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Hello students, welcome to lecture 13 of the online course on  Nanophotonics, 

Plasmonics and Metamaterials. Today we will be covering real and reciprocal lattices.So 

here is the lecture outline. So today we will have a look at the periodic electromagnetic 

devices like why  we are studying these topics and where is the final objective.  We will 

also go into the technical details like two-dimensional lattices,  study about their 

symmetry operations. We will also understand the translational symmetry that is  present 

in this periodic devices. 

 
 We will analyze the primitive lattice vectors, calculate the reciprocal lattice vectors, 

obtain Miller indices  and also discuss about the Brillouin zones. So here is the final 

objective. So as you can see we actually use a lot of periodic electromagnetic devices  in 

our different applications. Starting from diffraction grating, you might have heard of this 

diffraction gratings that allow you to split light into  different colors. 

 

 So you can use it for spectral imaging. You can use photonic crystals as waveguides for 

guiding light. You can also have photonic crystal based fibers, hollow core fibers, okay. 



Then you can actually make band gap materials with a defect at the center  which will 

allow you to act, this will act as a resonator cavity. These periodic structures can also 

form metamaterials as we have  discussed initially that you can actually engineer the 

electromagnetic  properties of material using this kind of periodic arrangements. 

 

 Obviously you can make antennas, okay, and slow wave devices. You can also  make 

frequency selective surfaces that are also useful for say stealth application. So you can 

understand that starting from you know optical branches to  data communication on chip, 

data communication over cables, resonator cavity, metamaterials, antennas, frequency 

selective surfaces, all this application have in a,  they use periodic electromagnetic 

structures. So that is why it is very important to understand these structures in little bit of 

details and that is the reason why we are  discussing this photonic crystal that is the first 

example of the periodic devices  we are dealing in this course in little bit of depth.  So let 

us first go and ask the question that what is a periodic structure?  So, if you look into 

periodicity that is present at the atomic scale. 

 
  So all these atoms they actually have a periodic lattice in which the electrons or  the 

elements are oriented or their positions.  So different atoms they are all positioned in 

different lattice points.  And if you copy that natural thing into your engineered object 

you can also  make periodic arrangement of different structures which are periodic in  

two dimension or three dimension depending on your application need Here also, you 

have largescale periodicity, here we have discussed about   So here also atomic scale 

periodicity.  Now because it is periodicity the math describing these things in both this  

atomic scale and large scale they are basically same.  Now how do you describe periodic 

structures?  There is an infinite number of ways that the structures can be periodic. 

 



  Just like this we need to find a way to describe and classify periodic lattices.  So we 

have to make generalization to do this.  So what are the generalization?  So let us see that 

we can classify periodic structures into 230 space groups which can  be classified into 32 

crystal groups or you can say they can be classified into  14 Bravais lattices.  I believe 

from the material science kind of courses you might have heard about the 14  Bravais 

lattices that is present and they also fall under 7 crystal systems.  So, these are kind of 

generalization. 

 
  So as you see so this is as you go down they become less specific and they are becoming  

more generalized.  Now what are these space groups?  These are set of all possible 

combinations of symmetry operations that restore the crystal  to itself.  Okay so what are 

the different possible combinations of operation you can perform on a particular  crystal.  

Now if you take the example of the 14 Bravais lattice they basically are the primitive 

lattices.  That means these are set of all possible ways a lattice can be periodic if 

composed  of identical spheres placed at the lattice points. 



 
  So these are like lattices are the structure at which you can repeat the unit cell.  So here 

if you take identical spheres as your unit cell that you can place at every lattice  point and 

that will create that particular arrangement.  Okay so when you talk about crystal 

systems, crystal systems are basically set of all Bravais  lattices that have the same 

holohedry that means the shape of the conventional unit cell.  So if you actually look into 

the classification based on crystal systems there are only 7  crystal systems.  So here they 

are basically the set of all Bravais lattices which have the same shape  of the conventional 

unit cell. 

 
  Let us look into some of these examples.  So if you take 2D Bravais lattices so here you 

see this is one lattice so you look at  the arrangement here this is basically hexagonal.  So 



you see the green shaded region that shows a hexagonal shape.  So at each of this point 

what is sitting there it is a sphere or an atom or any other  shape can actually sit here okay 

to make this particular lattice.  So what are the important things you have to see that here 

the two lattice vectors they  are equal in size and the angle between them is 120 degree. 

