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Hello students, welcome to lecture 23 of the online course on Nanophotronics, 

Plasmonics  and Metamaterials.  Today's lecture will be on effective medium theories.  If 

you remember the discussion on electro-tunable optical devices where we discussed 

nanoparticles  in aqueous medium or any other kind of mixtures kind of cases where 

nanoparticles or any other  dielectric nanoparticles which are scattered in a homogeneous 

medium.  In those cases there is a requirement of estimating the effective permittivity of 

those medium.  So this is where this kind of theories will be very very much applicable.  

So today we will quickly look into certain things like different classifications of 

engineered  materials and here we will particularly focus on the mixtures and how do we 

characterize  those mixtures in terms of their effective permittivity and we will look into 

these effective  medium theories. 

 
  We will introduce these concept then we talk about Weiner bounds.  We will discuss 

about Maxwell-Gernett theory, Bruggeman's theory and also  Nicolson-Ross-Weir or 

NRW method.  So I believe you know this particular slide now.  So these are the different 

classifications of the engineered materials. 



 

  So in this lecture we will be mainly focusing on mixtures.  So mixtures are basically 

they are made of ordinary materials which are combined together  to get some averaged 

property.  So that is very important here.  So we are looking for some averaged property 

in this case.  So what are the mixing rules for these mixtures or engineered materials?  

Now if you wish to mix multiple materials together to get some overall material property  

there has to be some kind of guidance through which we should achieve that like some 

kind  of formula that relates the effective permittivity to the permittivity of the constituent 

materials  and that will be seen here. 

 

   

So, the effective dielectric constant of the mixture can be taken as epsilon effective  and 

that depends on couple of things.  So something like the shape of the materials then the 

size of the particles, electromagnetic  properties of the particles, statistics of the particle 

distribution and the volume fraction  of the constituent materials.  So how much volume 

one particular material is covering that also plays a very important role.  So effective 

medium theories as I mentioned why they are needed.  So effective medium theories can 

provide a macroscopic model of inhomogeneous media based  on analytical, numerical 

and sometimes experimental techniques. 



 
  So these are basically a description of composite materials in terms of effective medium 

approximations  okay.  And this allows this is basically a very important tool as I told you 

is a valuable and versatile  tool that allows you to investigate, predict and design the 

electromagnetic response of  natural and structured materials.  Now effective medium 

models they equip the macroscopic Maxwell's equation with very simple  constitutive 

relations.  So that is where you take care of the light matter interaction and in that case 

you do  not need to go into the complexity of looking into all the minute details of light 

matter  interaction at the constituent level rather you can actually deal with the 

macroscopic  Maxwell's equation on a averaged manner for a particular mixture.  So, 

when approaching an electromagnetic problem with effective medium theory what is 

very  important is to know the limits in which this theory is valid. 

 



  So that is basically coming from that the bounds are called as Weiner bounds  which we 

will see in the next slide.  So if you push the effective medium theory beyond these limits 

obviously it will fail.  So you will not get correct predictions rather you may get wrong 

predictions okay.  And effective medium theory usually depend on the electric and 

magnetic properties of  the constituent materials, the volume fraction of the each 

constituent and in some case the  geometry of the structure at the constituent level also 

gets into this particular theory.  We look into the different theories and different cases 

where each of these theories can be used. 

 

  So the fundamental limitation of this model always you have to remember that every 

theory  is valid for a certain range but then it also fails beyond certain limit and also there  

are some limitation or approximation or you can say simplification that has been 

considered  while deriving these theories.  So first thing is that when you are looking for 

any approach for homogenizing the structured  materials it is always the underlying 

assumption that the wavelength of the light is much larger  than the characteristic scale of 

the inhomogeneity.  So in other words you can say all those inhomogeneity is basically 

much much smaller than the wavelength  of light or they are simply sub wavelength in 

nature.  Now depending on the size permittivity and permeability of the constituents as 

well as  the index of the hosting medium or the background medium the limitations of the 

model can be  more strict or less strict okay.  So here is one example so here you see you 

have a host medium with permittivity epsilon  H and then there is it has got some 

inclusions which are basically nanoparticles. 

