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Hello students. Welcome to the fourth lecture of the online course on  Nanophotonics, 

Plasmonics and Metamaterials. In this lecture we will look into the  electromagnetic 

theory of light. So here is the lecture outline. We'll have a brief overview of the 

electromagnetic optics and then we'll look into divergence, curl and gradient operations, 

Gauss theorem and Stokes theorem, the constitutive relations. 

 
 Then we'll look into Maxwell's equation, the overview, then Gauss law for electric field, 

Gauss law for magnetic fields, Faraday's law, Ampere Maxwell's equation and then if 

time permits we'll look into wave equation and boundary conditions. So that's the picture 

of the great man  James Clerk Maxwell who actually did this wonderful work on 

advancing the  theory of light and proved that light is an electromagnetic wave 

phenomenon. He  formulated a set of fundamental equations of enormous importance and 

that is why  they belong to his credit because using these equations as you can see these  

equations are basically done by Gauss, Faraday and Ampere. But then the set of  these 

four equations are able to describe the electromagnetic property of light  and that is why 

he is the one to combine these equations to describe the  electromagnetic property of light 



and that's why these equations bear his  name. 

 

 Now let's look into the electromagnetic optics.  So wave optics has a far greater reach 

than the ray optics. Remarkably both  approaches can provide similar results for many 

simple optical phenomena  involving paraxial waves such as focusing of light by lens and 

behaviour of  light in graded index material and periodic medium. But wave optics offers  

something that ray optics cannot. Something like wave optics has the ability to explain 

phenomena such as interference and diffraction which using ray optics you cannot. 

 
 However ray optics sometimes also face difficulty in explaining the beam splitting. That 

is like the division of light using a beam  splitter. So these are different areas which are 

all part of electromagnetic  optics. But then wave optics can explain certain phenomena. 

Ray optics are able  to explain certain phenomena and they are not good at certain 

different aspects. 

 

  So these are overall pictures of where electromagnetic optics, wave optics and  ray 

optics are lying. So you can actually see that you know you can say  electromagnetic 

optic is basically a vector theory that comprises both  electric field and magnetic field 

that varies with time and space. If you look  into wave optics which is basically a sub 

domain of electromagnetic optics.  There you can say that it is an approximation of the 

electromagnetic  optics that relies on wave function. That is why we call it as wave 

optics. 

 

  And you can describe it as a scalar function of both time and space.  Then let's look into 

ray optics which is again another limit of the wave optics  where the wavelength is very 

short. In short, you can say that electromagnetic  optics encompasses the wave optics 



which in turn reduces to ray optics in the  limit of short wavelengths. So there are 

situations where light has to be  treated as vector. Then there are situations or limits in 

which light can  be easily treated as a scalar function. 

 

 Or they can be in the short wavelength  range. They can be described as rays. So why we 

need all these different  approximation to try to explain different optical phenomena. So 

that is how you  can actually get a broader picture of what do you mean by 

electromagnetic  optics, wave optics and ray optics. Now this particular electromagnetic  

spectrum we have already discussed in our first module. 

 

 But still I am just  putting it here just to give you a recap that when we say optics we do 

not  actually mean only the visible. We are actually discussing you know  wavelengths 

starting from ultraviolet to IR. So this is the optical  wavelength range that we talk about. 

So starting from say 10 nanometer to  several millimeter, not millimeter like fraction of 

millimeter. So that will correspond to the infrared boundary. 

 
 OK. So you can say several micrometer or  thousand hundreds of micrometers. So this is 

the range over which the  optical range is spread. And you can look into the bar here and 

you can see  the frequency range over which this optical window is spread. So in 

common  with the radio waves and the X-ray waves. So here you have radio and 

microwave  waves. 

 

 On the other side you have X-ray waves. So electromagnetic phenomena here  the 

optical range can be described using a vector wave theory. OK. Yeah. Here is  the exact 

number 300 micrometer. 

 



 So if we say optical range it basically  extends from as I mentioned 10 nanometer to 300 

micrometer. So that is the range  we are discussing. Electromagnetic radiation propagates 

in the form of two  mutually coupled vectors. So one is electric field vector and other is  

magnetic field vector. 

 

 OK. So that is why we say light is an electromagnetic  wave. Now before we go into 

understanding you know Maxwell's equation  for electromagnetics there are some basic 

theories or concepts in vector  calculus that we need to revise. So here I will quickly give 

you an overview of  these operators which are very very popularly used in vector 

calculus. So these are gradient divergence and curl. So what is gradient? It is basically a 

change in magnitude of a scalar field. 