 

  So that is hexagonal lattice.  You can also have square lattice.  So here the two lattice 

vectors are equal in size and the angle between them is 90 degree.  Make sense?  In 

rectangular you have to understand that the two lattice vectors are no longer equal  okay 

so this will be longer and this will be shorter but the angle between them  has to be 90 

degree.  There can be other shape like rhombic or centered rectangular like this it is a 

rectangle   with one at the center. 

 

  So in that case this is how the two lattice vectors are related and here also the angle  

requirement is not 90 degree.  You can also have oblique like this where modulus of t1 is 

not equal to t2 that means  the two lattice vectors are not equal to each other and their 

angle is also not 90 degree.  These are like two-dimensional previous lattices.  When we 

talk about symmetry operations these are the symmetry operations we discuss.  So, one is 

called pure translation it means moving. 

 
  So if you move these to this point okay the lattice orientation remains same.  So this is 

translation symmetry.  Then you have rotation symmetry.  So if you take this one and 

rotate it like this okay you see upon this kind of  rotation it again gets back to the same 

shape.  So this is called rotation symmetry. 

 

  Then you take this one this is called reflection symmetry.  So if you take this part and 

take reflection of it you will see you will get up the same  kind of shape.  So this is 



rotation symmetry and you can also try any combination of this translation,  rotation and 

reflection sorry this is called reflection symmetry.  So you can have any combination of 

translation, rotation and reflection and that   combination also give you a identical kind of 

transformation.  So these are called you know symmetry operations. 

 

  Now with that let us try to understand the primitive and non-primitive lattice vectors  in 

more details.  So as we understood that the axis vector define the shape and the 

orientation of  the unit cell.  They cannot uniquely describe all 14 Bravais lattices but 

they could uniquely describe  the 7 crystal system okay.  So the translational vectors they 

connect adjacent points in the lattice and can uniquely  describe the 14 Bravais lattices.  

So these are the two important thing. 

 

  One is axis vectors which are good for 7 crystal systems but not good for the Bravais 

lattices  whereas the translational vectors are good for the Bravais lattices okay.  Now the 

primitive lattice vectors are nothing but the smallest possible vectors that can  describe 

the unit cell.  We will take this as an example.  So if you take this as your unit cell as you 

can see this is basically a BCC structure  body centered cubic structured okay and here 

you can see that you have taken these are  the three vectors.  So, you can say these are the 

primitive axis vectors. 

 
 

  Whereas if you try to take the center point from the center point if you are trying to  

connect the vectors to the adjacent three points that is the primitive translational  vector 

okay.  So these are two different types of orientation or you can say nomenclature or 

systems.  So one is axis vector this way they are defined another is translational vector 

this is how  they are defined.  So almost always the level lattice vectors refer to 



translational vectors.  So when we say lattice vectors we basically mean these vectors 

which are able to uniquely  describe the 14 Bravais lattices. 

 

  So always remember like lattice vectors you have to uniquely describe the lattices that  

is why we go for translational vectors okay.  Now this one this is a primitive translational 

vector this one and this one.  How about this?  This is also a vector which is you know 

integral multiple of that particular primitive vector  and then you have one along this side.  

So what about this one?  Is this vector a primitive one?  No it is not a primitive one okay.  

The primitive ones are the smallest possible vectors. 

 

  So these are the smallest possible vectors not this one okay.  So this is the primitive 

translational vector as you can see here but this one is not the  primitive one.  So it is a 

non-primitive translational vector.  Now let us look into the translational symmetry.  So 

continuous translational symmetry can be observed okay in such a system where it is  

unchanged if we translate everything through the same distance in a certain distance 

certain  direction like if you go back here and you see that if you shift the entire system   

then it is actually the system is unchanged. 

 

  So that kind of symmetry is called translation symmetry okay.  So given this 

information we can determine the functional form of the systems modes.  Now a system 

with traditional or translational symmetry is unchanged by a translation through  a 

displacement d.  So we are quantifying the thing here.  Now for each d we can define a 

translational vector Td cap okay which on operating on a  function f(r) so if you operate 

this Td cap the translation on a function f(r) it will shift  the argument by the distance d 

and what do we want?  We want after the translation it should be same as the original 

system. 



