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Hello students, welcome to lecture 19 of the online course on Nanophotronics, Plasmonics  

and Metamaterials.  Today's lecture will be on Localized Surface Plasmon Resonance or 

in short LSPR.  So here is the lecture outline, we will first see what is localized surface 

plasmon and  then we will see how to do the derivations of localized surface plasmon 

resonance conditions  and we will treat using exact theory of LSPR that is Mie scattering 

theory or Mie theory.  We will also look into the quasi-static approximation of LSPR.  We 

will find out how to calculate the scattering and absorption cross section.  We will also see 

how to handle the cases beyond quasi-static approximation and towards the end we will 

see the characteristics of void Plasmon and metallic Nano shells. 

 

 
   

So, let us begin with localized surface plasmon.  So, we have seen in the previous lecture 

the surface plasmon are basically the propagating  waves which we call them as SPPs, 

surface plasmon polaritons.  These are propagating dispersive electromagnetic waves 



which are coupled to the electron plasma  of a conductor and they are propagated metal 

dielectric interface.  Now localized surface plasmon on the other hand are basically non-

propagating that is why they are called localized and they are non-propagating excitations 

of the conduction electrons on metallic nanostructures which are coupled to the 

electromagnetic radiation. 

 

 

 

  Now you can look into this particular figure here.  It shows the illustration of a localized 

surface plasmon resonance.  So, this is a tiny metallic nanoparticle and with light falling 

on it with the electric  field oscillating up and down the electron cloud is also getting so 

when the oscillate  electric field is in this direction electron cloud is basically pushed 

downwards so that  creates a kind of negative charge.  All the electron clouds are pushed 

downwards so there is a kind of negative charge here  you can say and there is lack of 

electrons on the top side so you can think of some positive  charge formation there or there 

are some holes you can say.  In that case you are able to see some charge separation that is 

positive and negative so  this actually becomes like a dipole and as the electric field changes 

when the electric  field is negative you will see the electron clouds are moved upwards in 

this case so you  have the negative charges here and the absence of the electrons are felt 

here which are the  positive charges and so the dipole also got reversed. 

 

  So that is how with the electric field this metallic nanoparticle gets a induced dipole  that 

also oscillates.  Now with that what happens you might know this fact that oscillating 

dipole radiates.  Now in this particular case this metallic nanoparticles they also behave 



like dipoles  which are oscillating with incident electromagnetic field.  Now you can 

analyze this problem using a scattering problem of a small sub wavelength  size 

nanoparticle in an oscillating electromagnetic field.  In this particular case it is important 

to remember that the curved surface of the nanoparticle exerts the restoring force on the 

driving or on the driven electrons so that   they are pulled back and that is how this 

oscillation will start they kind of oval like a piece of jelly. 

 

 
 

  So, if you put a bulk of jelly on the table and try to poke it with a finger or a spoon you 

will see that the jelly is kind of wobbling.  The similar kind of feature is also seen for 

surface electrons in this case.  So, this lead to a field amplification both inside and in the 

near field zone of this  particular particle.  So inside and near field of the particles will get 

some kind of amplification  of the electromagnetic fields and that is what will give rise to 

resonance.  So, when this natural frequency of oscillation of the electrons matches the 

frequency of  the incident field there is a resonance. 

 

  That means those metallic nanoparticles are able to strongly absorb or scatter light much  

larger than the geometrical cross section and that is the phenomena of resonance and  we 

call that resonance as localized surface Plasmon resonance or you can say Plasmon 

resonance.  So here what is the good thing as compared to the case of SPPs that here you 

do not need  to worry about the phase matching condition.  So, you can simply shine light 

and excite the Plasmons.  So localized surface Plasmon can be excited by direct 

illumination.  So, the physics of localized surface Plasmon will be explored in this 

particular lecture  by considering the interaction of the metallic nanoparticles with 



electromagnetic waves and  we will see how do we get to the resonance condition. 