 
 So, gradient is basically the change.  Divergence tells you the source of the vector field 

and curl is associated with  the rotation of the vector field. So you can see from the 

diagram here that if  there is positive charge here and then the positive charge is 

increasing in  this region. So there is a gradient in this particular direction. Similarly, in 

case of negative charge you can say if there are more negative charge here and less here. 

 

 So, this is how the gradient is. OK. So always remember that the gradient of a scalar 

field is actually a vector. So the gradient that you are  computing is of a scalar field. 

 

 OK. But the gradient itself becomes a vector  because it will have the rate of change. 

OK. With this space. OK. And then it will  also have a direction associated. 

 

 Divergence as I mentioned is basically you  know, it tells you about the source of the 

vector field. So here you can see  positive divergence. Here you can see negative 



divergence. OK. And the  divergence of a vector field is basically a scalar. 

 

 And this is called curl is  associated with the rotation of the vector field. So as you know 

that rotation  can be either in counterclockwise or it can be in clockwise direction. So you 

can  use your right hand thumb rule. So if it if the curl is in this direction in the  direction 

of your fingers your thumb actually point the curl. 

 

 OK. So, the rotation of the vector field is in the direction of the fingers. The thumb gives 

you the curl.  Similarly here the rotation is in this direction. So the thumb gives you the  

curl which is basically into the screen. 

 

 OK. In this case. So, the basic operations that allow extracting this information about the 

distribution of electromagnetic field then energy associated with the field and 

electromagnetic radiation and  so on. So these basic operators like gradient divergence 

and curl can give you  a lot of information out of the electromagnetic waves. And the four  

Maxwell's equation on which you can say the electromagnetism is completely  dependent 

on. They are actually using all this vector calculus notations. 

 
 OK.  So, one such important operator is called nabla. OK. Or you can also call it del as 

you'll see. 

 

 So, in 3D space. OK. The vectors can be split into its  orthogonal components. So any 

vector will have its X Y Z components if we take  a Cartesian coordinate system. So in 

this particular lecture we'll only focus on  the Cartesian coordi nate system. As you know 

there are other coordinate systems  as well like spherical cylindrical and there the 

equations for curl gradient  divergence all these things will be different depending on the 



coordinate  system you're choosing. So let us only focus here on the Cartesian coordinate  

system. 

 

 If required we'll go to the other coordinate systems depending on the  applications we'll 

be discussing. So the vectors can be split into the orthogonal  components and the partial 

derivatives can be calculated accordingly for each  directional component. So the del 

operator is basically a vector differential  operator. So here are the different notations that 

you can use for this del  operator. And it is basically 
d

dx
or 

x




you can say in ı̂ , 

y




 in 

ĵ and 
z




in k̂ . 

 

  OK. Similar to the nabla operator or del operator  you can also have another operator 

called laplacian which is also based on  nabla it is basically nabla square. So laplacian is 

also sometimes  called nabla squared or del squared operator. So that is basically  does 

what double differentiation. So they can be represented as you know.  So, you have  

or you can use them in bold phase. 

 

 So instead of using the vector arrows here you can actually look for bold phase the same 

thing shown here or you can simply write them as you know as these are like implied that 

this is basically a vector.  Similarly the squared form also can be written in any of this 

form. That is fine.  And they actually give you
2 2 2

2 2 2x y z

  

  
+ + . 

 

 OK. Whichever way you call it.  OK. Call it. So this is basically what this basically 

second order differentiation.  So now let's look into a little bit of more details into the 

gradient  divergence and cull. So as I mentioned that a scalar fields gradient  is again a 

vector field. Reason is here there are two components. 



 
 One is the magnitude. The magnitude actually tells you about the rate of change of that 

scalar field.  And then there is a direction along which you know it is changing.  So that 

is why gradient of a scalar field becomes a vector. So here are the two examples we have 

already seen. 

 

 So, I'm not discussing them again. Now if  delta is made to operate on a scalar field as 

you understand you  will get a vector. And this is given by this particular  notation. So, 

you can write gradient of F or you can write grad of F or you can simply write you know

F . 

 

 OK. That will give you a gradient.  So, same different variation in you can write del with 

a small arrow on top. That is the you know del operator.  OK. Or you can write this way 

or you can write this way. 

 

 All this actually can't be the  same meaning. So, how do you call it. How do you read it. 