 
  Now a system with continuous translational symmetry in the z direction is basically 

invariant  under all the Tds that can have in the particular direction okay.  Continuous 

translational symmetry means if a system for any value of d is able to repeat  itself that is 

like a continuous translational symmetry system.  Now what sort of function is an 

eigenvalue of all this Tds okay we can prove that a mode  with the functional form e to 

the power ikz is the eigenfunction of any translational  operator in z direction.  How it 

works?  It works like this.  So if you take this translation operator okay at any translation 

for any distance say d  that works on this one so that will actually shift the argument by d. 

 

  So how it shifts?  ( )ik z de − so that can be written as ( )ikd ikze e− .  So this becomes a 

eigenvalue equation okay and this is the eigenfunction right.  This is the eigenvalue this is 

the eigenfunction okay.  So the eigenvalue is e to the power minus ikd.  So this is 

happening for any kind of translation continuous translation. 

 

  Now what about we have discrete translational symmetry?  It means you cannot repeat 

at any arbitrary distance but at a defined distance if you  repeat the system you will see 

the same property that is what is called discrete  translational symmetry.  Now photonic 

crystals which are man-made crystals okay like traditional crystals of atoms or  molecules 

they do not have continuous translational symmetry.  Rather photonic crystals will 

exhibit discrete translational symmetry that means they are  not invariant under 

translation of any distance but they will work for a given distance and  its integral 

multiple okay.  So you can actually take this particular example as you can see that it is a 

1D periodic crystal  or photonic crystal where it is periodic along the y-axis okay.  So 

what is the period here?  It is shown in this box. 



 
  So this particular is the unit cell that is being repeated and the repetition is happening  at 

a distance of a okay.  So at any sample point at a or integral multiple of a in plus and 

minus direction you will  have the same property.  So these are basically systems with 

discrete translational symmetry right.  Now for this system we still have continuous 

translational symmetry is there but that is  along the x.  So here it is continuous okay 

along x direction the system is having continuous  translational symmetry but along y 

direction it is having discrete translational symmetry. 

 

  So the basic step length is the lattice constant a and the basic step vector is called the  

primitive lattice vector.  In this case what is the primitive lattice vector?  It will be bold a 

that is nothing but a y cap.  It means it is the it is along the y direction and the magnitude 

is a, okay.  That is how you can actually define the primitive lattice vector.  Now why 

only one vector because this is 1D periodic. 

 

  You are not bothered about what is happening in the other two dimensions.  So 

periodicity is only seen in y.  Now for the system yeah so in this case what you can write 

that along y it is periodic  along x it is also it is having continuous translational symmetry 

along y it is having  discrete translational symmetry.  What is happening along z axis?  

Along z axis you will see that the permittivity is a function of the distance because it is  

changing with the coordinate z.  So here it is say the material is there when you go up you 

may have the material or may  not have the material. 



 
  So it is basically changing okay and along y so what is happening the dielectric function  

you can say it continuously varies in the z direction.  So here you will see a continuous 

variation okay.  However along y you will see that it is varying discretely like epsilon r 

can  be written as epsilon r plus minus a.  So whatever you are seeing at position r will 

can also be seen at position r plus a  or r minus a.  Now by repeating this translation, you 

can see that epsilon r can be written as epsilon  small r plus capital R. 

 
  So what is capital R?  It will be nothing but any integral multiple of the lattice period 

which is small a.  So R can be written as l a, l is the integer.  These are very simple things 

okay.  Now the dielectric unit that we have considered we considered to be repeated over 

and over  just like this box is being repeated okay.  Now what is this box called?  In good 



terms it is called unit cells okay because this is the thing that is being repeated  

periodically. 

 

  Now in this example the unit cell is an x z slab of dielectric material which has got  a 

width a in the y direction.  So if you describe your unit cell like this it is clear that it is a 

1D periodic structure.  Now because of the translational symmetries eigenfunctions must 

commute with all of the  translation operation in the x direction as well as the translation 

operators for lattice  vectors that is R equals l a y in the y direction.  So, with this 

knowledge we can identify the modes of simultaneous eigenfunctions of both  

translational operators. 

