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Practical Consideration in Back Propagation Algorithm 

 

In the last class, we had considered the Back Propagation Algorithm derivation from 

mathematical point of view. And today we are going to see some of the practical aspect 

of back propagation algorithm. Now, you have seen in the last class that the local 

gradient that we are having for the output as well as for the hidden layer neurons. That 

local gradient is very much dependent upon the derivative of the activation function, 

because it is proportional to phi dash of v j. 

So, this necessarily means that phi dash v j should be computable; that means, to say that 

one of the fundamental conditions. That we are imposing for back propagation algorithm 

to work is that, the activation functions that we consider must be continuous and they 

should be differentiable. Unless we have that the back propagation algorithm cannot 

work, because in such cases phi dash v j will simply become undefined phi dash v j will 

not exist, if that is not the case. 

So, coming to the question of activation functions to be used in the back propagation 

algorithm, certainly the activation functions like McCulloch and Pitts model or the signal 

function they are ruled out. Because, they are necessarily becoming discontinuous 

function at the point v equal to 0, the function becomes discontinuous, if we are 

considering any one of those kind of functions. 

So, instead we should again concentrate our attention to the continuous activation 

functions for which the typical examples, that we consider where the sig model non 

linear functions. And for sig model functions the two kind of modules that we are taking 

or the logistic sig modal function and the tan hyperbolic sig modal function. Logistic is 

in the range of 0 to 1, where as the tan hyperbolic is in the range of minus 1 to plus 1. 

So, let us consider first the case of logistic activation function and we will derive, that 

what is the local gradient that we can compute considering a logistic function. And then, 

we will go over to some of the other practical considerations, like what is the effect like 



every time we are presenting any neural network algorithm. We have to debate upon the 

point, that what should be the right kind of choice for the etas that is the learning range. 

We have been telling about compromise that it should be too large, it should be too high, 

but some research efforts were put in during the late 80s whereby one can make the 

algorithm stable, as well as cause is a quicker convergence rate. So, that is that will be 

discussed immediately thereafter and then, we will try to compare about the two modes 

of learning, that is the batch mode and what you can call as the sequential mode of the 

learning for the case back propagation. So, these are that thing which I intent covered in 

today’s class. 

(Refer Slide Time: 05:14) 

 

So, let me first give consider the activation functions for back propagation network, in 

which I am going to consider the example of the sig modal function and especially the 

logistic function. So, we consider that as the phi function we have the logistic function 

defined as follows, since we are considering the neuron j. So, for the neuron j the logistic 

function phi of j as a function v j n is going to be 1 by 1 plus exponential to the power 

minus a times v j of n. 

Where, you know that as before a is controlling the slope of the activation function and v 

j n is nothing but, the induce local field. That is, summation of the inputs times the 

weight, weighted summation of all the inputs will be the v j. So, the definition remains 

the same only, in this case certainly the conditions that we are imposing is that a is 

greater than 0. And v j that we are considering can be anywhere in the range of minus 



infinity to plus infinity, we are not putting in a restriction on the bounce of v j in this 

case. 

Now, if we consider a logistic function like this, in that case we can take the derivative of 

this logistic functions. So, let us compute this phi dash j v j n, which means to say that 

what we have to do it, is to take the derivative of this function with respective v j. So, 

that is going to be fairly simple and easy enough, what will happen is that the 

denominator term will now become a square term. 

The denominator will become a square term and in the numerator we will be getting the 

differential of the denominator term. And then, the numerator term which is 1 product of 

that, so ((Refer Time: 07:32)) the differential of the this term only will be there. Which 

means to say, that we are going to get the derivatives as a times exponential to the power 

minus a v j n by 1 plus exponential to the power minus a v j n this term square. 

So, this is going to be the derivative in fact, this phi j that we are writing can also be 

written as y j, because that is going net output. So, if this is y j in that case 1 minus y j if 

we consider 1 minus y j will become exponential to the power this term by 1 plus 

exponential of this term wholes square. So, no by 1 that is exponential of this by this, so 

that is going to be 1 minus y j in fact, this whole thing could be expressed as a times y j n 

multiplied by, so this also is y j n, so a times y j n times 1 minus y j n. 

So, this is going to be our equation number 1, so this is phi dash j v j of n which is equal 

to this. So, this we are calling as equation number 1 for today, so now for neuron that is 

located in the output layer. 