 

 It is called grad F.  OK. Gradient of F. OK. So you are basically taking help of the  nabla 

operator for writing this. So when you do this  gradient of f how it works. You have this 

del operator  which can be written in this. So, as you have seen in the previous slide this 

one the del operator can be written as this. 

 

 So we just took it here and then F is what. F is a scalar field. So, you can simply apply 

the differentiation. 

 

 OK. And you will get this one.  OK. So, the gradient may be in x or y or in all three. OK. 



Depending on that this partial derivatives will be  computed and you'll get the gradient of 

f. OK.  Now let us look into the other operator which is basically divergence. 

 
  The divergence quantifies the magnitude. There is no direction  associated. So in that 

case you understood that if you take divergence of a vector field  you will basically get a 

scalar field. That is why it is written divergence of a vector field gives you  scalar field. 

So it tells you the amount of a vector field which flows  out or into a specific region. So, 

in other words you  can say that the divergence calculate the amount of source or sink for 

a  given field. 

 

 OK. So, you can actually identify the source or sink from the divergence. If there is no 

source or sink what will happen? The divergence will be zero.  Now what is the source of 

electric charge? Positive. 

 

  Electric field is a positive charge. OK. So, if you look into this particular diagram if you 

say there is a positive charge so the electric field lines are actually coming out of it. So, 

the electric field lines are originating from that particular source. So, this is called a 

positive divergence. On the  other hand if you see that what is the sink of electric  field 

lines that will be the negative charges. 

 

 Right. You just recollect your school  physics you will see that the electric field lines are 

basically originating  from the positive charge and they are coming back and entering the 

negative charge. Alright.  So here you can see that you know if you have a standalone 

negative  charge you will see the electric field lines will come into and converge into that 

particular  negative charge. So this particular phenomena is  nothing but negative 

divergence. So how do you actually write this thing?  So, as I mentioned once again let 



me tell you that when you take the Dell operator OK or the Nabla operator and you 

operate your vector field. 

 

 So, this time F is a vector field.  So that is why F is shown as bold. OK. So, it's a vector 

field and you want to calculate the divergence and we know that the divergence of this 

vector field will be a scalar. OK.  So, how do you notify it or what are the notifications? 

You can simply write divergence of F vector. 

 

 OK. Or you can write it in  sharp form. Div F vector or you can write F . So, again del 

can be given as this Nabla operator with a vector arrow marking or you can use the bold 

face or you can simply write this dot F. As you see F is always maintained in boldface 

because otherwise you have to write this with the arrow to tell that this is basically a 

vector field. And when you have this vector field OK this vector field will have its 

component along x y and z and that you can also write delta in terms of 

ˆˆ ˆı j k
x y z

  

  
+ + . 

 

 OK. And then you can multiply the corresponding  vectors and you will find this is what 

you get. So, this basically  is basically the scalar field. And that is how we have come to 

this conclusion  that when you compute the divergence of a vector field it comes out to be  

scalar. So, this is the scalar quantity. 

 

 Clear?  So, now let's move on to the third operator which is curl operator. The 

calculation of  curl quantifies the amount and the direction of  rotation of a vector field. 

Now whenever you will see there is  a rotation of electric field or magnetic field there is a 

curl associated with it. So  how do you quantify this curl and what is the direction of this 

curl? OK.  So curl can be actually represented as I  mentioned before. So, either the 

rotation is in counterclockwise or it is in clockwise direction. 

 

 So, accordingly the curl will also have this direction upwards or downwards. So, curl is 

the result being a vector. So, again it's a vector perpendicular to the plane of rotation. So, 

this is the plane of rotation. This particular computer screen is the plane of rotation in 

which the vector fields are rotating. 



 
 OK. So in this case the curl will have the  direction either out of it or into it. So how do 

you calculate curl in  a 3D Cartesian system? So you can write the notation  can be curl 

of the vector f. OK. So curl is always  calculated of a vector field. 

 

 So the notation is this  nabla operator with a vector sign. So, this is what you can say

F  . OK. Or you can write it this way.  OK. And then when you take the cross product 

of the two vectors this is how  the field can be computed. 

 

 OK. So, it will be
yz

FF

y z



 
− . This will be the component along î . Then x z

F F

z x

 

 
−

will be the component along y direction or you can say it is ĵ .  And
y x

F F

x y

 

 
−   that will 

be the quantity along z direction or k̂  unit vector. 