 

  So there are two types of operator as I mentioned.  So, you have this 
x̂
ˆ xik x

dT e that is along 

x it is a continuous translational  symmetry.  So, this will be the eigenvalue operation 

okay and along y you have this discrete translational  symmetry and that happens along R 

that is l a integral multiple of the lattice period.  So, these are the two you know 

translation operation that is happening and using this  you can identify the modes of 

simultaneous eigenfunctions okay.  Now let us see how do you calculate the reciprocal 

lattice vectors.  Now we can begin to classify the modes by specifying kx and ky okay. 



 
  So kx and ky they are in the momentum space right.  Now however not all values of ky 

will yield different eigenvalues.  Consider two modes one with wave vector ky and 

another with wave vector 2 /yk a+ okay.  Now what is this 2 pi by a? a is the lattice 

constant.  So you can have wave vector with these two values.  Now if you insert these 

values into the equations that you have seen here these two equations  okay they will 

show that they have the same Tr cap eigenvalues okay. 

 

  In fact all of the modes with the wave vectors of the form y (2 / )k m a+ ,m is an integer  

they will form a degenerate set and they all will have the same Tr cap eigenvalue  of e to 

the power minus i ky l a okay.  So it means all these cases they will actually have the 



same eigenvalues.  Now this was done for say ky right.  So augmenting ky by an integral 

multiple of b so if you define 2 pi by a as b okay  so this is nothing but integral multiple 

of b okay.  So, you understand that this will leave the state unchanged. 

 

  So you can actually call b equals by cap as the primitive reciprocal lattice vector  right.  

So real lattice and reciprocal lattice, reciprocal lattice is in the momentum space and there  

you can understand that whatever is you are adding integral multiple of that thing that  

repeats so that will give you the reciprocal lattice vector.  Now suppose we have a 

function f r that is periodic on a lattice.  So periodic means you can write that f of r will 

be same as f of small r plus capital  R for all the vectors capital R that translate the lattice 

into itself.  So, it is repeating after this particular value of capital R. 

 

 So we have seen what is capital  R that is basically small l a, l is integer a is the lattice 

constant right.  Now our dielectric function epsilon r can also be taken as this kind of 

function.  So instead of f, f was a generic one you can think of a property material 

property like  permittivity that will also repeat using this particular relationship.  And in 

this case capital r is called the lattice vector okay.  Now if you consider a two 

dimensional arrangement, so let us consider this particular picture  which is a periodic 

structure of identical parallel rods or tubes or vanes, vanes will  be like meshes okay like 

grids like this okay. 

 
  So you can assume these vanes to be embedded in a homogeneous host medium and 

they are  organized at the points of a rectangular lattice.  So what is happening here you 

can think of a you know square or rectangular lattice.  So rectangular lattice as I 

mentioned before that one lattice vector is not equal to the  other lattice vector that is 

rectangular lattice but you have to make sure the angle is  90 degree.  In this case the 



impermeability which is 0( , ) / ( , )x y x y = .  Now this is also periodic in the transverse 

directions that is x and y however it is uniform  along the z direction because there is no 

change in the z direction it can be infinitely  large in the z direction okay. 

 

  Now if a1 and a2 are the periods in the x and y direction so if you consider the period  

here is a1 and this is a2 so the shortest distance here will be a1 and a2 so they are  the 

lattice vectors right.  So you can say that eta xy satisfies the translational symmetry 

relation given by this.  So, what is that ( )1 1 2 2, ( , )x m a y m a x y + + = .  So that is how you 

can also understand that for all integer values of m1 and m2 this  relation will be 

satisfied. 

 

  So this is a periodic 2D lattice.  This periodic function is represented as a two-

dimensional Fourier series in the  form of this one.  So any periodic function can be 

expressed as a Fourier series that you have learnt.  So eta xy can be written as all these 

different components here okay.  You can write

( ) ( )
1 2

1 2

, 1 1 2 2( , ) exp expx y j g x j g x
 

 
 

=− =−

=   − − .  

  Now what are this g1 and g2 we have seen in the previous lecture.  