(Refer Slide Time: 09:36) 

 

So, if neuron j is in output layer in that case we can simply write that y j n is equal to o j 

of n o j of n being the output. So, y j is the final output and in that case the local gradient 

that is delta j n will be equal to what e j times phi dash j n, so this is e j at iteration n 

times phi dash j v j n. And what is phi dash n, if we are considering the logistic function. 

Student: ((Refer Time: 10:16)) 

So, first of all that e j n could be expressed as simply. 

Student: d j n. 

D j n. 

Student: minus y j n. 

Minus y j n that is right. So, it is d j n minus y j n that is going to be e j n not y j n, 

because we are considering y j n to be the output only. So, which is o j n, so it is d j n 

minus o j n times it will be y j n into 1 minus y j n, that is what we had already derived. 

So, this is going to be instead of y j o j we can write, so it is o j n into 1 minus o j n 

please verify is it correct. 

So, this is the phi dash j term that we writing in fact, phi dash j will be a times o j n into 1 

minus o j n and e j n is going to be d j minus o j n. So, this is what we got is the correct 

expression for delta j n that is the local gradient. And if j is a hidden layer neuron, in 



such case what will be the expression for our delta j n, delta j n is will be equal to what 

remember our discussion from the last class. 

Student: ((Refer Time: 11:52)) 

Phi j n or phi dash j n. 

Student: phi dash j n. 

Phi dash j n multiplied by. 

Student: ((Refer Time: 12:01)) 

Summation of what, summation of all the delta terms the weighted summation of the 

delta terms in the output layer and that weighted summation will be over k, where k is 

the output layer neurons. So, k is the index for output neuron, so what we are going to 

have is phi dash j; that means, to say this neuron j which is under consideration v j n 

times summation of delta k in w. 

Student: k j 

Student: K j 

That is correct delta k n w k j n and this summation is over k. Simply what we can 

substitute is, that instead of phi dash j v j n, we can write it as a multiplied by in this case 

y j n only we have to write. We cannot write o j n, because o j n is the output, but in this 

case y j n will be the output of the j th neuron, the hidden neuron. So, we have to write 

here y j n only into 1 minus y j n, so that is the term that we are writing in place of the 

derivative of the activation function. 

And this summation of the weighted summation of the all the local gradients of the 

output will remain as before. That means, to say that it will be summation of delta k n w 

k j n, where it is summed up over k and this is what the case of hidden layer neuron. 

Whereas, for the case of the... 

Student: Output layer. 

Output layer, this is the expression that we have got, this is for the output layer. Whereas, 

this for the hidden layer, anybody having any doubts confusion pertaining to this no. So, 

now let us look at this, that after all we have derived our expression for phi dash j n, phi 



dash j. So, let us have a look at this expression ((Refer Time: 14:26)) in fact, we have 

computed phi dash and phi dash in term is controlling our delta j, that is the local 

gradient. 

Now, first of all that what it going to be the range of y j according this activation 

function can anybody say, what is the range of y j. 

Student: plus 1 minus 1. 

Plus 1 to minus 1 everybody you agrees. 

Student: ((Refer Time: 14:52)) 

0 to plus 1, 0 to 1 it is, because you see that it is very easy to see that, you do not have to 

remember it. Even, if you just simply have look at this expression, you can see that what 

is the bounce on this term v j could be minus infinity to plus infinity as a say. Now, if I 

considered the case of v j n tan into minus infinity. Then, it is exponential to the power 

infinite, which means to say other the denominator term is becoming infinite. 

So, it is 0 y j n equal to 0, where as the other extreme as when v j becomes infinity tends 

to infinity. In that case it is exponential to the power minus infinity, which means to say 

the this term is 0, this exponential term is 0, so it is 1 at the output. So, here the way we 

have written a formula our y j that is to say considering this kind of logistic function our 

y j s bound is going to be in the range of 0 and 1. 

So, certainly you all agree about the bounce of y j now if I ask you, that you try to plot 

consider this expression one. And try to find out that how this phi dash j function 

changes with the y j definitely phi dash j is dependent upon y j. So, how is dependent, 

where are we going to have the maximum value of phi dash j. 

Student: ((Refer Time: 16:43)) 

1 by 2 yes; that means, to say that when y j equal to 0.5, in that case we are going to get 

the maximum value of phi dash j. And what is the value of phi dash j, when y j equal to 

1. 

