the journal of society for industrial and applied 

mathematics in 60.  

 

Despite their advantages RS codes, the Reed Solomon codes did not go into use immediately 

after their invention. Why? They had to wait for the hardware technology to catch by that time. 

So today the very popular RS codes which we find in our CD, the audio CDs, the video CDs 

even for deep space exploration and lot of wireless communication devices could not be put into 

immediate use because the required technology was not there. So in 60’s there was no such thing 

as fast digital electronics not by today’s standard. 

 

So we will summarize today’s talk here. We started off by looking at the Galois field followed 

by a detailed understanding of cyclic codes. We came up with an interesting polynomial 

representation of cyclic codes. 
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We realize that there is a one to one correspondence between polynomials and cyclic codes, what 

was interesting is that if you multiply a polynomial by x you right shift the codeword elements 

and what is important is for cyclic codes any shift, any cyclic shift of the codewords is also a 

valid codeword. Then we realize that there is a notion of a generator polynomial in cyclic codes 

and then the analogy doesn’t stop there, you have a syndrome polynomial and is a parity check 

polynomial.  

 

We also realize the importance that you have to take modulo x
n
 -1 so that when you multiply 

g(x) by any valid polynomial you do not over the block length. Then we also realize that g(x) the 

generator polynomial must be a factor of x
n
 -1 thereby we figured out a way to come up with all 

possible valid cyclic codewords of a certain block length n. All we have to do is take x
n
 -1 and 

factorize it and in front of our eyes will have all the possible valid generator polynomials. We 

then moved over to the domain of burst error correction. We realize that in mobile environments 

where we encounter deep fades, we tend to lose not random bits but also bits which are in burst 

error so we lose a sequence of bits. Our regular error control techniques are incapable of 

overcoming burst errors. We have to have special kind of codes for that. We looked at certain 

cyclic codes which are known to be good burst error correcting codes, one of the most important 

one is the fire codes.  

 

We then briefly had a peak at the BCH codes which form an important sub class of cyclic codes 

not only because you can very easily encode and decode them but also that you can have a 

constructive strategy for BCH codes. At this moment in time please note that cyclic codes BCH 

codes and Reed Solomon code which is a sub class of BCH codes though non-binary, all form 

are from the linear block codes they all subsets of the linear block codes. So all the techniques 

that we have learned and developed for linear block codes are also valid for cyclic codes, your 

BCH codes and Reed Solomon codes. However in the subsequent lectures we will look at 

efficient encoding, decoding strategies for Reed Solomon and BCH codes as well. So this is a 

nice place to conclude our lecture and we will look at BCH codes starting from the next class. 