1 1 2 22 /  and  2 /g a g a = = these are the fundamental spatial frequency  along x and y 

direction.  What will be the unit radian per mm okay and l1 g1 and l2 g2 are nothing but 

they are harmonics  because any frequencies spatial frequencies fundamental frequency if 

you multiply them  within integers you will get their harmonics right.  So the coefficients 

that you have seen eta l1 l2 depend on the actual profile of the  periodic function that is 

the size or the shape of the rods.  So, let us look into the 2D Fourier transform of the 

period function. 



 
  So it is composed of points on a rectilinear lattice as shown in B. So this is the real  

lattice which is basically the lattice points are shown here okay.  So we have considered a 

rectangular lattice so this lattice vector is a1 this is a2 but  when you convert it into the 

reciprocal lattice that is in the Fourier domain okay you went  to the from space you have 

gone to momentum space okay.  So here you will call it kx and ky okay and this lattice 

vectors are now 2 pi by a1 so  it is g1 okay and g2 okay they can be yeah 

1 1 2 22 /  and  2 /g a g a = = . I think  there is a typo here okay that can be corrected.  So 

this should have been g1 and this is g2 so this is how you get the  reciprocal lattice fine.  

Now once you understood that how you get the reciprocal lattice what are the optical 

modes  of the medium with such symmetry that you have to find out okay and there will 

be another  important thing that what is this particular region that we have marked here 

okay. 



 
  Now if you consider the waves traveling in the direction parallel to the xy plane the  

modes of the two-dimensional block waves are given by 

( ) ( ),( , ) ( , ) exp exp
x yK K x yU x y p x y jK x jK y= − − , where this is basically the periodic  

function with the same period as the medium.  Now if you consider this particular 

reciprocal lattice the shaded region the yellow shaded  region here is basically the 

Brillouin zone.  So how do you get Brillouin zone we will come to that but first of all you 

have to remember  that the wave that is shown here is basically having a pair of block 

wave numbers it has  got kx and ky right.  So another wave with block wave numbers 

like kx plus g1 and ky plus g2 okay that will not  be a new mode rather they will kind of 

they will be same.  As shown in the figure a complete set of modes in the Fourier plane 

has block wave numbers  located at points in the rectangle defined by this one. 

 

  So what is this one?  So kx is defined as minus g1 by 2 to g1 by plus g1 by 2 and ky will 

be defined as minus  g2 so this is 2 okay minus g2 by 2 to plus g2 by 2 and this particular 

rectangle is called  the first Brillouin zone.  And why we are interested here so if you are 

able to calculate all the modes in this particular  zone we know it for the entire lattice.  So 

other symmetries may be used to reduce the set of independent block mode wave vectors  

within the Brillouin zone.  So we will come to that concept which is also known as how 

to find out the irreducible  Brillouin zone.  So, when all the symmetries are included the 

result in an area called irreducible the result  is an area called irreducible Brillouin zone 

okay. 



 
  So, we will take an example here that in this particular case you can understand that this  

is basically a square okay kind of shape.  So, here what you can have you know you can 

actually look for rotational symmetry okay  and mirror symmetry.  So, from that you can 

identify that this rectangle sorry this square or rectangle is better is  a generic term 

because g1 and g2 are not same.  So, let us take say this rectangle if you take a mirror you 

get this one and then you put  a mirror here the whole thing is formed right. 

 

  So, this is the basic Brillouin zone okay.  You can start with it and create the whole 

thing.  However taking only half of it because it is also having a rotational symmetry.  So, 

if you take half of it and rotate it by 45 degree you will get the other half okay.  So, that 

way this becomes the irreducible Brillouin zone and there are ways of marking it. 

 

  So, you can actually mark this as gamma M X.  So, what is M?  M is the corner point, X 

is the midpoint of the edge right.  Now a two-dimensional periodic structure comprising 

parallel cylindrical holes are considered  here.  So, here one important thing as you can 

see they are not actually aligned in a rectangular  or square lattice.  So if you connect all 

the center points of this cylindrical holes.  So, how do you make these holes first of all?  

You take this structure and then drill holes in this particular pattern. 

