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This was a topic, which I intended to cover up last time itself, in the last lecture, but due 

to insufficient time, we could not. So, today, we are going to first discuss upon this, in 

fact, I may although this is the title, given to the lecture. I think that, I am going to spend 

roughly half the lecture on this. And then, in the remaining part of the time, we will go 

over to the discussion about the multi-layer perceptron. To the extent time permit is, we 

will be discussing about the back propagation algorithm. 

Now, in the last class, we were discussing about the Bayes classifiers and in fact to one 

point, which you must have noted is that, the Bayes classifier, computational part. Only 

involves the computation of the log likelihood ratio or rather to say the likelihood ratio is 

the thing; that we are first computing in terms of. If f x, x given C 1 and f of x, x given C 

2, the ratio of these two, gives us a likelihood ratio. 

And then, we took the log likelihood ratio and this log likelihood ratio was compare with 

another factor called xi, which was defined as the threshold. Say, if the log likelihood 

 



ratio is greater than the threshold, we were classifying it into one of the classes, let us say 

C 1. And if it is otherwise, then we were classifying it into the other class; that is C 2. 

That was the simplest kind of approach that we had taken. 

And in fact, our intention was to show, that for a Gaussian distributed patterns, we are 

going to show that the Bayes classifier is going to act very similarly to what a linear 

Perceptron does. In fact, this is a very interesting result that we are going to talk about. 

So, again we consider a two class problem that, it is going to classified into either the 

class C 1 or C 2. And another point that, we should keep in mind is that, all the vectors, 

that we are deciding, that we are discussing about. 
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 In fact, we are taking the X vector, the capital X vector to be a random variable, out of 

which we are taking instances as the small x vector. And we have consider, that this x 

vector is an m dimensional type. So, that, whenever we are considering an m 

dimensional space, like say for example here, if we draw any imaginary m dimensional 

space. And supposing, this is the space in which the x vector, that is the random variable 

can reside, then the instances of the small x vector that, we are going to have will be and 

let us say that, this is the mean vector. 

Now, most of the vectors, belonging to this random variable, would be distributed close 

to this mean vector and as we move away from the mean vector, their population will 

decrease. So, that is why, the use of the probability density function, the PDF is coming 

 



into play. And we are assuming, the PDF distribution to be a Gaussian distribution in this 

case.  
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So, let us consider a two class classifier problem, where for class C 1, we are going to 

have the expectation of this random variable X, capital X that will be equal to what, that 

will be equal to the mean. That will be equal to mean and in this case, mean a scalar or a 

vector, definitely a vector. Because, all the instances of this random variable X, they are 

vectors. 

So, definitely when we are talking of a mean, the mean is also a vector, mean is also an 

m dimensional vector, so we call this mean vector as the mu 1 vector. And then, another 

statistical parameter that we always consider for the case of scalar things, what we 

consider is the variance. Because, that shows the dispersion of the data with respect to it 

is mean. 

That is how, we calculate, that if the data is much dispersed, from it is mean, then it 

shows a large variance, where as a data, which is closer to the mean, data distribution 

which is very close to the mean, that will show a smaller variance. Now, variance in the 

case of a scalar variable, the variance was also a scalar quantity. But, in this case, the 

variance that we are talking of is also not a scalar. 

 



Variance has to be in this case, the vector definitely, it is in fact of a matrix style, 

because the matrix should indicate the dispersion, not only with reference to itself, which 

will be indicated by it is diagonal elements of the matrix. But, also the off diagonal 

elements, which will basically show the correlation between the data with it is other 

elements. 

So, basically, we are going to form a matrix, which is called as the co-variance matrix, 

which is going to be the equivalent of the variance that we are having for the case of 

scalar data. So, the co-variance matrix that we are talking of should be defined in this 

manner. So, it should be the expectation of x minus mu 1, all in vector notations, times x 

minus mu 1 in this case transpose. 

So, if we make it a transpose, we are taking an outer product of it, so by taking the outer 

product, we are going to get a matrix and that matrix we are going to call as the matrix C 

which is nothing but, the co-variance matrix, so this is the co-variance matrix. And very 

similarly, for the case of class C 2, we are going to have the expectation of x vector to be 

equal to mu 2 vectors and the expectation of x minus mu 2 vectors. 