 
  Now these are two different types of nanoparticles being mixed here.  So one is type 1 

nanoparticles which is given as epsilon 1 NP is the permittivity of that  nanoparticle and 

the other type is this one that has got a permittivity of epsilon 2 NP  okay and then these 

are all homogeneously distributed or you can say they are randomly  distributed does not 



matter the distribution does not matter here okay.  They are into this host medium and 

effective medium theory will be able to give you epsilon  effective of this composite 

system which has got a background medium and two different  type of constituent 

materials but you will be able to get a effective permittivity using  the effective medium 

theory okay.  So we will actually look into this aspect in today's lecture.  So as I 

mentioned for mixtures there exist limits on the range of possible effective  permittivity 

values. 

 

  So when you mix two or three different materials you cannot get very abrupt or out of 

the world  permittivity values no that is not possible.  So you can actually get some 

effective values which are limited by some upper bounds and  lower bounds.  So those 

bounds are known as Weiner bounds okay.  So there are some formula that helps you to 

find out what is that minimum permittivity  and maximum permittivity.  So, if you 

consider a two component system it means you have one material and the other  material 

so one material is filling a fraction of f in the in the volume. 

 
  So the fraction for the other material is obviously 1 minus f and this is how you find  out 

this formula tells you how do you find out the minimum limit.  Similarly you can also 

find out what could be the maximum permittivity for this kind  of a system.  So if you 

think of a multi component system there also you can find out what is the minimum  

permittivity.  So here instead of F you will have Fm so this is the fraction of the volume 

occupied by  that material of m index.  So now all the fractions if there is a two three or 

four different materials so it will  be like f1 f2 f3 and f4 should add up to 1. 

 

  In this case it is only two variables so here f1 plus f2 equals 1 okay.  So you will get this 

formula basically.  So if you take one is f the other is basically 1 minus f and that you 

have seen here.  So this is the formula that tells you about the minimum permittivity and 



maximum permittivity  for the case of a multi component system.  And now when you 

plot this if you take a two component system and you take εr1 equals  200 and εr2 equals 

2.5. 

 

So if you take this so it is basically like 2.5 is basically the background medium and  then 

you have dielectric nanoparticle very high dielectric nanoparticle high permittivity  

dielectric nanoparticle inclusions okay.  In that case you can see this is how you will your 

epsilon max will be and this is how the  minimum will be okay.  So the minimum value 

can go to you know the it is here.  So you can actually when you when you keep on 

increasing the volume fraction okay that  is when you are making f is close to 1 you can 

go up to 200. 

 

  And when you make f equals 0 that is that dielectric inclusions in the host permittivity  

is negligible in that case the effective permittivity is nothing but same as the host  

permittivity which is epsilon r2 that is 2.5 clear.  So with that these are the bounds within 

which the effective permittivity will be.  So these all these values are possible depending 

on what fraction you choose okay that is how  you can always go and find this region is 

allowed okay.  So that is how mixing can give you that many possibilities. 

 

  

Now let us look into one of the most popular effective medium theories which is called  

Maxwell Garnett theory okay.  So this is the classical approach for homogenizing media 

which has got small inclusions dispersed  in a continuous medium or matrix.  So one 

particular schematic will make it clear.  So it is like this the basic structure is a two-phase 

medium with separated grains of  the guest material.  So here you see the guest material 

is this one which is called a permittivity of epsilon i. 



 

  The host medium has got a permittivity of epsilon h okay and you are supposed to find  

out the effective permittivity of this particular system okay using some theory and this is  

where Maxwell Garnet theory will come into the picture.  So we restrict the analysis to 

the case of non-magnetic and isotropic materials.  So there are some assumptions so 

initially I mentioned about the assumptions.  So here the assumptions are that that 

materials we considered are non-magnetic and isotropic.  So how do you start with that?  

First thing if those inclusions the small islands are sub wavelength in nature so you  can 

easily adapt quasi-static approximation that you have already understood in previous 

lectures. 

 
  So in that case if you see that the inclusions are positive permittivity inclusions okay  

then the following rule of thumb is considered to be conservative.  So you can actually go 

with this rule that the particle size should not exceed one tenth  of the effective 

wavelength.  So it should be less than lambda by 10 okay and lambda is what that is at 

this particular  wavelength you are measuring the effective medium permittivity and if 

you get a metallic  or negative permittivity inclusions the limit of the validity is much 

more stricter okay  and this is the reason here is that because this negative permittivity 

materials as you  have discussed before they can show localized surface plus 1 resonance.  