 

 So this is how you can compute divergence curl and gradient of any field. OK. Now 

there are two important theorems that will also be very much useful. So let us quickly 

cover those theorems because these are related to this  vector fields and they will be 

important in understanding the Maxwell's equation. So one  such theorem is called Gauss 

theorem or divergence theorem. Now what does this theorem states? You look into the 

picture here. So, this theorem states that the flux of a vector quantity at outward through a 

closed surface S is equal to the integral of the divergence of the function that is enclosed 

in the enclosed volume V. 



 
 So, if you take the flux OK. This is the flux in a closed surface.  So closed surface are 

shown using this kind of circles on the  integration. So you are actually doing a surface 

integral  here and that is equivalent to the divergence of the function. So you are  

calculating the divergence of the function in an enclosed volume V  OK. That actually 

covers this particular closed surface. 

 

 So, here you can see this is the closed surface and this is the particular volume V. OK. 

So, in this equation the V denotes the volume, F denotes the analyzed vector field, S is 

basically the surface that is covering the entire volume. So, that is S and ˆ a  is nothing but 

the normal vector or this is the unit normal vector. So, from this theorem what do you 

understand? That if  the volume, if this particular volume does not contain a source or a 

sink OK.  It means the net flux through that particular volume must be  zero. That means 

there is no flux originating or terminating at a particular place inside this volume. 

 

  So, all the flux that is entering this volume must also leave this volume.  OK. So, it is 

possible to find such volume that will entrap an electric charge because each electric 

charge represents an electric monopole. So you can actually have monopoles in  electric 

charges whereas if you try to find monopoles  in magnetic charge that is not possible. 

OK. We will come to that later on. But this  is the main understanding of Gauss theorem 

that  if you want to take the surface integral over a  closed surface for a particular vector 

field that is equal  to the divergence of that function in  a volume made out of this you 

know surface  closed surfaces. 

 

 Now it is not possible to find a volume  that interrupts a magnetic charge. OK. That is 

why the magnetic field is  divergence less. So, if you take f as a magnetic field you will 



see that the divergence of the magnetic field is basically zero because you are not able to 

find any one particular pole separated out.  So, there is no magnetic monopole and that is 

why the divergence of magnetic field lines is always zero.  So, the first one that you have 

discussed here will lead to the first Maxwell's equation and this one that magnetic 

monopoles does not exist that will give rise to the second Maxwell's equation. 

 
  So this was one important theorem called Gauss theorem or divergence theorem.  The 

second important theorem is the Stokes theorem. Now as you can see in the picture here 

the Stokes theorem actually states that the surface integral of the curl of the vector field F 

over an open surface. So, let's assume this is an open surface and there are many curl of 

the vector field. So, if you compute the overall curl of this vector field in this open 

surface that will be equal to the closed line integral of the vector along the contour that is 

enclosing this open surface. So, this was the open surface and if you take this particular 

line that is you know that is basically along the contour which is enclosing the open 

surface. 

 

  So the line integral of the vector. So the line integral  of the vector along this contour 

that will be  same as all the curls that are actually there  in this open surface. OK. So if 

you take the curl and  you sum up all the curls or you integrate all the curls OK  over this 

particular open surface S that is equivalent  to this one. So, it's very nicely shown 

pictorially you can understand the sum of all the curves is basically sum of this line 

integral and what is da? da is nothing but now this is the unit vector that is normal to the 

surface. So, in other words you can say that the circulation of a vector around a given 

boundary is equal to the net curl over the whole surface of the patch limited by that 

boundary. 

 



 So, with that we understood the basic theorem and the basic operators that will be 

needed for dealing with Maxwell's equation. Now let us  try to understand the 

constitutive relations. And before we do that  OK we have to understand that Maxwell's 

equation OK talks about the  electric field and magnetic field and when there will be this 

electric field  magnetic field interacting with matter the permittivity and permittivity  

these two factors will come into the picture. Now what are these  pictures? These terms 

permittivity and permeability you must have studied in your school days these are 

basically the measure of how electromagnetic field or how a matter actually interacts 

with electric field and magnetic field. 

 
 So, that is we'll go into each of this.  So, let's look into the first one which is the 

dielectric permittivity. So, dielectric permittivity is basically a diagnostic physical 

property which characterizes the degree of electric polarization a material can experience 

when it is subjected to some external electric field. So, permittivity is related to external 

electric field.  So, how do you define the dielectric permittivity? It's defined as a ratio 

between the electric field within a material and the corresponding electric displacement. 