Outer product with x minus mu 2 transpose, this is also taken to this C, assuming that the 

co-variance characteristic is uniform throughout the entire space H that we are talking of. 

Because, out of C 1, we are taking the sample space to be, we are taking only a subset of 

that H 1 from we derive the training samples for C 1, again likewise H 2. We take a 

subset of C 2 and then, we were defining in the last class, the whole set H from which, 

we were considering. 

So, assuming that the variance statistics, remaining the same, for that, we can denote it 

by the same C matrix, which is the co-variance matrix. Now, another point to be noted is 

that, this co-variance matrix C is non-singular and so it is, C inverse exists. So, now, we 

are going to define a Gaussian distribution for both the classes, f x, x given C 1, also f x, 

x given C 2, both these distributions should be Gaussian. 

And the Gaussian formula is very well known to us, we have been dealing with such 

formulas, almost in all the subjects. We are having Gaussian distribution as a typical 

normal distribution case. Only thing is that, in this case our data will be little more 

complicated in the sense that, we are going to have m dimensional type. The Gaussian 

 



distribution is going to be m dimensional. So, let us write down the Gaussian distribution 

expression, considering an m dimensional case. 
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We are going to write as f x, x given C i, that is equal to 1 upon 2 pi, in this case, it will 

be m by 2, 2 pi to the power m by 2, m is coming because of the dimensionality, that is 

involved in this case, it is m dimensional. And then, instead of the 2 pi sigma square, you 

remember that we have root over 2 pi into sigma square. That sigma square term will be, 

in this case, replaced by the determinant of C and this whole thing to the power half. 

And then, the exponential term that will be existing is I am not writing the exponential 

term here, because I need some more space for it. So, it should be exponential to the 

power minus half x minus mu I, so here I am putting as C i. So, that this will be valid for 

i is equal to 1 and 2, two class problem, because it is. So, this x minus mu i transpose C 

inverse x minus mu i. So, I think we have understood the form; this is a quadratic form 

of the expression. 

So, this is in other words, the equivalent of the expression that we are going to have for 

the one dimensional case or the scalar case. So, this is with the knowledge, that m is 

equal to the dimensionality, dimensionality of the observation vector x. Now, we can 

make some further assumptions and that is nothing wrong in it. 

 



Firstly, that we are going to have two classes C 1 and C 2, although in the last analysis, 

we have assumed the two probabilities to be independent P 1 and P 2 we took. So, were 

P 1 and P 2 could take any values, but we can always assume that, the two classes are 

equi probable, in most of the cases, it may be like that only. 
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So, if two classes C 1 and C 2 are equi probable, in that case, we are going to have in 

which case, we can obviously, write that P 1 is equal to P 2 is equal to half. And also, we 

can write down some problem with the sketch pens, any way, this is better. So, C 12 is 

equal to C 21, the cost function that we had taken last time. C 12 and C 21’s are what, 

they are the cost functions, which are associated with correct, incorrect, incorrect 

classifications, so C 12 and C 21 and they are the incorrect classifications cost function. 

And C 11 and C 22, they are the correct classification cost functions, which there is no 

reason, why we should not take it to be 0. Because, we said that, those cost functions 

should be as minimum as possible as low as possible. So, there is nothing wrong, if I 

assume that C 11 is equal to C 22 is equal to 0. 

 



(Refer Slide Time: 14:08) 

 

So, if we have that and if we try to take the likelihood ratio, because in order to take the 

likelihood ratio, what we have to do is, we have to first write the expression for C 1, x 

given C 1. Then, we have to write it for x given C 2 and simply we have to take the ratio 

of these 2. And you can very clearly see, that if you are taking the likelihood ratio, then 

this coefficient term will get canceled out, they become one and only the quantity written 

within the exponential, will remain. 

Exponential to the power something by exponential to the power something, which will 

mean that, exponential to the power, the expression that we are going to have for mu 1. 

And the expression that we are going to have for mu 2, they will be just subtracted from 

each other, if we are assuming that f x, x given C 1 by f x, x given C 2. Now, because the 

quantity that we are getting as a likelihood function is everything written within 

exponential term only, the most logical thing will be to take a natural logarithm of both 

the sides. 