 

  We will also see the damping process because whenever there is a resonator there are 

some  damping associated that decides basically the Q factor of the resonator.  So, we will 

see how this damping process depends on the nanoparticle different sizes and shapes  and 

how the interaction between the particles in an ensemble or in large assembly they actually  

affect this resonance.  So along with that we will also see what are the other structures other 

than say solid  nanoparticles that support this kind of resonance.  So, we will see that the 

dielectric inclusion in metallic bodies or you can say that a void  in a metallic surface that 

can also support this kind of localized surface Plasmon resonance  and also nano shells 

they can also support.  So, we will also look into this particular cases. 

 

 
 

  Now when you look for surface Plasmon resonance the Plasmonic materials which are 

considered are basically gold and silver nanoparticles because they are also particularly 

interesting because their resonance falls in the visible range of the electromagnetic 

spectrum.  So that you can see directly that the particles are  able to transmit and reflect 

bright colors and they are basically coming from absorption  and scattering which are 

enhanced because of the resonance.  And this effect has been found several years back 

maybe hundreds of years back you can  see like the Gothic stained glass in Notre Dame De 

Paris.  So there all these beautiful and bright colors are basically coming from gold or silver 

nanoparticles  embedded into the glass.  So, while making they used to make mix this metal 

to get this bright colors these are basically the colors coming out from the resonance of the 

nanoparticles. 



 

 
  

 Basically, the Lycurgus cup this cup looks different in color when it is illuminated from 

outside it shows it looks like a green cup ok.  But when the light source is inside ok that is 

the case when you actually see the light  that is what is not absorbed is basically coming 

towards you.  So, in that case from the white light source that is kept at the back of the cup 

if you  remove the Plasmonic resonance that is at blue green you will see that the only red  

light is coming out towards you.  So, you will be seeing the cup as a red cup when the light 

source is behind.  But when the light source is in the front you just see the scattering and 

the scattering  resonance is at the blue green or simply green so the cup appears green in 

color. 

 

  So it is the same cup but it looks different because of this Plasmonic properties.  Now 

when we think of calculating a LSPR we need to first see is there any exact method  of 

calculating the scattering and absorption from this particles nanoparticles.  So, the solution 

comes from the Mie theory.  So, in 1908 scientist ghost of Mie he was able to find an exact 

theory that can give  explanation to the colors of different colloidal solutions of 

nanoparticles of different sizes.  So, there was an experiment where people made colloids 

of different size of  nano gold and silver nanoparticles and all of them look different in 

color. 



 

   

So there has to be some relationship between the size of the particles with the wavelength 

and the color they strongly scatter or reflect.  So that theory was known as Mie theory and 

how it works?  This works from the concept that Maxwell's equations are linear.  So, you 

can think of a total field that is a kind of summation of the plane of excitation  plus the 

outgoing wave that is the scattered wave plus the standing wave that is the wave  inside 

that particular particle or void.  So, ghost of Mie actually did the solution for spherical 

particles.  So, on spherical coordinate systems he was able to solve the coefficients for each 

of  the wave by matching the boundary conditions and he was able to find out the exact 

calculation  of the scattering and absorption cross section by these particles. 

 

  Now how it works?  I will not go into the complete mathematical description of Mie 

theory.  This can be found in this particular reference, the second reference as you see here,   

Bohren Hoffman book.  So, in this particular book, Absorption and Scattering of Light by 

Small Particles, you  can actually see the complete derivation of Mie theory.  So, I am just 

showing the important formula here that will help you understand how this  particular 

theory is derived and it is working.  So, time harmonic scalar wave equation, we can write 

it. 



 
 

  So, what is 𝜓 ?  𝜓 is basically the electric potential, it is function of r here.  So, this is the 

wave equation (∇2 + 𝑘2)𝜓(𝐫) = 0.  Now electric and magnetic field if you express them 

as linear combinations of the vector  harmonics M and N, you can write 𝐌 = ∇ × 𝐫𝜓, and 

𝐍 =
1

𝑘
∇ × M .  So, these are kind of some relations with electric and magnetic field.  So 

then if you try to use this particular equation for a spherical coordinates or a  particle with 

spherical symmetry like a sphere or nanosphere, you can actually write down  this in terms 

of spherical coordinates. 