 

  So, we'll explain this with using this particular diagram.  So, when there is no electric 

field all these are  basically unpolarized atomic elements you can see the electrons with 

their electrons  and all those things. The displacement is zero, polarization is zero because 

there is no  applied electric field. As soon as there is an electric field applied to this 

material  you will see that the electron cloud is trying to  you know repel this electric 

field and they move out from the nucleus.  So, what happens you know there is a slight 

space region with  more electrons and there is a region where there is a deficiency of 

electron that  can be denoted as minus and plus. 

 



 Deficiency of electrons means you can mark  that as positive. So this is how you know 

the polarization of each  atomic element takes place. So, each of these will get polarized.  

And because of that you can write down that the  polarization is proportional to the 

applied electric  field. And if you try to find out what is the value of that polarization  that 

we'll see using the permittivity. So, first of all the definition is clear that you know 

dielectric permittivity is basically the ratio of electric field. 

 

 So it is 
0=D E . So, what is 

0  ? It is basically D/E.  So it is the displacement field 

over the electric field that gives you  epsilon naught which is vacuum permittivity. 

 

 OK. So, the value for vacuum permittivity is well known. It's 128.85 10 [F / m]− . What is 

F? Farad. So, when we expose to the electric field we have seen that you know the 

bonded electrical charges of opposite sign they try to separate from each other and that 

results into you know the polarization of the material which is called electric polarization. 

And you can write D in the presence of a material it becomes  
0 +E P . So, this is the 

extra term that is coming when your electromagnetic field is interacting with the material. 

 

  OK. And P can be written as 
0( )E − . What is epsilon? That is the permittivity of the 

material.  ε0 is vacuum permittivity. When you add this two up you get D is proportional 

to εe in a particular matter.  On the other hand if you look for magnetic field. So when 

exposed  to an applied magnetic field the collection of individual magnetic  dipole 

moments within most material will attempt to reorient themselves  in the direction of the 

applied field. 

 

 And this will generate some induced  magnetism. OK. Which contributes towards the net  

magnetic flux density inside the material. These are all known factors but still I am  

covering them quickly. The degree in which the induced magnetism impact the magnetic  

flux density depends on the materials magnetic permeability.  So, let us define 

permeability. So, permeability is basically the ratio between the magnetic flux density b 

within a material and the intensity of the applied magnetic field H. 

 

 OK. And provided that both the fields  are sufficiently weak. So, you can write that B the 

magnetic flux density is proportional to μ0H.  What is μ0? It's the permeability of free 

space and the value is
74 10 H / m − . OK. And then there is additional term which is 

μ0M. 

 

  So, this is the magnetization of that particular material we are talking about. Now in 

most cases we deal with  non magnetic material in the optical field. So, we can safely 

take M= 0.  So, that brings this equation to a simpler form that B is simply μ0H. The 



contribution from the material perspective for the magnetic field we are not considering 

most cases in the optical or nanophotonics domain. 

 
  OK. Because we deal with again non magnetic material.  Fine. So, let's look into the 

Maxwell's equation now. So Maxwell's equation is nothing but it actually  describes the 

electromagnetic field by the two related vector fields.  One is electric field and another is 

magnetic field.  And this fields electric and magnetic fields are both function of R and  T 

that is space and time. Now after the myriad of researchers  carried out for fundamental 

reasons behind the source of electromagnetic field  and the relations between electric and 

magnetic field by the  pioneer scientists like Ampere, Coulomb, Faraday, Gauss.  The 

revolution in the electromagnetic field could happen when James Clerk Maxwell he could 

propose this set of fundamental equations in 1865. 



 
  

So before that the individual laws of electric field and magnetic fields were existing. But 

the field of electromagnetism  came after the integration of these equations by Maxwell.  

So Maxwell's equations are valid for both static and dynamic electromagnetic field in  a 

media. So these are the Maxwell's equations. So, divergence of E is nothing but rho V 

that is a charge density in a volume divided by epsilon. 

 
 On the other hand divergence of magnetic field is zero. Reason is that there is no  

magnetic monopole. If there is a monopole present then only you can have a positive 

divergence or negative divergence but then that is not there. 



 

 So the divergence is zero. E . So the first two are called Gauss law.  This is called 

Gauss law for magnetism. This one is Faraday's law which is   E is related to the time 

varying. So, if there is any time varying magnetic field that will have some circulating 

current. 

 

 So that is given by  E .  So  E is
t





−
H

. That is called Faraday's law. And we also 

have  Ampere's law. So this is basically the corrected Ampere's law or we  can say this is 

based on Ampere's law. So here we have H .  So there is a magnetic field circulating. 