Natural logarithm of the likelihood functions, which we are going to call, which we have 

been calling so long as the log likelihood ratio. So, the log likelihood ratio, whenever to 

be take the natural logarithm of both the sides, it will be log likelihood ratio on the left 

hand side and the right hand side term involving the exponential will then, become a 

straight forward term, it becomes a linear term in fact. 
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So, if we take the natural logarithm of the likelihood ratio, we can write down this 

expression directly, that the log of, sorry, the log lambda x vector, that is the log 

likelihood ratio. It is going to be equal to minus of half x minus mu 1, transpose C 

inverse x minus mu 1, plus half of x minus mu 2, transpose C inverse x minus mu 2. So, 

the mu 2 term and from that, we subtract the mu 1 term. 

So, simply the ratio of f x, x given C 1 and f x, x given C 2, taking the logarithm of both 

the sides, so this could be simplified further and if we simplified it, then we will see that, 

we will get two terms here. One is mu 1 minus mu 2, this transpose C inverse x vector 

plus half of mu 2 transpose C inverse, mu 2 minus mu 1 transpose C inverse, mu 1. And 

what is going to be log xi in this case, because we are assuming P 1 and P 2 to be equal 

to half and C 12 and C 21 to be equal. 

Just have a look at the earlier class note, there you will find that xi term will be equal to 

1, so that in this case, log xi is simply equal to 0. So, in that case, what is going to be the 

boundary, what is going to be the decision boundary? The decision boundary should be 

when log of lambda x, the log likelihood ratio is greater than or equal to log xi in this 

case 0. 

So, when this expression is greater than or equal to 0, have you got it, what we are 

wanting, is it linear. It is very much linear, you see that this involves, if you look at the 

addition terms of these two and there are two terms that is invert over here. One is a term 

 



involving x and the term, which does not involve x, which is independent of x. So, the 

term, that is independent of x; that means to say this mu 2, C 1, this C inverse mu 2 

minus mu 1 transpose C inverse mu 1, this term that we have got is independent of x. 

And you could imagine that, this is like the bias, this can be substituted for the bias b and 

if we now substitute this for the W transpose. In that case, what is the expression that we 

are getting, we are getting and if we call this to be y. 
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In that case, the equation that we are getting out of this log likelihood ratio for the 

Gaussian distribution Bayes classifier is simply y is equal to W T x vector plus b, which 

is the equation of. So, this is equal to this, so that means to say that, that the decision 

boundaries equation is W transpose x plus b greater than or equal to 0. This is the 

decision boundary, which is the hyper surface equation and which is our simple 

Perceptron equation. 

So, we started with Bayes classifier under Gaussian distribution assumption and we 

landed up in a form, the classification decision boundary solution that, we are getting out 

of it, is exactly the way, the decision boundary problem is for the Perceptron. So, the 

Analogy that we were talking about of since the last class, about the Bayes classifier and 

the single layer Perceptron, very much holds good. 

 



So, I think you should now feel convinced the there is a very strong Analogy, a very 

strong similarity is indeed there. But, come to think of it, in a more deeper way, you can 

realize, that there are some striking differences also in addition to whatever resemblance, 

we have got in terms of this decision equation. 

Number 1; that when we talk of the Perceptron, the first basic fundamental assumption 

that we are making is that the two classes C 1 and C 2, they are linearly separable, not 

only separable, they are linearly separable. But, the Bayes classifier problem that we 

have defined here is based on the assumption, that the distribution is Gaussian the 

distribution of the two classes, they are Gaussian in nature. 

And even, if you have mu 1 and mu 2 to be much separated from each other, let us say 

for example, since I cannot sketch a Gaussian distribution for multidimensional, m 

dimensional case, I can at least sketch for a single one dimensional case of Gaussian. So, 

here, let us say that this is mu 1 and let us say this is mu 2, widely separated. And also, I 

assume that as compare to their distance of separation, mu 2 minus mu 1, there variance 

is also relatively of smaller magnitude. 

Even, then also the distribution, which could be plotted something like this, if this is the 

kind of the distributions that we have got, this being the distribution of plus C 1 and this 

being the distribution for class C 2. They are in strict sense, not at all overlapping, they 

are not at all non overlapping, as the linear classifier would require, as the perceptions 

would require. 

That is the fundamental condition of Perceptron, that the pattern classes must be linearly 

separable, but in this case, the pattern classes are theoretically overlapping. No matter, 

how for you drive them away, mu 1 and mu 2, you drive them away and however, small 

C 1 and C 2, you can use, still they are overlapping to some extent and the thing is that. 