 

  So you have 𝑟, 𝜃 and 𝜙 coordinates.  So now you are also able to write down your 𝜓 that 

is the electric potential in terms  of r, theta, phi as three different variables.  So, you can 

separate these variables and say that this is basically 𝑅(𝑟), Θ(𝜃), and Φ(𝜙) .  So, these are 

the three variables and you can actually write down the equation now in this  particular 

form.  So, from here to here by assuming that 𝜓(𝑟, 𝜃, 𝜙) is basically this function. 

 

  Now if you solve it only for the 𝛷 equation, you get 𝛷 = 𝑒±𝑖𝑚𝜙 . You can solve it for the 

𝜃 equation, you will come up the 𝜃 is basically associated  Legendre polynomial and when 

you solve it for the R function, that is the radius function, this is how it  looks like and R 

turns out to be √
2

𝜋
𝑍𝑙(𝑘𝑟) where 𝑍𝑙  represents spherical  Bessel function.  And in this 

particular equation you will see that you will require jl that is basically spherical Bessel 

function of the first kind which is finite at r = 0 and for rectangular waves you can use it 

for incident and internal cases.  Also, for the scattered waves you can think of spherical 

Hankel function which is given  as small hl. 



 
 

 So, what is the specialty of this function?  It can be written in the form of 𝑒𝑖𝑘𝑟/𝑟  where r 

tends to as 𝑟 → ∞, okay.  So, you can understand that this scattered wave at infinity will 

die down,  will go to 0.  So, with that you are able to express E and H of the incident field 

using the two vector harmonics M and N that you have seen here, okay.  So, you are writing 

them as a linear combination of these two vector harmonics.  So, H incident and E incident 

are the incident electric and magnetic fields. 

   

Now then you apply the conditions like for a plane wave with incident angle  𝜃 =  0, all the 

terms will vanish except for m = 1.  So that gives you a simplified version.  You can find 

out what is Al,1 that term comes out to be like this and Bl,1 is basically  iAl,1.  How does it 

help you?  You can actually use this similar kind of expression for scattered and the  

internal field.  So scattered field is also represented as combination of the vector harmonics,  

okay. 



 
  Similarly internal fields are also written like this.  I am not going into the description but 

what happens after you find out the incident field,  the internal field and the scattered field 

you can apply the boundary conditions now.  So, the boundary conditions say that the 

tangential component of the electric field and the magnetic  field are continuous across the 

sphere boundary.  So, if you consider the radius to be a you can write that E incident plus 

E scattered  minus E internal cross r cap equals 0.  Similarly, E incident plus e scattered 

minus E internal cross product with r cap so there is a curl, okay is also 0. 

 

 
   



So, this is how you can actually this curl is actually giving you what?  It is giving you the 

tangential components, okay.  So, they become 0.  Now you can write down Mie 

coefficients as a size independent.  So 𝑥 = 𝑘0𝑎 , okay. 

 

  So a is the radius.  So, x is actually containing the information of the radius as well as the 

wavelength of the incident light and you can find out all this coefficient al, bl, cl, dl and that 

helps you to actually compute all this particular fields.  So, what are the fields?  External 

field and external field or scattered field you can find out from this calculations.  So, from 

this you are also able to find out the amount of scattered light, amount of what  is not 

scattered is basically absorbed.  So those kind of things you can find out exactly for a 

spherical symmetry, okay.  So, for spherical particles Mie theory provides exact solution. 

 

  Now this is what we have been looking so far.  So, if you think of plasmon as an overall 

picture we have seen bulk plasmon, surface plasmon  and then particle plasmon.  We have 

seen that for the bulk plasmon the condition was that 𝜖𝑚(𝜔) should  be equal to 0.  So that 

is where the permittivity of that metal becomes 0.  So, this is the boundary and that happens 

at plasma frequency 𝜔𝑝 , okay.  

 
 

  And the value is √
𝑛𝑒2

𝑚𝜖0
 .  So here you can see all this n is the electron concentration, e is 

the electronic charge,  m is the mass of electron and 𝜖0 is the permittivity of vacuum, okay.  

So, all these parameters are basically fixed.  So, plasma frequency, bulk plasma frequency 

is also not tunable.  Whereas you can go to surface plasmon and this is the condition. 