 

  Which is basically dependent on the current density plus  the change in the electric flux 

with time.  εe is nothing but D. So these are the terms that you  have to keep in mind. So, 

you have seen where we are writing all of these in terms of E and H. But we also know 

from the constitutive relationship that D equals εE. That means the electric flux density 

or the displacement field is basically εE and the magnetic flux density that is B is μ0H. 

 

 So here in this equation if you put μ and H together you basically get B. So, these 

equations become
( )B t

t




− .  And this equation becomes  

( )D t

t




. So Maxwell's equation 

can be  written in both integral form as well as differential form. So, we will only focus 

here on the integral form because of the you know it's easy to write and also, it's easy to 

describe. 

 

  But they actually convey the same meaning. These are just different forms of writing the 

same equation.  So let's start with the first one that is Gauss law for electric field.  So it 

says that while the area integral of the electric  field gives a measure of the net charge 

enclosed, the divergence  of the electric field gives a measure of the density of those  

sources. So here you can see the  divergence is giving you the charge density.  So from 

this also you can see the integral form.  So here you see the divergence sorry the 

displacement field integrated over a closed surface is basically giving you the charge that 

is enclosed. 



 
  You can also write it in terms of the density charge density over volume.  This V stands 

for volume charge density. So you call it  rho V. And if you integrate it over the volume 

so  you will get nothing but the charge. So this  one and this one then needs to be equated.  

So this is volume integral, this is  surface integral. 

 

 So how do you actually change from surface  integral to volume integral? You can take 

the help of the theorems that you  have studied. So we will come into that. But let me 

quickly give you an overview of  Maxwell's equation. So the second one is the Gauss law 

of magnetism.  So it tells you that the net flux will be always zero for dipole sources. 

 

  In magnetic field the poles cannot  be separated so they always remain as dipole. And 

there you will see  that the divergence of the magnetic flux density is zero.  Faraday's law 

actually gives you that the line integral of the electric  field around a closed loop is equal 

to the negative  rate of change of the magnetic flux through the area enclosed by that 

loop.  So, you can see it from here or you can also write it as the  E is nothing but

B

t




− . And finally  the fourth equation or the Ampere Maxwell equation, it tells you that  

the total magnetic force around the circuit in terms of the current  through the circuit plus 

any varying electric field through the circuit. 

 

  That is basically the displacement current. So, you can actually see it here that  H

and these are all time varying and space dependent.  So  H is nothing but 
D

J
t




+ that 

is the current flowing through the circuit plus there is something extra which is the 

electric field displacement over time or the rate of change of the displacement field. That 



is basically the  displacement current. 

 

 The time rate of change of any field is basically this one is current.  So let's look into the 

first equation in more details. So, we can write D  is nothing but f . So this is also  

called as Gauss law for electric. So if we assume that there is a  S that is the closed 

surface. And the total charge in this region enclosed by this closed surface S is Q. 

 

 You can write you know n̂E , n cap is the unit vector normal to the surface. When you 

do this surface integral you will get it as  
0

Q


. So the Gauss law basically tells  you that 

the flux that you are getting or you can say the flux of  the electric field through S is 

basically the  total charge enclosed by this closed surface S divided  by the permittivity. 

So this is the flux that is equal  to the total charge divided by the permittivity. Now if you 

try  to this is the integral form. 

 

 So if you try to convert  this into the differential form you  can take help of the 

divergence theorem. How to work with that? So  this equation is basically a surface 

integral. OK.  So, from surface integral you can use the divergence theorem and you can 

say the divergence of that particular field vector field over the volume will be same as 

this particular surface integral. 

 

 So, now this is in terms of volume. OK. Again, the right-hand side of this equation 
0

Q



you can write it as
0

V
dV




. Now  if you take these two together. OK. 

 

 So, here you can see you can actually find out that these are both volume integrals. So  

the quantity this quantity and this quantity must be equal. So that way you can obtain  

0





 =E . Simple. So, that way from every integral form equation you can actually use 

those theorems that you have studied and the vector identity is we can come to the 

differential forms.  Similarly looking at the second Gauss law for magnetic field. 



 
 So, Gauss law for magnetism says that no magnetic monopole exists and that is why the 

total flux through a closed surface must be 0. So . 0 =B and that can be derived from

B dS  .  So, if you take a closed surface OK with area S so this is the total flux OK 

through that closed surface and that is 0. And this is happening because if you take a bar 

magnet and try to cut into two parts hoping that you will be able to separate north and 

south pole that doesn't work. The small magnet also becomes it also have its own north 

and south pole. 