Student: 0. 

0 simply substitute here it is 0, what happens when you take y j equal to 0. 



Student: 0. 

Then also it is zero, so; that means, to say that for y j equal to 1 of a y j equal to 0, this 

equation one gives as value of 0 for the derivative. So; that means, to say that in those 

places the derivative of the activation function becomes 0 and when we have y j equal to 

0.5. That means, to say that exactly at the mid range of y, there we are going to have the 

value of phi dash v j to be the maximum. 

You can simply differentiate this phi dash j with respective y j and say it yourself by 

equating the derivative to 0, you can find out the point of maximum is certainly 

becoming at y j n equal to 0.5. So; that means, to say that the phi dash v j is definitely 

being maximum at the mid range of y. That means to say, that the weight adjustments 

that we are going to do that is to say ultimately we are going to do a delta w j i based on 

this computation is not it. 

Based on phi dash j or based on the delta j, we are going to find out the delta w k k j. 

And that weight changes those weight changes will be maximum when we have y j n 

equal to 0.5 or rather to say at the mid range of the output values the weight adjustment 

is becoming maximum. In fact, this is one thing about it which definitely adds to the 

stability of using such kind of logistic functions, in the back propagation network. 

Now, very similarly way we can show that instead of taking a logistic function, if I had 

taken a tan hyperbolic function. I could have derived a very similar expression to that 

only thing is that, there instead of taking 1 by 1 plus exponential to the power minus a v j 

n I should have taken tan hyperbolic of a v j n. And then, I could have computed a very 

similar expression. 

So, I am not going into the computation of that, they are should be something that should 

be left to the students, as well as the viewers for them to solve. So, the tan hyperbolic 

case you can consider and solve it yourself, it would be quite easy following the same 

lines you can derive the expression for phi dash j and correspondingly the delta j 

considering j to be the output layer neuron and j to be a hidden layer neuron. 

So, that is as for as the activation function considerations are there, which we have now 

derived out of this. And then, the next point to consider is the rate of learning, because in 

the expression that we had got as before remember the expression that we had got in the 



last class about the change of weight, that is delta w k j, delta w k j is dependent upon 

what terms remember it is dependent upon eta. So, that equal to eta times delta j times. 

Student: ((Refer Time: 21:02)) 

Times y, so now, what we have to do is that definitely; that means, to say that it is 

dependent on eta. Now, we have been discussing about etas, all that time in this case you 

see that the back propagation algorithm, that we have got in this case is definitely and 

approximation to the steepest descent problem, this is also a solution of this steepest 

descent only. But, in this case it is an approximated version of the steepest descent. 

And approximated version of the steepest descent means, that in the case of a perfect 

steepest descent we know that, see ultimately what is that is happening in the case of the 

steepest descent algorithm, we start with some value of weight vector. So, we are in 

some m dimensional space initially, we are in some point in the m dimensional space 

with the initial set of weights. 

And then, we are going to move in the weights space m dimensional weights space and 

we will follow a trajectory that ultimately takes us to some value of weight, which we 

have been calling, so long as the w star vector. And w star vector is something, where it 

gives the minimum value of the cost function that we have been considering. And the 

trajectory in the case of a steepest descent algorithm is going to be a smooth trajectory. 

So, since the back propagation network back propagation algorithm is an approximation 

to the steepest descent, certainly that trajectory that we are going to follow out there in 

the m dimensional space is not going to be a smooth trajectory. The trajectory is very 

much dependent upon eta and as our discussion has gone in the case of the single layer 

perceptron also. 

That, there is trade off that is definitely going to exist you make eta too small. Then, 

what happens is that the learning is getting too small, but the trajectory will be smooth 

and you will not run the risk of having a and instability. The system will be always 

stable, whereas if you a making eta to be too large, then the learning definitely will be 

faster, but the risk is that we can it can lead to then instability. 

So, now there were a such as to find out, that if there could be any solution to this. That 

means, to say having a faster learning and also a better stability condition or rather to say 

it guaranteed stability condition is that possible. So, now, what happens is that in this 



effort some researches were done and as I was telling you that most of the developments 

in the multilayer perceptron and so to say about the back propagation algorithm, say 

etcetera where done in the 80s. 