So in this case they need to be you need to be very very careful about this particular  

particle size limit okay.  So let us see how do we go about that?  So in case you do not 

have this information about the shape of the inclusion okay so the  shape can be any 

arbitrary shape so the natural approach would be to assume each of those  as very tiny 

spheres okay and that is how you can actually see how Maxwell-Garnett homogenization  

work so you can consider each of this inclusions act as spheres of different different size. 

 



  And if the material is excited by an external electric field so in quasi-static 

approximation  we can understand that in this case the field on each of these tiny spheres 

that  we have considered the field will be static and that is why it is called quasi-static  

approximation right and we are considering the external field to be Ee okay that is the  

notation we are using here Ee okay.  So first we will so let us see into the derivation of 

this formula how Maxwell-Garnett theory  helps us in getting the epsilon effective okay.  

So first of all we have to focus on the response of each isolated sphere to this excitation  

so there is an electric field and to this how these isolated spheres are responding okay.  

Now we have seen that when the sphere is very small it just acts as a point source with  

an electric dipole moment proportional to the applied field and that will be at the  center 

of the particle.  So, you can write that response of an isolated sphere where the host 

medium is epsilon h  so that isolated sphere can be written as ph equals epsilon 0 epsilon 

h alpha Ee okay. 

 
  Now what is epsilon 0 that is the vacuum permittivity okay and alpha is basically the 

static electric  polarizability of the spheres that you have considered.  So, this you 

remember from the quasi-static formula that alpha is basically 𝛼 = 3𝑉
𝜀i−𝜀h

𝜀i+2𝜀h
 and what is 

V?  V is the volume of that sphere okay.  So now once we have this formula we can 

always write what is the electric field inside the  sphere and that will be 3h over epsilon i 

plus 2 epsilon h times epsilon e and we consider  this field to be uniform and parallel to 

the external electric field Ee okay.  So with these two things we have also seen that the 

polarizability because the sphere  is very tiny the polarizability of the sphere is 

considered to be isotropic since both permittivity  and the shape are assumed to be 

isotropic.  So, polarizability is also isotropic. 



 
  So what comes as the next?  The next step would be to create an effective model of the 

distribution of the nanospheres.  So that allows you to give you this kind of a 

homogenization picture.  Now the spheres are now reduced to point dipoles.  You can 

consider them as electric point dipoles and the field they are radiated okay each  dipole is 

radiating will influence the all other dipoles in that particular medium.  So, in such a case 

you need to get an information about how many such dipoles are there in  unit volume. 

 
  So let us assume that there are N such dipoles in that unit volume.  So now you can 

define the effective permittivity based on the average or macroscopic constitution  

relationship that would link your displacement field the average displacement field to the  

average electric field.  Normally what happens D equals epsilon E.  So that is where the 

epsilon comes into the picture.  So, in this case the D displacement field is also the 



average field the electric field  is also the average field. 

 
  So epsilon will be now the effective permittivity of that medium right.  So the average 

operator integrates over sufficiently large volumes to provide an accurate description  of 

the average fields of the original medium and so you can write this particular expression.  

So, you can write average D is nothing but 𝜀0𝜀MG⟨𝐄⟩.  So 𝜀MG nothing but the Maxwell 

Garnett effective permittivity of this particular  system.  And then multiplied by the 

average electric field. 

 
  And you can also see that this we have understood that this dielectric displacement field 

has  got actually two parts.  One is the average response of the host medium.  So this is 

from the host medium alone and plus there is some average response of the  point dipoles 

which are basically the inclusions right.  So if you look into the point dipoles this point 



dipoles the average polarization is  basically N times small p.  And here remember that 

this small p is not same as that isolated spheres polarization  or dipole moment okay. 