 
  



So, if you can if you break it infinitely small size also there also there will be two poles 

present. So, there is it is not possible to have any magnetic monopole. 

 

  The third one is called Faraday's law. OK. So, this is one of the first two equations that 

connect E and B. OK. So, E is a conservative field that you have to keep in mind in the 

absence of a magnetic field or you can say the magnetic field is constant in time. So, 

electromagnetic induction was first independently discovered by Michael Faraday in 

1831 and then by Joseph Henry in 1832. And Faraday was the first to  publish his results 

of the experiment. So, this is known as Faraday's law of electromagnetism. 

 

 So, if you think of this particular equation which is known as Faraday's law there you are 

we are able to connect E and B. OK.  So what happens in this particular equation. Let's 

look into the  integral from first. So it says that the line integral  of the electric field 

around a closed loop.  So, this is how you can write it is equal to the negative rate of 

change of the magnetic flux through the area and closed by that particular loop. 

 

 So, if you take this is the magnetic flux and this is the negative rate of change of the 

magnetic flux through that particular loop. So here is a  picture snapshot that also shows 

you the same thing. So if you have a magnet and  this is a loop that is measuring the 

amount of field lines going into  it. So when you move it towards OK there is a rate of  

change in the magnetic flux lines or magnetic field lines. So that will rotate the needle of 

the galvanometer to one direction. 

 

  And if you take it away from this particular loop it is recorded in the galvanometer in 

the opposite direction. OK. So this actually  tells you the law of magnetic  induction 

electromagnetic induction. So, let's see how do we get this particular differential form 

equation from the integral form. 



 
 So, what is there in the integral form. It's a closed loop integral line integral you can say

dlE . OK. So, let's write dlE . So, if you use dlE you can also write it in terms of 

surface integral by taking the curl of that particular field. 

 

 And that is what we learned from the Stokes theorem. And when you write this so it 

becomes
circuit dlE∮ . OK.  And you are integrating over the surface now. So this is same 

as  the right hand side here which is already having a surface integral.  So, you can now 

compare the quantity inside the integral and you can write that this side
B

E
t





 = − . 

So, this is how we are able to get this differential form. 

 

 OK. So the physical meaning is very simple that  a changing magnetic field will 

introduce circulating electric  field. OK. So changing electric field means it is changing 

with  time. OK. 

 

 So a time varying magnetic field will introduce a E  means circulating current. Curl 

means the electric field going this way. So there is a  circulating current. So this is 

Faraday's  law. The next one let's look into the fourth Maxwell's equation that is coming 

from the Ampere's law. 



 
 So, Ampere's law does not have any time dependence. So, it simply says that if you have 

a conductor carrying current I. OK. So, when the conductor is carrying current I it will 

produce a magnetic field that will circle the wire. OK. So, again you can take it this way. 

 

 So, I is the right-hand thumb rule it follows. So if thumb points  to the direction of 

current flow the fingers they will point the direction  of the magnetic field. OK. So 

Ampere had shown how to make  magnetism from electricity. So that is actually a big big  

discovery because you are able to get magnet fields or magnetism by  current flow. OK. 

Now if you try to look this same thing in the integral form it is written in terms of the 

Biot-Savart law. 

 

 So from Biot-Savart law we know that now the magnetic field due to a long straight wire 

can be written as 0

2

I
B

r




= . OK.  So, I is the current, mu naught is the vacuum 

permeability and 2πr is basically the you know r is the radius of this particular rod. Then  

because B and dl both are in the same direction  you can take their dot product and that 

comes out to be also B dl. 

 

  OK. So, when you take the line integral.   So, how do you get this line integral of this 

small element dl along this circumference you will get 2πr.  OK. So finally you can write. 

OK.  I'm just skipping the steps and finally you can write that the line integral of B is 

nothing but μ0I. 



 
 OK. So, it means the amount of magnetic field that is being generated is proportional to 

the current that is flowing in the wire.  So, you can also put this particular relation that 

you have learnt that B equals μ0H in the integral form of the Ampere's law and that will 

also help us to get the differential form of this Maxwell's equation. The fourth one.  So, 

you can write you know in this equation if you write B =μ0H you get 
0 oH dl I  = . 

 

  So μ0 you can cancel out from both sides. You can simply write that the line integral of 

H is nothing but the current enclosed or simply I. OK. And I can also be written as what 

is J? There is a current density. So density  times the area that will give you the current.  