And it was the book by Rumor Hart in 1986, the book on Parallel Distributed Processing 

which we had mentioned the few class back. In that book it was presented that one of the 

solutions to have both together; that means, to say stability as well as faster learning is to 

add what is called as a momentum term to the learning and using the momentum term 

which was actually suggested by Rumor Hart. 

(Refer Slide Time: 25:19) 

 

There the delta w j i, that we are going to have delta w j i at iteration n is going to be 

equal to Alfa times delta w j i n minus 1 plus our usual learning term that exist. That 

means, to say eta, eta being the learning rate times delta j n which is the local gradient 

times y i n, y i n a bring the input to the neuron j. So, here this term is very familiar to us, 

this is the normal learning term that way always have. 

Whereas, this is something which is new to us, way have not come across this term 

earlier. So, this is an addition and just see that here, what is the significant are that; that 

means, to say that the change of weight that you are doing is in some way proportional to 

the change of weight that you had done in the earlier iteration. That means, to say in the 

n minus 1 at iteration whatever delta w j i you had consider, you are take a proportion of 

that to be added up. 



So, in discuss Alfa is going to be a constant in fact, Alfa is normally take in to be a 

positive number. And Alfa is refer to as the momentum constant in fact, y is it called 

momentum, if you spend a bit of time on it I think it is very easy to understand. That 

means, to say that over and above your normal leaning, you can a put to have eta to be 

small. Because, we know that eta small is good from the stability considerations. 

So, despite having small eta we can have quick a learning, as if to say giving it a push; 

that means, to say that applying and external force. And force as we know will be 

causing a momentum, so definitely there is every reason to call it as a momentum term. 

So, which is added to this delta w j i now this in fact, this equation that we have got over 

here could be return in terms of this. 

That delta w j i n in the form of a difference equation, if we write then we have to write it 

has delta w j i n minus delta minus Alfa times delta w j i n minus 1 which should be 

equal to eta times delta j n y j n. Which means to say, that very similarly we are going to 

have delta w j i n minus 1 minus Alfa times delta w j i n minus 2 is equal to eta times 

delta j n minus 1 y j n minus 1 is not it, if we had written the same expression for the 

earlier iteration, the difference equation for earlier iteration would have been like this. 

So, which means to say that if somebody it tells me like this, we can go over is not it like 

this we can go on for n minus 2, n minus 3 and so on up to n minus n that is w j i 0, 

which means to say that initial. We can go there and if we have to eliminate all this 

intermediate terms, let us say that if we have to eliminate this delta w j i n minus 1 term. 

Simply what we have to do is to multiply the second equation by Alfa is not it. 

So, if I multiply this whole equation this second equation by Alfa, then what I am getting 

is Alfa delta w j i minus here it becomes Alfa square. So, if I add of this two on then left 

hand side, it is delta w j i n minus Alfa square times delta w j i n minus 2. Which is going 

to be equal to eta delta j n y j n plus Alfa times eta delta j n minus 1 into y j n minus 1. 

We can shift the delta w j i term on the delta w j i n minus 2 term on the right hand side 

from left hand side we can take it to the right hand side. 

And in that case, delta w j i n will become Alfa square delta w j i n minus 2 plus it is 

going to be eta times delta j n y j n, here it is going to be eta Alfa plus eta Alfa this term. 

In fact, if we keep one doing it, then we have expressed it in terms of n minus 2, but 

ultimately if we add of everything n minus 2, n minus 3, n minus 4 and all that in that 



case the delta j i n is going to be expressible as a time series. So, you can verify this 

yourself by proceeding with the difference equation solving approach. 

(Refer Slide Time: 31:32) 

 

That we are ultimately going to get delta w j i n to be equal to eta times summation t 

equal to 0 to n Alfa to the power n minus t into delta j t times y i t. This is something that 

is going to express it, eta is a constant eta is not varying with iteration, Alfa is also 

constant. But, here y i I had to put Alfa term inside the summation is because it is Alfa to 

the power n minus something n minus t. And this case t is quantity that is changing; that 

means, to say that considering t equal to n it is Alfa to the power 0. 