 
  Here this small p is basically the dipole moment that is calculated in the presence  of all 

other dipoles in that system okay.  So, the evaluation of this small p is classically 

performed by evaluating the local electric  field which is denoted by EL.  And this is the 

local electric field which is felt or experienced by each point dipole  in the presence of all 

other dipoles okay.  So the field this field this local electric field is basically the average 

field augmented  by a contribution due to the average polarization that surrounds each 

dipole and this is also  known as the Lorentz field okay.  Now how do you find out this 

EL?  To find out EL acting on a single dipole a simple model of the mixture can be 

adapted  where a fictitious spherical boundary like this can separate ok this dipole from 

the  background media. 



 
  Now this background media has got a average polarization of P ok and there is a 

average  electric field of E but this dipole is in a kind of spherical boundary which is 

separated  from this macroscopic background.  So, with that you can write down local 

electric field EL will be nothing but the average electric field plus the polarization divided 

by 3 epsilon 0 epsilon h.  And from that you can also write down what is the dipole 

moment small p that is given  by this expression.  Now in this expression when you put 

your you can from this you can retrieve the  Maxwell coordinate permittivity in terms of 

polarizability alpha and number density N.  So, you can write 𝜀MG = 𝜀h (1 +
𝑁𝛼

1−
𝑁𝛼

3

) 

  So I am not showing the overall calculation here but this can be obtained from this 

formula  and in the case of very diluted media you can consider so N is very diluted 

media means  N is very small capital N is very small.  So, you can actually consider these 

as close to 1. So, in that case the effective permittivity will be simply 𝜀h(1 + 𝑁𝛼).  So 

this is how you can find out the effective permittivity and the same expression can be  

easily obtained when you put that your local electric field is only this one.  So the 

contributions from the neighboring dipoles are also negligible. 

 

  So this kind of approximation is fully justified in the case of a diluted mixture where the  

interactions between the dipoles is weak.  That means when the spheres that you have 

seen are far away from each other that they  do not interact with each other.  In that case 

also in that case this particular approximation will be valid and using this  formula you 

should be able to find out the effective permittivity very easily.  Now you have seen this 

particular case that N α by 3 so from this you can find out this  one and then you can also 

write 
𝑁𝛼

3
=

𝜀MG−𝜀h

𝜀MG+2𝜀h
.  And this equation is also known as the Clausiuse-Mossotti formula 

or it is also called as Maxwell's  formula or Lorentz-Lorenz formula. 



 
  Now in this one if you put alpha from the quasi-static theory that is alpha equals 3  V 
𝜀i−𝜀h

𝜀i+2𝜀h
 you will be able to get this  kind of a formula which is also known as Rayleigh 

formula.  So, in this what is epsilon MG that is basically the effective permittivity of this 

medium  and what is f small f f is basically NV that is a volume fraction of the inclusions 

and  in this case it is sphere. So from that you can find out what is the effective  

permittivity that is epsilon MG in terms of epsilon i epsilon h and f.  So these are the 

three things you got to know you should know the permittivity of the host  medium 

permittivity of the inclusions and the filling fraction of this material in this  entire 

volume. So you add up all these volumes ok and divide by the total volume that is  your 

filling fraction fine. 

 

 So this simple formula represents a classical approach to  homogenization of the 

composite media and it is widely used in many many applications.  Another here we have 

to make sure that the nanoparticles are far away from each other  so that they are not 

interacting ok. So this is the case. Now it is also important to notice  that the only 

necessary parameter for retrieving the Maxwell's garnett permittivity are basically  three 

things ok. As I mentioned the volume fraction and the two permittivities and this  formula 

does not require the spheres to be of the same size and they should be located  at a 

specific location. 



 
 So all these requirements are not there. So you do not want your spheres  particularly to 

form an array or something nothing like that. So the only requirement  here is that the 

wavelength in the medium must be much larger than the size of the inclusion  so that the 

quasi-static approximation remains valid.  So Maxwell garnet theory also predicts the 

following. So, if you put f equals 0 you get  effective permittivity to be same as the most 

one and if you put f equals 1 you will get  the effective permittivity to be same as the 

inclusions one ok. 

 
 That is pretty simple.  So that that tells you about the Maxwell's garnett theory. The next 

important and popular  theory is Bruggeman's theory. So we have seen that Maxwell 

garnett formula represents a  valid homogenization model for mixtures with a well-

defined host medium and inclusions right.  And they result more accurately for small 



values of inclusion volume factor f.  So smaller the f is you will get more and more 

accurate result. 