 



  We have seen that 𝜖𝑚(𝜔) + 𝜖𝑑 = 0.  So, the condition is basically 𝜖𝑚(𝜔) = −𝜖𝑑 .  So, 

where they are matching you are able to excite surface plasmon resonance.  And here the 

surface plasma frequency actually becomes 𝜔sp , so that is 𝜔sp =
𝜔𝑝

√1+𝜖𝑑 
.  So, you can 

reduce the frequency when you go to surface plasmon. 

 

  So our aim would be here to find out what is the resonance condition for particle plasmon  

or localized surface plasmon and then what will be the surface plasma frequency   in this 

case.  So, let us look into a much more simplified approximation to Mie theory that is 

basically  quasi-static approximation.  Now what is quasi-static approximation?  The name 

itself suggests it is quasi-static.  So, for very small particles when I say very small, the 

radius of the particle is much  much smaller than the wavelength, okay.  We can say that 

the phase of the harmonically oscillating electromagnetic field is practically constant over 

the particle volume because the particle is very small, okay. 

 

 
 

  So, in that case instead of electrodynamics you are able to use the electrostatics, okay.  

So, you can actually think of this particular situation that you have a homogeneous isotropic 

sphere of radius a that is located at origin here, okay.  So, this is the permittivity of the 

metal, this is the permittivity of the surrounding  dielectric, there is the incident electric 

field E0, radius is a, P is the particular point and this is angle 𝜃, okay.  So, in this case you 

can think of Laplace equation.  So ∇2Φ = 0  and E  is nothing but −∇Φ . 

 

  So you can solve Laplace equation to find out the potential in and outside the particle.  So 



here also due to azimuthal symmetry you can ignore the Φ dependency and you can  simply 

take the dependency of r and 𝜃.  So again, the potential can be  split into variables like 

𝑅(𝑟), 𝜃(𝜃)and then you solve the 𝜃 equation it gives you again the Legendre polynomial, 

so 𝜃 = 𝑃𝑙(cos 𝜃)and when you solve the R equation you get 𝑅 = 𝑟𝑙 or 𝑟−(𝑙+1).  So, in that 

way you are also able to write down what is the potential inside that is  Φin  that is inside 

the sphere and also Φout  that is outside the sphere.  So, these are the two expressions from 

this equation that tells you what is the potential inside and outside the sphere. 

 

 
   

So, these are the new coefficients that you have introduced.  Now there are certain things 

like Φin  should be finite at the origin also when you look  at Φout , so Φout  when it is too 

far it should be same as the incident electric  fields potential assuming that the particles 

effect is no longer present at a far distance.  So Φout  is −𝐸0𝑧 which is nothing but −𝐸0𝑧  

you can write it as −𝐸0𝑟 cos 𝜃 as 𝑟 → ∞ .  So, if you apply these two conditions you will 

be able to find out the coefficients, so you will be able to find out what is B1.  So 𝐵𝑙 =

−𝐸0 and 𝐵𝑙 = 0 for all other cases when  𝑙 ≠ 1 . 

  So in that case you are able to find out one coefficient that is 𝐵𝑙.  How about 𝐴𝑙 and 𝐶𝑙 ?  

So here also you can say that the tangential components of the electric fields are continuous  

that means 𝐶𝑙 = 𝐴𝑙 = 0 for all the cases 𝑙 ≠ 1 .  So, let us take the tangential components, 

so −
1

𝑎
 (

∂Φin 

∂𝜃
) at r = a that is at this point for inside potential and outside potential they 

should  be same.  So that gives you this kind of a equation.  What is the other case that the 

normal component of the electric field is also continuous.  



 

  Here in quasi-static approximation the electric field magnetic field does not come into the 

picture.  So, we will be considering about the flux, so the normal component of the flux 

will also  be continuous.  So, you can find out what is the flux here −𝜖0𝜖𝑚 and then you  

have this one which is basically 
∂Φin 

∂𝑟
 and you are calculating at this  boundary so that is r 

= a.  Similarly, you can put it for this one outside region this one. 