So, it is delta j n eta delta j n y i n the faster, then t equal to n minus 1 if you look get it 

form a reverse way t equal to n minus 1 means it is Alfa to the power 1 delta j n minus 1 

y i n minus 1, that term that viewer a writing out here for the second equation. And like 

this it is a summation series, that is ultimately going to be, so this is a time series 

representation of delta w j i s n. So, this is a time series, so this time series representation 

and what is the length of the time series, length of time series is in this case n plus 1. 

Now, simply what we can do is that we already know that delta j times y i is going to be 

equal the negative of dau e dau w j i is not it the rate of change of the error function with 

respect to the cost function, with respect to then change of weights. So, I can express this 

same equation as delta w j i n equal to minus eta times summation t equal to 0 to n Alfa 

to the power n minus t into dau E t dau w j i t. 



So, this is going to be our series representation, now we can spend little bit up time on it 

and find out about the convergence aspect of this equation. You see, we are considering 

the Alfa to be a positive quantity, now the thing is that we can take we never said that we 

have to put the Alfa term to be a Alfa term means greater than 1 or Alfa term is less than 

1 that one be have not real if specify. 

So, firstly that here we have to know one consideration which should be therefore, us is 

that, the Alfa term that we have to take should be definitely within 0 and 1. Because, one 

thing is there that you can make out from this series itself, that if I put Alfa to be greater 

than 1. Then, delta w j i term will be uncontrollable it will increase, because as the power 

of Alfa increases if Alfa is greater than 1. Then, the contribution this terms which are 

getting summed up will increase and definitely that will be uncontrollable. 

So, that is not some change that be looking for in this case, so definitely we restrict the 

range of Alfa to be this, that within in 0 and 1. Now, if it is within 0 and 1, then one thing 

is very showed that this expression that we are getting Alfa to the power n minus t into 

dau e dau w j i, this is surely going to be a convergence series. Because, with Alfa less 

than 1 modules of Alfa being less than 1, it is going to be convergent and there is some 

consideration that we can have on this dau E dau w j i term. 

Now, this term definitely we are having n plus 1 such term is not it and they are getting 

added up with the value this Alfa to the power n minus t. Now, if it, so happens now Alfa 

is positive in this case, now in this case if it is dau E dau w j i is having the same sign in 

every iteration. For every t if it is having the same sign, in that case the modules of delta 

w j i is going to be a higher value is not it although it will be convergent. But, modules of 

delta w j i grows magnitude. 
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So, I can say that if dau E dau w j i has the same sign for all t, then the modules of delta 

delta w j i. That grows in magnitude correct, look at this expression to confirm this 

((Refer Time:38:20)) every dau E term is having the same magnitude. So, either it is 

increasing in the positive direction or it is increasing in the negative direction, this is the 

summation term that is existing. 

So, grows in magnitude delta w j i growing in magnitude means what, that it is it refers 

to an accelerated descent. So, it is an accelerated descent it is descent to no doubt, it is 

following as steepest descent, but in an accelerated with we are coming down after 

somebody has given as a said push. So, we are coming down little faster and the other 

thing could be the other extreme could be that dau E dau w j i is alternating it is sign with 

every iteration. 

What happens in that case, in that case if dau E dau w j i is alternating it is sign with 

every iteration, then mod of delta w j i is going to be small in magnitude is not it. 

Because of one term is tending to adapt in the positive direction, the next term is going to 

subtract it in the negative direction. So, addition subtraction, addition subtraction 

continuously happening, so that restricts the mod of delta w j i. 

Now, if it is something in between; that means, to say that few terms are having same 

sign, few terms are going to have opposite signs. That means, to say it will be within this 

to extremes, but one of the extremes is going in the form of an accelerated descent. And 

the other extreme that if dau E dau w j i alternates it is sign in every iteration in that case 



delta w j i mod of that is small in magnitude and this certainly has got a more stabilizing 

effect. 

So, what we have got as the momentum term is not something which is risky in that 

sense. Even if it is an accelerated descent ((Refer Time: 41:11)), but still you remember 

here that because Alfa is restricted within 0 and 1 we are not going to have an un 

bounded increase of delta w j i. So, definitely it is stable, so with stability it is possible to 

for us have an accelerated descent. 

That of course, depends on what your derivative of in this e term is with respective w j i. 

And the other possibilities that which is small in magnitude and if is small in magnitude 

then I am definitely it is stabilizes. Now, the momentum term has got two f x, not only 

can it contribute to faster learning as we have just now shown. That means, to say that 

possibility of some form of an accelerated descent. 