 

  So, if you mark all the center points of this particular holes you will see this is the  

lattice okay.  So and from this lattice this is the direct lattice.  So you can see this is a1, 

this is a2 both are equal and this angle is around 120 degree.  So this is a hexagonal 

lattice right and or you can also call this as triangular lattice  there is another name for it 

okay.  So, from this you can always convert it to the reciprocal lattice space and find out  

what is g1 and g2 okay and in this reciprocal lattice space you can identify the Brillouin  



zone. 

 
  How do you do the Brillouin zone?  Once again you take the one center point and then 

you connect it to all other points  like this okay.  So, you can draw these lines and then 

you draw perpendicular bisector like this.  So, you will get this particular one.  For this 

one you draw another perpendicular bisector you get this one. 

 

  For this you draw another perpendicular bisector you get this one.  Then you get this 

one for this line, for this one you get this line, for this one you  get this line and that is it.  

And then you paint this area with yellow and you can just show that this is your 

reciprocal  lattice having this Brillouin zone okay.  So, this is the first Brillouin zone okay 

and from this you can also identify as I mentioned  you can use those rotational symmetry 

and mirror symmetry and all these things.  So, you can identify what is the irreducible 

Brillouin zone.  Here you will see that you can identify only this triangle to carry all the 

information  about the Brillouin zone okay. 

 

  So that is how irreducible Brillouin zone helps you to reduce the computation and but  

still give you the same amount of information of a Brillouin zone okay.  So this we have 

already covered so this is in the shape of a hexagon right.  Now I think we have already 

discussed this for a given lattice with a set of lattice  vectors R how can we determine all 

the reciprocal lattice vectors G.  So here we are naming the real lattice vectors as capital 

R and the reciprocal lattice vectors  as capital G and let us find out you know that what is 

the relationship between this  G and R okay.  So we need to find all G such that if you do 

G dot R means if you multiply this okay  this is some integer multiple of 2 pi for every 

value of R okay. 

 



  So how do you do that?  We know that every lattice vector R can be written in terms of 

its primitive lattice  vector which are basically primitive lattice vectors are nothing but 

the shortest vectors  pointing from one lattice point to another lattice point okay.  So for 

example if you take a simple cubic lattice with spacing say small a the vectors  capital R 

can be written in the form of la x plus ma y plus na z.  So as you can see it is a cubic 

lattice so all the distances are basically same a and  l, m, n these are basically integer.  

Now in general we call the primitive lattice vectors there are names a1, a2 and a3 right  

and they need not be of unit length that is understood only in certain cases they will  be 

equal to each other okay or two may be equal one will be different and so on.  And we 

have already mentioned that the reciprocal lattice vectors which are denoted by G form  a 

lattice of their own okay. 

 
  So it is a there is a real lattice and there is a reciprocal lattice.  In fact the reciprocal 

lattice has a set of primitive vectors bi so there it is ai or  you can say a1, a2, a3 here it 

will be b1, b2, b3.  It means every reciprocal lattice vector G can also be written as 

1 2 3lb mb nb= + +G and so on where l, m, n are basically integers right.  So, our 

requirement that 2 N =G R boils down to the requirement that  this particular product 

that you have seen okay just to not to confuse that   this l, m, n should be equal you can 

actually mark them as l prime, m prime, and n prime  okay that this integer values are 

basically different to this integer values.  But this multiplication should give you 2 pi N.  

Now for all the choices of l, m, n that you have seen okay there should be some value  of 

N that holds that equation correct. 

 

  So if you put some thought you will see that only in the case when i j 2a b  = this will 

happen if i and j are equal and if they are unequal okay this will be  unequal there is a 

typo here you get 0 okay.  It means compactly you can write that ai dot bj the two unit 



vectors when you multiply  them if they are in the same direction you get this value 1 

okay if they are in different  direction you get 0.  So i j ij2a b  = okay this is how you 

can write it compactly.  Now given the set a1, a2 and a3 our task is to then find out the 

corresponding set of  the reciprocal lattice vectors that is b1, b2 and b3 and what is the 

condition?  The condition boils down to ai dot bj should be equal to 2 pi delta ij. 

 
  Now one way to do this is to exploit a feature of the cross product.  So you remember 

this formula that x dot x cross y equals 0 and that is happening for  any vector basically.  