 

  So this gives you this particular expression.  So, you have two variables A1 and C1 and 

you have got two equations now.  You solve for it and you can get what are the coefficients 

A1 and C1. So mathematics is looking bit messy but it is not that complicated if you are 

interested  you can always try this on your own else you can simply take this coefficients 

from this  slide that B1 is −𝐸0,  A1 is −
3𝜖𝑑

𝜖𝑚+2𝜖𝑑
𝐸0 and 𝐶1 is basically 

𝜖𝑚−𝜖𝑑

𝜖𝑚+2𝜖𝑑
𝐸0.  So, you 

have got all three coefficients A1, B1 and C1.  So now you are in a position to write down 

what is the electric potential inside and  outside the particle. 



 
 

  So Φin  is having A1 coefficient, Φout  has got B1 and C1 coefficient. So, you can put those 

here and this is how it looks like. So, this is the potential inside the particle and this is the 

potential that is outside  the particle. Now there is something interesting in this particular 

expression of potential outside the particle. So, if you see there is a distinct contribution 

coming from the electric field which is the incident electric field that is fine and then there 

is an extra component that is coming into the picture from the particles point of view. 

 

 So if you look here so this looks like there is a dipole and there is a potential because  of 

this dipole.  So, you can actually think of a dipole with a polarizability p which is given by 

this  expression. So, this term you can take as 
𝐩⋅𝐫

4𝜋𝜖0𝜖𝑑𝑟3 .  So, when you equate these two 

you will get that p equals this is the expression and this  can be written as and this 

polarization is proportional to the electric field. 

 

  So that constant you can take as polarizability 𝛼.  So 𝛼 is the term 4𝜋𝑎3 𝜖𝑚−𝜖𝑑

𝜖𝑚+2𝜖𝑑
 .  So, this 

can be written as 3V that is the volume of the particle.  So, what is the volume V of this 

particle 
4

3
𝜋𝑎3.  So 4𝜋𝑎3can be written as 3V so this is basically the polarizability 𝛼 of the  

particle.  Now with this particular expression you can find out what is the resonance 

condition. 

 

  So you can see that the polarizability will experience a resonant enhancement when the  

condition that the denominator of this is very small.  That means when |𝜀𝑚 + 2𝜀𝑑| is very 

small.  So, you can now 𝜖𝑚 is basically a complex right because it is a metal.  So, metal in 



visible wavelength typically they have complex permittivity.  So, in this condition and what 

is 𝜖𝑑 that is basically the dielectric one which  is a real number. 

 

 
  

 So, you can think of this as real of 𝜖𝑚(𝜔) + 2𝜖𝑑  will be equal to 0.  So, this is a condition 

for the resonance and it is also known as Frohlich condition  So you can understand that 

this is the resonance condition.  Now if you consider the metal to be a Drude kind of metal.  

So 𝜀𝑚 = 1 −
𝜔𝑝

2

𝜔2+𝑖𝛾𝜔
, where  𝛾 is the damping constant and if you try to plot the modulus 

of this polarizability  over a normalized frequency the frequency is 𝜔/𝜔p here.  In that case 

if you take 𝛾 = 0 that you will give you a infinite because  then this term becomes 0 

completely. 

      So you will get a asymptote it is going up infinitely but if you consider some finite  

value of 𝛾  then you will get this 0 for 𝛾  equals 0.07𝜔𝑝  you will get this blue curve 

0.1𝜔𝑝 you will get this curve and 0.2𝜔𝑝 you will get this curve.  So, what you can see is 

that as 𝛾 that is a damping getting increased the Q -factor  of the resonance decreases the 

resonance position more or less remains same but the  width of the peaks are getting 

broader. 



 
   

So that is what is more damped.  So now coming back to this slide to fill this vacant spot 

so the condition now we have derived  that 𝜖𝑚(𝜔) should be equal to −2𝜖𝑑 for resonance 

or you can say 𝜖𝑚(𝜔) + 2𝜖𝑑 = 0 and LSPR frequency is nothing but 
𝜔𝑝

√1+2𝜖𝑑 
 ok.  So, this 

is how the resonance frequencies have shifted from bulk to surface to particle plus bonds.  