 

 Now there could be aggregate  mixtures which has got random distribution of two or 

more constitutive materials and  in those case the effective medium theories should be 

based on some statistical formulation right.  And these are the cases where you have 

continuous boundaries and any of  this material can be of any permittivity and they may 

have a different fill factor right. So these are the cases where you actually use 

Bruggeman's theory.  So here also what you will do you will try to find a medium. So, 

you will try to find  what is epsilon br that is the effective medium. 

 
 So you have the host medium and the inclusion  medium they are basically capturing 

different regions. So you will see that how do we handle  this particular class of 

inhomogeneous mixture through Bruggeman's theory.  So let us consider two phase 

microstructure of the type that is shown in this figure where  the constituent material of 

permittivity epsilon i has filled a volume factor f and  in that case the other permittivity 

material epsilon h will have a volume fill factor of  1 minus f ok. So this mixture will be 

now modeled as a continuum continuous medium hosting  a distribution of small and 

large spherical inclusions of the two different dielectric  permittivities. So, one is h 

epsilon h another one is epsilon i  ok and the background one or the overall one is 

basically epsilon Br not the background  one the overall or the effective one. 



 
 So the probabilities of finding spheres of permittivity  epsilon i will be f and for finding 

spheres with permittivity epsilon h the probabilities  1 minus f ok. So this basically 

corresponds to their volume fill factors in the original  mixture. Now we can assume that 

the host medium for  this Bruggeman mixture has unknown effective permittivity. So 

what is that the effective  permittivity we write as epsilon Br ok. So how this will be 

related so you can write  down the basic form of the Bruggeman theory as 𝑓
𝜀i−𝜀Br

𝜀i+2𝜀Br
+

(1 − 𝑓)
𝜀h−𝜀Br

𝜀h+2𝜀Br
= 0 . 

 
 So if you see can you find out  what are these basically these are basically the 

contributions coming from spheres of permittivity  epsilon i in a effective background 



medium of this one plus the volume fraction of the  other other type of spheres which has 

got permittivity of epsilon h in a background  of epsilon Br. So this is how you add up 

these two contributions ok and that is basically  the basic form of the Bruggeman's 

theory. Now if you have more inclusions not only  two say if you have a multi phase 

aggregate in that case it will be simply ∑  𝑀
𝑚=1 𝑓𝑚

𝜀𝑚−𝜀Br

𝜀𝑚+2𝜀Br
= 0. So, what is fm, fm is the 

filling factor or volume fill fraction of the mth  point of the mixture and there are total m 

number of capital M number of phases right.  So, the limitation of the Maxwell-Garnett 

theory that the particles with very small depolarization  factors. 

 
 Now what do you mean by depolarization factor? A low depolarization factor means  it 

actually polarizes ok. So you are you may think of elongated shapes like  ellipsoids and 

all these things and this kind of shapes they may result in strong particle  particle 

interaction and as I mentioned previously that in Maxwell-Garnett you do not actually  

like those kind of contributions or interactions to come into play. So in this situation 

which  is similar to the situation of a mixture of large inclusions fill factor the 

Bruggeman's  prediction can be adapted ok. So if the grain boundary is very specific and 

the density  is less you go for Maxwell-Garnett but if you see that the large inclusions are  

there and thus in this kind of situation you can go for Bruggeman's theory.  Another 

situation in which Bruggeman theory looks more realistic will be for the mixtures  with 

large difference of in the permittivities of the constituents. 

 

 Something like if you  have metal dielectric mixture ok where percolation phenomena 

above a threshold of the metallic  phase takes place. So in those cases you know you 

should go for Bruggeman theory.  Now if you do not know what this particular 

phenomena is this is basically a threshold  that is the critical metal filling factor above 

which there is a formation of kind of  long connectivity between the metal grains and the 



optical response of the mixture will  change abruptly. So there is if you are going for a 

metal dielectric kind of mixture there  is a threshold beyond which you should not have 

metal fill fraction ok.  So thus last kind of the third type of effective medium theory that 

we will discuss today is  the Nicholson-Ross-Weir method. 