So if you take x, y as any vectors if you do this particular operation  you will get 0.  So 

using that you can also find out that in the primitive reciprocal lattice vectors can  be 

obtained from the real lattice vectors using this formula.  So b1, b2, b3 can be obtained 

from a1, a2 and a3 using this particular relationships  okay.  In summary we can say that 

when we take the Fourier transform of a function that is periodic  on lattice we need only 

include the terms with wave vectors that are reciprocal lattice  vectors. 



 
  Now to construct the reciprocal lattice vectors we take the primitive lattice vectors and  

perform the operations that are given in this equation simple.  Now each direct lattice has 

a unique reciprocal lattice.  So if you have knowledge of one you have the knowledge of 

another because they will correspond  to uniquely to each other.  So if you take a direct 

lattice like this so the blue one shows the primitive lattice  vectors here and in the green 

one the capital ones are showing the primitive reciprocal  lattice vectors. 

 

  So you can actually correlate this.  So if the direct lattice is simple cubic your reciprocal 

lattice also turns out to be simple  cubic.  If you have BCC when you do the reciprocal 

lattice you will come up with FCC.  If you have FCC you will come up with BCC and if 

you have hexagonal you still come up  with hexagonal.  So this is how you know they 

correspond to each other.  And this is how you can convert as I have already shown how 

to convert the reciprocal  lattice vectors okay. 



 
  So capital t1 and capital t2 are basically the reciprocal lattice vectors okay and the  blue 

ones are basically the small t1 and small t2 are the real lattice vectors.  So this is how you 

can actually now get the values of each other.  So these are the values of how to obtain 

capital t1, capital t2, capital t3 this is for 3D  system okay and these are for 2D system.  

And all the reciprocal lattice vectors must be an integral or integer combination of the  

primitive reciprocal lattice vector.  That means this TPQR or it can be called as G capital g 

as you have seen they will  be nothing but capital p or l prime as you have seen before 

capital t1 that is the real  sorry this is the primitive reciprocal lattice vector T1, T2 and T3 

so they are basically  integers P,Q,R all these are integers. 

 

  Different books use different notation just remember these concepts okay.  And the next 

important thing is to how to define the different planes using mirror indices.  Now miller 

indices identify repeating planes within the periodic structures like crystals.  So if you 

look into the definition of reciprocal lattice vector this is how we have   defined just now.  

So, P, Q and R they can be called as the mirror indices of the planes in the direct lattice  

which is described by a reciprocal lattice vector PQR. 



 
  So let us see how it works.  So if you have a 1 0 0 plane that means along x you have 1 

and it does 0 0 means it will  be parallel to both y and c.  1 1 1 plane means it will cut all 

three axis at oh there is a 1 bar so 1 bar is minus 1  along x okay and then you have 1 

along y and 1 along z so this is a particular plane that  is given as this mirror indices 1 bar 

1 1 okay.  You can also have some more like this is if you try to write them in terms of 

the lattice  vectors okay a 1 a 2 and a 3 you can define them as 1 0 0 this one is this 

yellow region  one is 0 1 0 this one is 0 0 1 this is 1 1 and then 0 and so on.  So this is 

how Miller indices help you identify repeating planes within periodic structures.  Now 

the last thing that remains here is to see how do you construct Wigner Seitz cell  or the 

Brillouin zone okay. 



 
 

  We will come to Brillouin zone because the concept that we will see here in Wigner 

Seitz  cell Wigner Seitz cell happens in real lattices and Brillouin zone happens in 

reciprocal lattices  but the concept is very similar okay and the construction of this cell is 

also very similar.  So how do you construct it let us see so pick a point in the lattice to 

build the cell around  so let us pick this particular point okay and then for this point 

construct planes that  bisect the region between all adjacent points okay.  So from this 

point to this point this is the connecting line so you actually put a plane  that bisects that 

region similarly for this to this you put another plane that bisects  this region and so on.  

So when you add up all this you will get this kind of a region unit cell region that is  

enclosed by all these planes okay.  So this is how the construction is done as you can see 

so from the center point to this  point if you take midway you first take that connecting 

line midway you draw a plane so  you basically get this kind of a section here then you 

have this plane this plane when  all these planes add up they will give you this particular 

shape okay. 