Now coming back to the point that oscillating dipoles radiate so you can actually find out  

the electromagnetic field which is associated with an oscillating electric dipole ok.  So, this 

is the exact calculation this is not within quasi-static approximation this is  a exact theory 

so you can see that H is nothing but this is the expression for H what is n?  n is the unit 

vector in the direction of the point of interest and p is the dipole moment  of that particular 

dipole. 



 
 

  So, this two gives you the expression for E and H ok.  So, from this you can see that in 

the near field the fields are you can say predominantly electric because in the near field 

regime you will get mainly electric fields and in the radiation zone that is when kr is much 

much greater than 1 ok the fields are of the spherical waveform.  So, this from these 

particular ones if you put this two conditions so in the near zone kr is much much lesser 

than 1, in radiation zone kr is much much greater than 1 you can find out that the field in 

near field is mainly electric whereas in the radiation zone or the far field zone they are of 

the spherical waveform ok.  Now coming back to the quasi-static we have seen that we are 

able to obtain alpha that  is the polarizability of a particle.  Now what do we do with that 

we are able to find out the scattering and absorption cross section using these two simple 

formulas.  So, scattering cross section will be 𝐶𝑠𝑐𝑎 =
𝑘4

6𝜋
|𝛼|2 and c abs that is the cross 

section of absorption will be 𝐶𝑎𝑏𝑠 = 𝑘Im [𝛼] . 

 

  Now if you see the values here scattering is proportional to 𝑎6 and absorption  is 

proportional to 𝑎3.  So, you can understand that for small particles absorption dominate 

over scattering but as  the particle size increases scattering quickly gains and then it 

becomes the major contributing  factor ok.  And extinction cross section is nothing but the 

summation of the scattering and absorption.  So, extinction means whatever is the amount 

of light getting lost or extinct. 



 
   

So, these are the two observations from this particular formula fine.  So you can also write 

down like this like if you take a sphere of volume V which has  got a metal permittivity 

epsilon given as epsilon 1 plus i epsilon 2 within the quasi-static  limit you can write a 

simplified formula for scattering cross section as 𝐶ext = 9
𝜔

𝑐
𝜀𝑚 3/2𝑉

𝜀2

[𝜀1+2𝜀𝑚]2+𝜀2
2 .  So 𝜀2 

is basically the imaginary part of the metal permittivity and 𝜀1 is  the real part of the metal 

permittivity.  So, you can also find out what is the resonance here.  So again, if you look 

into the plot so this is basically extinction spectra of a 50 nanometer  gold nanosphere.  So, 

what is the difference here?  So, the black curve is when the surrounding media is air. 

 

  In this case 𝜀𝑚 is the surrounding media.  So, it is not metal it is here it is surrounding 

media is 𝜀𝑚.  So, if you put 𝜀𝑚 = 1 you will get this particular graph from this equation  

and then red one is water and n is the refractive index that is 1.33.  So 𝜀𝑚 will be square of 

1.33 that is 1.69 I believe and then the last one is for  silica that is n equals 1.5.  So 𝜀𝑚 in 

this case will be 2.25.  So, this is what we can see that you are able to do the refractive 

index sensing using this  kind of gold nanosphere because the resonance peak position is 

getting changed. 

 

  So as the dielectric okay so there is a bit of yeah this should be d okay or you can say  this 

is medium I will correct this later on.  So, this is basically 𝜀𝑑  okay.  You can say it is a 

dielectric or you can also say this is the medium okay.  So, when 𝜀𝑑  increases the resonance 

frequency is also from here to here the resonance  frequency actually increased yeah no 

sorry the wavelength actually increased it means  the resonance frequency actually 

decreased and your cross section of extinction actually  increases. 



 

  So once again this is in terms of wavelength.  So, wavelength is increasing means it is 

getting red shifted that means the energy  is getting reduced.  You can also apply quasi-

static approximation for non-spherical particles something like  nano rod or nano ellipsoid.  

So, in that case you can have 3 particular axes so you can consider this particular case is in 

ellipsoid so it will have 3 axis a1, a2 and a3 these are basically the semi-axis.  So, this is 

how the equations are correlated. 