So, the naturally, they are lies a very fundamental difference, that here, this is not 

linearly separable problem, so Bayes classifier can solve it, Perceptron cannot. 

Again, Bayes classifier for the case of Gaussian distribution only, is getting converted 

into this type of a linear form. If you are taking distributions, other than the Gaussian, 

then this relationship will not hold good. Whereas, in the case of Perceptron, this relation 

always holds good, because Perceptron does not make any underlying assumption about 

 



the probability density functions of the classes, so that is why, they Perceptron we can 

say is non parametric. 
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So, we can in fact just jot down a few points about it is comparison, most of it we already 

discussed, comparisons between Bayes classifier and Perceptrons. Number 1; 

comparison is that Perceptron requires linear separability, whereas, Bayes classifier with 

Gaussian pdf are non-separable, they are absolutely non-separable class. No question of 

linear separability, they are absolutely non-separable. 

The second is that Perceptron convergence is non-parametric, non parametric means, it is 

not dependent on the underlying distribution, underlying probability density function. 

Whereas, Bayes classifier is indeed parametric, because it is under the assumption of 

Gaussian, that it is linear. And then, the third point is that, the Perceptron convergence 

algorithm is adaptive and simple to implement. 

Whereas, the design of Bayes classifier is fixed, because in this case design of Bayes 

classifier is very much dependent upon the log likelihood ratio, that we are computing, 

so it is fixed. You can make it adaptive, when it is statistics changes, but then you have a 

very large memory to track down, it is statistical behavior. That means to say, what you 

have to do is to track down, it is mu 2, mu 1, mu 2, C, the co-variance matrix variations. 

 



Unless, you do that, you cannot make the Bayes classifier to be adaptive, so these are 

some of the dissimilarities, that exists and only under the linear case. That only, under 

the Gaussian distribution case, that the Bayes classifier with Gaussian pdf is very much 

similar to the way Perceptron behaves. But, if the underlying distribution is indeed 

Gaussian, if the two classes of patterns are Gaussian distributed really. 
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And if we want a Perceptron to solve the problem for that, then there lies a problem, like 

say for example, if this is a kind of problem that, we give to a Perceptron, for a solution. 

Then, although the ideal decision boundary could be somewhere over here, but this 

decision boundary is certainly going to shift. Because, whenever you are trying to 

achieve a Perceptron convergence, because it is not linearly separable, the two classes 

are not linearly separable. 

So, that is why, it will not be able to find a any fixed decision boundary, if you are 

alternatively trying to converge a Perceptron algorithm, the decision boundary will shift 

in and around this region. It will oscillate in and around this region and never obtain any 

direct solution of the decision boundary. So, this much is the discussion that, I wanted to 

have on the broad chapter of single layer Perceptron. 

And in fact, this chapter we should end up with some amount of historical note in it. In 

fact, there is some historical note background, which I had given to you earlier. But, just 

to re mention it and also to rethink about it, in terms of the multilayer Perceptron, which 

 



we are going to discuss shortly. The thing as I have already told you is that this theory is 

related to Perceptron. 

The theory is related to the least means square algorithm, they were all developed in the 

1950’s and the Perceptron theory was actually proposed by Rosenblatt in the 1950’s. 
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Now, in 1960’s, actually it was, after Rosenblatt theory was presented, it was Minsky 

and Selfridge, these two people these two scientists. In the year 1961, they had presented 

a paper, where they had shown that, the inadequacies of Perceptron, in the sense that, 

Perceptron cannot solve problems, which are not linearly separable. In fact, they were 

the first demonstrate the incapability of Perceptrons to classify the exclusive or kind of a 

problem, simple binary exclusive or problem could not be solved, this was shown. 

But, subsequently, it was argued that, so in this sense means Minsky and Selfridge was 

very much right, made a very timely contribution, saying the inadequacies of Perceptron. 

And then, when it was felt that perhaps, Perceptrons limitations might be overcome, if 

one uses say, multi layer Perceptron. A single layer Perceptrons limitation could be 

overcome by multi layer Perceptron and when theories like that, were proposed. 