 
  So whatever you have done for Wigner Seitz cell if you do the same thing in a 

reciprocal  lattice you will basically get a Brillouin zone okay.  So the construction of 

Brillouin zone is exactly similar as the Wigner Seitz cell just you have  to do the same 

operation in reciprocal lattice.  Now Brillouin zone is closely related to wave vectors and 

diffraction so analysis of   periodic structures is often performed in reciprocal lattice.  So 

that is how you know that the study of Brillouin zone becomes very important okay. 

 

  The reason is the Brillouin zone is closely related to the wave vectors and diffraction.  

So if you take the Brillouin zone of a FCC structure that is basically a truncated 

octahedron  like this of 14 sides okay not slides it is 14 sides.  So this is basically the 

most symmetrical Brillouin zone because it is almost spherical.  So you can say that FCC 

lattice is having the highest symmetry among all the  Bravais lattice.  So, if you try to see 

the degree of symmetry for different type of crystal and other structures  you will see 

triclinic has got the lowest symmetry whereas diamond which is having FCC  structure it 

has got the highest symmetry okay. 



 
  And if you go for pseudo periodic like this they have even further increase in symmetry.  

Now these are the points of symmetry in a Brillouin zone.  So this is I am showing this in 

a 3D crystal.  So if you take think of a planar one so if you take a cubic crystal and if you 

then the  important points are gamma, M, R and X.  So, these are the points of the 

irreducible Brillouin zone. 

 
  So this particular volume will contain all the information of your Brillouin zone okay.  

You do not need to compute it for the entire region you can only compute it for this one.  

Similarly if you take hexagonal then these points gamma, K, M, L, H and A.  So each of 

these points are defined here something I just read out 1 or 2 that M is basically  the 

center of the rectangular phase.  So, this is the rectangular phase, this is the center. 



 

  There is another phase here what is this phase?  This is a hexagonal shape phase okay.  

So what is L?  L is basically the middle of the edge that is joining the hexagonal shape 

phase and the  rectangular shape phase.  So, this point is L okay.  What is H?  H is 

basically the corner point.  K is basically the midpoint of the edge that is joining two 

rectangular phases okay that  is K as you can see here.  So, these are the different 

irreducible Brillouin zones okay which are very very important for  finding protonic band 

structure as well. 

 
  And if you take this simple shape cubic one and if you think only 2D.  So you will only 

have gamma, M and X.  So if you take a cross section like this that will make this 

structure a 2D.  So you can only have gamma, M and X.  Here also you can think of this 

is the hexagonal one, but if you take a 2D so you can get a  2D hexagonal lattice or this 

triangular lattice you can say. 

 

  So, there you have gamma, K, M and gamma.  So, only this part will be in the 2D right.  

So that is the whole idea of having irreducible Brillouin zone as I mentioned that if this  

is your lattice and this is your unit cell okay.  So, your objective would be to only find out 

the region that this region should replicate  the entire one.  So, if you take only this 

particular region as you have discussed before, if you take  a flipped version of it here or 

rotate it here you can get this particular square and  then you can use mirror on the other 

side to get this left one.  So, once you have the upper half you can put a mirror here and 

you can get the entire structure. 

 

  So, it means if you only compute for this triangular region it will contain the same  kind 

of information okay.  Similarly in FCC lattice we have seen this is the Brillouin zone 



which has got 14 it  is a octahedral shape with 14 sides.  In between if you actually 

identify this region which is the smallest volume of space within  the Brillouin zone that 

completely characterizes the periodic structure is called the irreducible  Brillouin zone.  

So, you cannot further reduce your Brillouin zone.  So, this is the minimum portion of the 

Brillouin zone that is required to give you the overall  property of the Brillouin zone okay 

and that is why it is called irreducible Brillouin  zone and so two things here.  So, this 

octahedral shape is the full Brillouin zone, this painted region here this volume  is the 

irreducible Brillouin zone and this will help us in reducing the computational  burden for 

finding out different modes and the photonic band structure for this particular  crystal or 

crystals setup okay. 

 

  So, with that we will stop here today and in case you have any doubt you can write me 

to  this email address mentioning MOOC on the subject line.  Thank you. 