 

 

 So, this is a homogenization method based on the inversion  of Fresnel formula. Now if 

you remember the Fresnel formula, the Fresnel formula allows  you to calculate the 

reflection and transmission coefficient for the interface of two different  materials of 

permittivity of different permittivity ok. So in this case you are using the reverse  of it. So 

you are based on the inversion of Fresnel formula relative to the transmission  and 

reflection coefficient through the slabs of homogeneous medium.  Now this technique 

was conceived to estimate the complex permittivity and permeability  of unknown 

material from the measured transmission and reflection spectrum of finite thickness  

sample. 



 
  

So, to do reverse engineering to find out what kind of material could actually provide  

this kind of permittivity and permeability. So it was originally proposed in the time  

domain for pulsed measurement systems and then it was adapted for higher resolution  

systems like frequency domain systems ok. So the transmission and reflection spectra  

can be taken from the measurements of experiments or you can actually get them by 

doing simulations.  So in this case what happens a slab of thickness d of unknown natural 

or artificial mixture  something like this that can be modeled as a slab of homogeneous 

medium with effective  relative permittivity epsilon effective and mu effective that is the 

effective permeability.  So, in this case you are measuring what is the reflectance, what is 

the transmittance  and then you try to find out what is the effective permittivity and 

permeability that gives that  kind of a transmission and reflection coefficient ok. 



 

 So it is supposed that the thickness of  the homogeneous slab is equal to d. So what you 

do the complex reflection and transmission  coefficients. So note that in Fresnel theory 

we used to use small r and small t for coefficients.  So here in this particular book they 

have used capital R capital T for the coefficients  but you can also change them to small r 

small t to follow the continuity ok. So what they  do here you have small r and small t or 

capital R capital T here ok I am just talking about  the reflection transmission coefficient 

ok. 

 

 So it is depending on gamma as well as some  n effective ok. So what is this n effective 

it is basically the effective refractive index  of the slab. So it comes from square root of 

mu effective and epsilon effective ok.  And what is k? k is basically the wave number that 

is omega by c and the reflection coefficient  capital gamma is basically across the first 

interface between the input medium and this  semi infinite homogeneous slab that you 

have made ok. So you can see the gamma is basically  taking of this particular form. So 

Γ =
𝜂eff−𝜂0

𝜂eff+𝜂0
 in the case of normal incidence and you can also  find out what is eta effective 

ok. 

 

 So from that this is basically the impedance and eta  naught is the intrinsic impedance of 

the input output medium. So from that you can find calculate  what is eta effective. So I 

think this there is a typo here this should be n effective  not eta and this is eta effective 

ok. So eta effective is correlated to reflection  and transmission coefficient using this 

formula ok. And you can also find out what is the  quality Q ok and this particular Q is 

given as 𝑄 = e−i𝑘𝑛end 𝑑 . 



 

 So 𝑄 =
𝑇

1−𝑅
𝑛efT −𝜂0
𝜂ef +𝜂0

. So these are some formulas that actually tell you how to obtain  n 

effective ok. So I will not go into the details of this formula the whole idea is  to tell you 

that that it is also possible to find out the effective permittivity of  a kind of system which 

has got metamaterial kind of design that you have inclusions or  you have particles which 

are in arranged in this kind of a format ok. So with this  you can obtain epsilon effective 

and mu effective. So what are the observations in this case?  The first thing is that the 

choice of sign for the effective impedance and the refractive  index does not alter the 

values of the effective parameters which are obtained via this equation ok. 

 
  And there is some intrinsic ambiguity in the definition of this n effective ok because  it 

is coming from this multi valued complex logarithm and the choice of your branch order 



m.  Anyways the problem may be solved in very thin slabs in which the effective 

wavelength  is much larger than 2D. So this kind of method has been extended to  

characterization of mixtures in the case of oblique plane wave incidence for the study  of 

spatial dispersion effects in metamaterials as I was mentioning. So, this kind of 

techniques  can be used for studying the effect of oblique plane wave incidence for 

spatial distribution  effects in metamaterials.  

 

So, with that we will stop here and in the next lecture we  will discuss single and double 

negative metamaterials design and thank you. If you have got any  queries you can drop 

any email to my email address.  Thank you. 