That time Minsky and Papert, these two scientists, they in the year 1969, they published 

a book, a very well known book, a classical book named as Perceptron. In which book, 

they pointed out that the inadequacies of single layer Perceptron definitely exists and one 

 



has to accept that. In fact, people who first proposed the theory themselves accepted, 

there was no reason, why they should not have. 

But, they were highly skeptic about the performance of multilayer Perceptron, because 

Minsky and Papert directly ask them. That if the problem like this is not solvable by 

single layer Perceptron, how can you expect, to solve it, get it solved by multilayer 

Perceptron. And very brilliant scientists as they were, there was a thinking in the 

thinking and rethinking in the neural network research community, about the whole 

success of neural network. 

Because, any way neural network has to sometimes solve problems, which are separable, 

but with are non-linearly separable. So, if neural network cannot solve non-linearly 

separable problems, then there is no use of neural networks. In fact, following the book 

by Perceptron by Minsky and Papert in 1969, there was a very much subdued research 

activity on the neural networks. 

In fact, for the next 10, 15 years not many people talked much about neural networks, 

especially the Perceptron and the multilayer Perceptron model, people thought that may 

be that this is something, which was not very successful. It was proposed, but not very 

successful, but in the year 1986, it was two scientists, again named Rumelhart and 

McClellant. In the year 1986, they published a book, which is named as Parallel 

Distributed Processing; just observe the name of this book. 

We heard about a subject, a very popular subject called parallel and distributed 

processing. But, mind you here the name that is given to this book is Parallel Distributed 

Processing; there is an omission of act. But, the whole thing, that they try to talk about in 

this book is that neural network is definitely a parallel computational model, no doubt 

about it. Because, you can employ several neurons and you can do the processing 

independently. 

They are independent, they are indeed distributed, because those neurons, did not be 

distributed in one single place, the neurons could be distributed in several places, they 

could be distributed. So, it is the parallel distributed processing, that was proposed by 

Rumelhart and McClellant in the year 1986, parallel distributed processing book was 

written. 

 



And that was the first book, after which the concept of multi layered Perceptrons, were 

popularized. In fact, they are the first people to coin the term of back propagation. In 

fact, lot of times, I find that the word back propagation and multilayered Perceptrons, 

they are very much interchangeably used. It should not be very much interchangeably 

used, because back propagation this word itself has got some concept built into it. 

Whereas, coming to think of multilayered Perceptron, the idea is pretty simple, what is 

meant by multilayered Perceptron is that instead of only the input and the output layer, 

the way we have it for the single layer Perceptron. We are going to have a layer in 

between, which is called as the hidden layer. So, multilayered Perceptron architecture 

would look something like this. 
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There will be an output layer, there will be a hidden layer, I might have told, given this 

diagram sometimes or the other, while discussing other things, I must have talked about 

this. So, there is nothing great about this diagram, but one thing that these hidden layers 

are fully interconnected to the layer, that is preceding it. In fact, all the layers starting 

from the output up to the layer immediately, before the input, it is fully interconnected to 

the layer, which is preceding it, which means to say, what. 

That, if we are talking of this, then it is fully interconnected to all the hidden layer 

neurons like this is going happen for all of this output layer neurons.. Like this, it goes 

on; I am not completing this diagram. Again, here this should be connected to all the 

 



neurons in the previous layer. Now, in this example, I have shown one input layer, one 

hidden layer and one output layer. 

But, generally speaking, you could have more than one number of hidden layers also, but 

the very fact that, it is a multilayered Perceptron. Because, it is multilayered Perceptron, 

it must necessarily have at least one hidden layer. Now, that the thing is that having told 

about the multilayered Perceptron, I think it is very much necessary to talk about what 

the term back propagation actually means. 

Because, I have seen that some people have got certain misconceptions about the back 

propagation and I have heard some people wrongly talking. That as if to say, that back 

propagation as if tries to mean that, like there is a forward signal flow, which will be 

there. In fact, what happens is that, this input will be having some signals associated with 

it and these signals will come to the next layer in this case, hidden layer, which will be. 

So, there will be some linear weighted inputs, that you will get, which we are going to 

call as the induced field, that is to say sigma of W j I, if you call this to be the neuron j. 

Then, sigma W j i, x i, where i is equal to 1 to m, if there are m dimensions in the input. 

We were describing the linear activation to be that and then we were following it up with 

the activation function. 