 

  So you can find out polarizability in different directions okay for the 3 cases.  So, if you 

consider the cross section to be same and only the length to be different so  there will be 2 

different cases so which are shown here.  So, you can also have longitudinal excitation or 

transverse excitation of the electrons  on the surface of such nanoparticles depending on 

their incident electric field polarization.  So, the light is falling from the top it has got a 

horizontal electric field like this  so the electrons will also oscillate along the length of the 

nano rod.  So, this is the nano rod or nano ellipsoid and you will get one particular kind of 

polarizability.  But when the electric field is coming from this direction sorry the light is 

coming from this direction with this electric field oscillating in this direction up and down 

like this then the polarizability will be different. 

 

 
  

 So alpha i gives you the polarizability along the 3 direction which has got a geometrical 

factor Li in this particular equation and Li can be obtained from here.  So, as you can see 

this is a generic case for a sphere L1, L2 and L3 are same one third because summation of 

Li should be equal to 1.  So, with this you are able to find out the polarizability of an 



ellipsoid and if you  plot the absorbance versus wavelength you will see that for the 2 cases 

okay so if you  change the aspect ratio that is the ratio of the height over the diameter of 

this okay  so as you change the aspect ratio there is a large shift of the resonance.  First 

observable thing is that in such a particle there are basically 2 resonance peak so one  

resonance this particular resonance peak corresponds to the surface plus 1 resonance along 

the  length of the nanorod whereas this one is along the transverse direction so this is  called 

transverse dipolar resonance this is called longitudinal dipolar resonance and  when you 

increase the aspect ratio of the particle you see that the transverse peak  does not shift that 

significantly whereas the peak of the longitudinal plus 1 undergoes  much more red shift 

red shift means shift towards longer wavelength what happens to  the energy? Energy 

reduces okay. 

 

 
 

 Now quasi-static approximation is it good throughout? No.  For very very tiny particles or 

very very large particles it is a problem so let us look into  the case of first very large 

particles where the particle size is more than 100 nanometer.  So in those cases you should 

go for Mie theory because they provide you an exact solution  in form of power series 

expansion and quasi-static are basically the only the first order terms  from that expression 

okay however for quasi-static to little larger particles  you can actually add some extra 

terms like  you can add some effects coming from  redshift due to retardation okay then 

broadening due to radiative decay and some higher order  resonance you can add those 

terms to make your quasi-static approximation little bit more  accurate. But always 

remember for spherical particles Mie theory provides you the exact solution. So, this is 

what we have seen that if you start from 50 nanometer where this is the  size of the particle 



your quasi-static approximation is pretty good but slowly as you move towards  larger 

particle up to here 100 nanometer okay we will see that there is a redshift there is  a spectral 

broadening so these are the effects that comes into picture. So there will be radiative  decay 

that gives you spectral broadening there is also redshift due to retardation because when 

the  particle becomes large the initial approximation that the electric field over the particle 

volume  does not change significantly that does not hold good so there will be a phase lag 

between the electron movement from one end on the others end of the particle because the 

particle  size is large so all these effects will be considered and they will try to make your  

quasi-static theory more inaccurate when you try to go to larger particles. 

 

 
   

Here is an figure that shows you that with the size of the particle and change in the 

permittivity  how the resonance wavelength is going to change and here is the damping 

pathways for particle  plus 1 means there are two types of decay one is by the radiative 

decay the name itself tells you  a radiation through which the decay takes place so you will 

get a photon out of it the other  damping may be because of the non radiative factors that 

is it is getting absorbed okay  and this is this can be of two types like it can be inter-band 

from one band from the d band to sp  band if you go and or it can be also intra-band so 

within the same band you are moving from a  lower to higher energy level okay so that 

kind of transition also can give you damping in this  particular particles so overall you will 

be able to get broadening because of this.   