So, I can be written as H. dl and H can be written it can be converted into the surface 

integral by taking the curl of it. 

 

 So this equation can be now equated to this surface integral. So here also you have 

surface integral here also  you have surface integral. You can equate these two quantities 

and you can write curl of H is nothing but J. That means when you  have a current 

density you are actually or current flowing you are actually  getting a magnetic field lines 

around it. But then this is an  incomplete equation and it is not valid for electrodynamics. 

 

 It is good for  electrostatics but not for electrodynamics. So, this is where only this form 

is called the Ampere's law. But then why did Ampere's law  went wrong and how it 

became  incomplete. The first thing was that it didn't have any time dependence.  So, 

Maxwell brought in time dependence in this particular equation and that was the biggest 

contribution of Maxwell. 

 

  So Maxwell wrote down the Ampere's law and he actually found out that it is 



incomplete. Because when you take the divergence of the  Ampere's law. So, Ampere's 

law is curl of H equals J. 

 
 So, if you take the divergence of this two. So, you are taking divergence on both sides. 

So, you are getting this equation on the left. Now divergence of a curl is  zero. That we 

all know. So, it means divergence of this J is becoming always zero. So that is that the  

case all the time. But that is not the case all the time because  electric currents they obey 

the continuity equation. 

 

  It means if there is some change in the  charge density rho. That will also affect your 

current  density. So, you can also relate it like 
t




is nothing but − J . So 

mathematically, you can say that the  H is not only just this particular quantity J plus 

it has got some extra thing.  And that is some time dependent thing. So, Maxwell knew 

that a time varying magnetic field can give rise to solenoidal current that he has seen 

from the Faraday's law. 

 

 Then he thought that why not you know a time varying d field can give rise to a 

solenoidal H field. So, this is actually the beauty of nature because nature loves 

symmetry. And that is how Maxwell was able to introduce this new term called 

displacement current density which he named as Jd . So, 
t





D
is the rate of change in 

electric flux density. And that is given as the displacement charge density. 

 

 So, when you add that term to this current density this equation is complete.  Then in that 

case it will be able to explain all the phenomena in the electrostatics as well as 



electrodynamics.  OK. So, this is the Ampere Maxwell equation in the complete form that 

a current a flowing current that is Jd give rise to a magnetic field that circles the current 

that is fine. 

 

 That is the pure Ampere's law. And then you also have a time changing electric flux 

density D that also gives rise to a magnetic field that will circle the D field. OK. So, this 

is basically the Maxwell's contribution. 

 

 So, you can write
d  = +H J J   where 

dJ is nothing but
t





D
.  OK. Or you can simply 

write this one. So, here is a complete summary of Maxwell's equation. So, as you can see 

here on this particular column shows electrostatics or electromagnetics and here it is time 

varying. So, it is the dynamic one.  So, in electrostatics and electromagnetics we assume 

electric and magnetic fields are independent of each other. 

 
 And in the time varying or the dynamic theory we assume that they are coupled to each 

other. Maxwell's equation these are all given in the integral form. So, in electrostatics you 

have seen this very well that the surface integral of the electric flux density is basically 

giving you the enclosed charge and that remains same even in the time varying nature 

also.  Similarly, when you see that the electric field line integral is zero but in the time 

domain or time varying nature you will see that can be related to the rate of change in the 

magnetic flux density. Similarly the  third equation that remains unchanged that you have 

already discussed. 

 

 But the fourth  equation again the magnetic field lines they are not only  equal to the 

current. But they are also having a contribution coming from the  displacement charge 



density.  So, this is how the modification in Blue they are showing the modifications that 

have taken place in the dynamic case. In the differential form this is how the differential 

equations look like.  So, these are all based on there are two divergence and two curl 

equations as we have seen. 

 

  So,  D is 
v  that remains same for the time varying or the dynamic field as well. 

 E is zero but  E  in dynamic electromagnetic theory is
t




− B .  Divergence of B is 

zero that remains same but  H was only J according to Ampere but then Maxwell 

added this new term which is
t




D .  And that completes the electromagnetic theory. So, 

these four equations are popularly known as the Maxwell's equation and they can actually 

describe the phenomena of electric field and the magnetic field that is varying in time and 

space. 

 

 So, with that we will stop here today and in the next lecture we will cover the wave 

equation and the boundary conditions that we could not cover in this particular lecture. 

Thank you. So anything  any queries any doubts you have you can email to me that 

should. Thank you. 