Phi of v; that is what we were taking which was in fact doing some kind of a hard 

limiting and things like that. Now, there is a forward signal flow, in this case, if you 

observe. The signal will first flow from the input layer to the hidden layer and then, the 

outputs of this hidden layer will then influence the output neurons. So, as if to say that 

the signals are propagating in the forward way. 

Now, some people wrongly believe that back propagation means, that as if to say you 

have got a feedback mechanism in the connection and the connections are bidirectional 

and some signal also flows from output to the input, which is not very correct. In fact, 

the word back propagation is to be used very cautiously, that here back propagation 

means, that it is back propagation of errors. 

Please note that, it is back propagation of errors, so that in the forward signal flow path 

in the forward path, we have got only the signal flow and in the reverse path. We are 

going to have the computation of errors, because one thing is to be understood at this 

 



stage. If you are again, bringing in the Analogy of single layer Perceptrons, there try to 

remember, what we did. 
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In single layer Perceptron, we were considering a neuron, which was connected to 

several inputs and then, it was generating some outputs, let us say y. And then, there was 

a desired output, which was d and we were feeding as a pattern set, we were feeding the 

x vector, as well as the d, as the training patterns. And this y minus d or that was the 

error term for us, using which we were directly modifying the synaptic weights here. 

Now, if we try to do the same in the case of multi layered Perceptrons, how are we going 

to achieve it. Because, here there will be some final output, let us take any one output 

neuron, there will be some output, let say y or if this is the jth output neuron. Let say, 

there will be some y j, there will be something which is d j. So, accordingly there will be 

some error e j, which is y j minus d j. 

But, that error will can influence or using that error we can update the weights that, are 

connected between the output and the input, which is immediate layer, which is 

immediately preceding it. But, if somebody asks me the question that is well and fine 

you can adjust the weights belonging to this layer, but how about weights belonging to 

this layer. 

 



I cannot do it, because in order to adjust the weights over here, I have to get an 

equivalent picture, that as if to say, that I know, that what this output should have been, 

what the equivalent desired output should have been at this stage. Only, if I had known 

that, the actual output and the equivalent desired output, which should have been at this 

stage. Only, then I could have computed the error and only, if I could compute the error, 

I could adjust the weights at this layer. 

And like that, I have to go back to the preceding layers, because there may be more than 

one hidden layer of neurons. So, like that I have to go to the preceding layers of a 

neurons and I would find out that, what should be the weight adjustments that are needed 

in the preceding layers. So, there what we are going to do is, that the error that we are 

getting, this error should be computed in it is equivalent form in all the previous layers 

and that is the whole idea of the back propagation of errors. 

So, when we talk back propagation, again mind you, be careful in using the term, that it 

is back propagation of errors. 
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In fact, it should look something like this, that let say, that we have got three neurons, let 

say these are the last hidden layer. The hidden layer that is closest to the output layer, 

this is an output layer neuron, let us say connected to three hidden layer neurons. So that, 

here we are getting the signals from these three neurons and then, here we are getting the 

inputs and we are going to get the outputs, the output will be here. 

 



So, all these lines, that I am drawing with from black lines, they are nothing but the 

function signals. So, these are the function signals and then, the errors signals would be 

shown like this, so we first compute the error here at the output layer. And then, we have 

to propagate these errors backward up to the level of the immediate before, immediately 

preceding hidden layer. And then, once here the errors are computed, then this error 

should be further back propagated, so this is the flow of the error signal. 

So, what I am drawing with this color is the error signal, which is by back propagation, 

so this is the concept. Now, let us go over to the beginning of the back propagation 

algorithm. Now, the beginning of back propagation algorithm would look very similar to 

the weight updating equation or what we called as the delta rule for the case of single 

layer Perceptron. 

The analysis and everything would look very similar to that, but only thing is that we 

will realize the difference, when we come back from the output layer to the preceding 

layers. When, we come to that and we calculate the equivalent error signals, there we 

will understand the difference between the approaches that we had followed so for. 

Single layer Perceptron and the approach, that we are going to follow for the back 

propagation. 

So, the approach of back propagation would start in a very similar way, so let us consider 

an output neuron j. 
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So, we consider neuron j at the output and we consider the iteration number to be n, so 

we consider the iteration n and here iteration n means, it is the presentation of the nth 

pattern. So, if we take the approach of the l m s algorithm, there what you did you 

remember, there we were considering the instantaneous error energy and we were 

minimizing the instantaneous error energy and updating the weight for every n. 