Now if you come to the other end like if you go to extremely small particles which are less 

than 10 nanometers in size then also there is a problem like usually for particles which are 



smaller than the electron mean free path in a metal say in gold the mean free path is 42 

nanometers so one it means an electron can travel up to 40 or 42 nanometer without 

colliding with another electron.  Now if the particle itself is smaller than 42 nanometer 

what will happen before the electrons  get collided with another electrons they will actually 

hit the boundary of the particle and  that will actually give you additional damping okay so 

these are called additional  damping coming from reduced mean free path and that can be 

also empirically associated with some  broadening which and there is some simple formula 

that can correlate the damping constant gamma with  the actual damping constant plus a is 

a constant which is usually taken as one for isotropic cases  vF is the Fermi velocity and R 

is the radius or the reduced distance of the collision.  If you are thinking of a thin film or a 

thin shell you can take that shell dimension or  thin film dimension as this R and that will 

give you some additional damping and that you can put  it back into the Drude formula to 

get what will happen to this particular resonance. So here is a calculation of such line width 

and defacing time versus resonance energy and this has been done for gold as well as silver 

and is as you can see that this line is basically Mie theory and for the particles which are 

smaller like 40 nanometers, 60 nanometers they are very much lying on the Mie theory. 

 

 
  

Similarly, you can also see from here okay for extremely small particles that is where the 

radius becomes one nanometer or so that is where you have to remember that the classic 

electromagnetic theory will no longer hold good so you have to go for quantum mechanics 

to solve it. So there the energy gained by individual electrons per incident photon  

excitation can be written as Δ𝐸 which is ℏ𝜔/𝑁 and that should be greater than  equal to 

kbT and N is what N is the absolute number of electrons in that particular particle.  So, with 



that we understood that there are particle plus bonds which are tunable and what are the  

different damping mechanisms for this and there is another sort of plus bond that is also 

possible  which is called void plus bond. So void means if you take a sheet of metal and 

make a whole  out of it there also you will see that when there is light incident on this they 

will if the whole  is sub wavelength you are able to excite electron clouds to move on one 

side so you will  get positive on the other side so this behaves like a source of plus bond. 

So in this  case you swap 𝜀𝑚 and 𝜀𝑑 so this is the metal this is the dielectric permittivity  if 

you swap this in the metal sphere dipole moment what you got in the previous one you get 

this. 

 

  So in this case the Frohlich condition of the resonance also will get changed so it becomes  

𝜀𝑑 + 2𝜀𝑚 = 0 or you can write 𝜀𝑚(𝜔) = −𝜀𝑑/2 that means you can also find out what is 

the resonance frequency ( 𝜔res ) that comes out to be √2/3𝜔𝑝 that is the resonance 

frequency for void plus bonds are also different.  Also, there are two cases like this the 

sphere plus bond that you have seen where it is omega  B that is the bulk or you can say 

omega p that is the plasma frequency of the bulk metal over  square root of 3 here it is 

different okay there is an additional factor of square root of 2 coming  into the picture. Now 

there are two possible hybridized modes for these two things to come  together and create 

a shell so this is called a nano shell. So, in nano shell there are possibilities  that they are 

in the anti-bonding kind of orientation so where the outside dipole and the  inner dipole are 

in the opposite direction or you can also have this case where the outside dipole  so you 

can see the outside layer plus plus charges then out this side also there are negative charges  

they create one dipole towards the inner side you will also have another dipole plus and 

minus.  So here both the dipoles are in the same orientation so the overall energy is lowered 

okay and this is called bonding type of interaction and this is called anti-bonding type of 

interaction. 



 
  

 So, in this case in this particular two cases you will have two hybridized modes the 

resonance  frequency of these modes are given as 𝜔𝑙,±
2  okay so this is how it is obtained. 

So, you  have 
𝜔𝑝

2

2
[1 ±

1

2𝑙+1
√1 + 4𝑙(𝑙 + 1) (

𝑎

𝑏
)

2𝑙+1

] so you can take l = 1 and find out what 

is  the first order okay anti-bonding mode and bonding mode for this particular cases. So, 

they are also  tunable because you can change the metal you can change the shell thickness 

and you can also get  a lot of tunability out of this void plasmons okay or you can say nano 

shells void plasmons  are this one you can nano shells if you remember from the initial 

lectures they were the ones  having the largest tunability. So, depending on the application 

you are able to design nano shells  that can give you  that particular resonance at that 

particular operating wavelength  okay. So, with that we will stop here today and in the next 

lecture we will go into little bit  of more details of this resonance effects and if you have 

got any queries regarding to this  lecture you can always drop an email at this particular 

email address mentioning MOOC on  the subject line. Thank you. 