That means to say, that we were not waiting for a one complete set of patterns to be 

presented. In fact, one complete set of patterns is called as Epoch, so there we were not 

weighting Epoch is one complete set of patterns. So, instead of waiting for one complete 

set of patterns or an Epoch. We were updating the weights with the presentation of every 

training sample that, is what we were doing for the case of l m s, because we were 

considering only the instantaneous error energy. 

We were only considering, what e j at iteration n square of that, so here also we are 

going to follow the similar approach as if to say that with every presentation of the 

pattern, we are going to update the weight. And later on, we can show that whether that 

becomes equivalent to updating the weight once for all for one complete Epoch. 

Because, if you are updating the weight after one complete Epoch. 

Then, you have to calculate the average error energy that, should be based on the average 

error energy, whereas doing it for every pattern means based on the instantaneous error 

energy itself, we can do it. So, now the error signal at the output of the neuron j, could be 

written very simply. So, the error signal a at the iteration n, we are going to write as e j of 

n, which should be equal to d j of n minus y j of n. 

Now, here, because I am having more than one neurons at the output layers, so that is 

why I am numbering or indexing the neurons as such. So, that is why we are saying y j d 

j, so everything is pertaining to the jth neuron and the errors signal is as follows. So, 

what is going to be the instantaneous value of the error energy, the instantaneous value 

of the error energy is simply going to be E of n equals half of what e j n square. But, I 

said there are more than one outputs. 

So, definitely we have to sum up, even if we are talking of instantaneous value of the 

error energy, at the nth iteration or the presentation of nth pattern, whatever errors are 

existing at the outputs of every neuron or every output neuron and they must be summed 

up. So, we should sum it up over j, j belonging to the output layer, so if we say j belongs 

 



to C, where the set C, set C includes all the neurons in the output layer. So, having 

defined this, the average squared error energy, if we try to think of the average. 
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Then, if there are capital N number of total training pattern, let say, if there are n number 

of capital N number of training patterns. Then, the average squared error energy, that is 

E av n is equal to 1 upon N summation of E n, E n is what, I have defined just now, the 

instantaneous value. So, if this instantaneous value of this error, I sum it up for N equal 

to one to capital N where capital N is the total number of training patterns, that is one 

that composes one Epoch. 

Now, there could be two different approaches, one approach is that on a simple pattern 

by pattern basis, you update the weight, like the way we did for the l m s algorithm. Or 

the other approach could be that you calculate this average squared error energy and 

based on this average squared error energy, you adjust the weight once for all. In fact, is 

going to be nothing but the minimization of this average squared error energy is just 

going to be an estimate of what the average weights that, we are going to get out of this. 

You see here, at every iteration we minimize, for every pattern presentation, we 

minimize this E n functional and then we are going to get an updated weight. So, then 

over N number of patterns, over capital N number of patterns, if we take the average 

weight, that weigh and this weight will not be exactly the same. The weight that you are 

getting by minimizing, this E n of that will not be same, there will be some deviations. 

 



So, the weight estimate that your are getting out of this is going to be some estimate of 

the true weight, that you will get by following the instantaneous approach. In fact, we 

will there is nothing wrong in following the instantaneous error approach only. So, I can 

end this class of today, because I am not being able to complete the total analysis, 

because of lack of time today. 
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In other words, what I can simply say is that, the total output, that I am getting out of this 

is for the jth neuron if I take, the v j at the nth iteration should be equal to summation of 

w j i at n times y i of n and you add it up for i is equal to 0 to m. Where, m is going to be 

the dimensionality, in fact we added i is equal to 0 to m, after embedding the bias terms 

also into it. 

So, this is the complete term, that we are getting as the induced local field at the input of 

activation function of neuron j and this y is are what output of the previous layer, so 

these are the output of the previous layer. And in the case of multilayer Perceptron, it is 

necessarily the hidden layer, the hidden layer that immediately precedes the output layer. 

Anyway, with this knowledge, we will continue our discussion, about the derivation of 

the expressions for the back propagation of errors, which is going to be very important. 

In fact, that is the underlying theory of the multilayer Perceptron and that we will do in 

the coming class. 

 



Thank you very much. 

 