It also helps in avoiding the local minimum, because one thing is there you know that 

again going back to our original discussion. That the back propagation algorithm is an 

approximation to the steepest descent and in a steepest descent the convergence to a local 

minimum is guaranteed. Convergence to a minimum in fact, is guaranteed. But, whether 

that is local minimum or global minimum is not very clear to us. 

Because, if the surface if the cost functions are face in the multidimensional space is 

such that it could be having local minimum as well as global minimum. Then, at least the 

steepest descent can bring us to a local minima and trap the solution in that manner. 

Whereas, in this case if we are adding a momentum term, the momentum term has got 

some effect in avoiding the local minimum. 

In fact, more on the avoidance of local minimum we are going see when we discuss 

about the aspects of simulated annulling. So, any doubts that your having related to the 

learning rate aspect, what we have just now presented in terms of it is momentum, 

parameter any queries related this yes please. 

Student: ((Refer Time: 43:42)) 

First we have propagating as. 

Student: ((Refer Time: 43:47)) 



Right. 

Student: ((Refer Time: 43:49)) 

After every back propagation yes, we are first doing a forward pass, then we are doing a 

backward pass and the backward pass is allowing us to calculate all the delta j’s. And 

then, after calculating delta j’s we are calculating the delta w j i, so only thing that we 

have modified this that the ((Refer Time: 44:21)) algorithm that we have been talking, so 

long is as if taking Alfa equal to 0, in this case you just substitute Alfa equal to 0. 

Then, it is leads to the un modified back propagation algorithm. That means, to say un 

modified weight updating, in discuss what we have simply done is that instead of doing 

the weight modification simply according to eta delta j i y i we are adding a momentum 

term to it. So, that we are doing after the backward pass is done, that is only during the 

change of weight delta w j i that we are introducing this term. That certainly does not 

affect our forward pass of the backward pass. 

Student: ((Refer Time: 45:06)) 

At output nodes as well as the hidden nodes be a doing the delta j computations. 

Student: ((Refer Time: 45:18)) 

You see, this is this delta w j i that we are doing, we are doing it connection by 

connection. That means, to say that when the forward pass is done and then backward 

pass is also completed, when we are completing one of the nodes, then we are computing 

it is corresponding change of weights. We go to another node compute it change of 

weights. 

So, we update the weigh as we go from one layer to another stating with the output layer, 

to the next layer, to the next layer, like that as we go on we will update the weights every 

time. So, we have to allow for that much of combination, but certainly since we have 

doing this competitions certainly I am certainly does not add to anything like a instability 

or anything like that. 

We adjust taking this time, there is nothing different from the original back propagation 

algorithm except for the fact that computationally you are introducing one more 

momentum term, that is all any other doubts. 



Student: ((Refer Time: 46:37)) 

You see, that is just to show you some steps about this, so this one. 

Student: ((Refer Time: 47:02)) 

So, this is the difference equation involving n and n minus 1, likewise I can have a 

difference equation involving n minus 1 and n minus 2. So, which is going to be what 

Alfa times this minus square times this equal to Alfa times this. So, now if I add up this 

two, then what happens. Then, if I simply adapt, then we are getting delta w j i is equal to 

Alfa square times this plus this term. 

Student: ((Refer Time: 47:33)) 

After this, this is I will tell you here what you are getting is delta Alfa eta delta j n minus 

1 y j n minus 1. So, you see that this is for two term that I have got; that means, to say 

that if I had got this for three terms. Then, what would have been the case, then it would 

have been delta w j i n equal to Alfa cube of delta w j i n minus 3 plus eta terms this Alfa 

into eta terms this plus Alfa square into eta terms of this. 

Now; that means, to say that ultimately you reach what, Alfa to the power n, delta j i 0 

and what is delta w j i 0 it is 0. So, this term ultimately does not remain, what remains is 

the next term that is to say eta delta j y j plus Alfa eta delta j y j plus Alfa square eta delta 

j y j plus Alfa cube eta delta j y j like that it goes on. And we have to some of all these 

things together. And that is exactly what we have represented in the form of this time 

series is it clear to those who had any difficulty in following this. 

So, this is about some form an accelerated learning using the momentum term. And now, 

there is one more debate that to be should initiate, that is to say that whether the 

sequential learning is good or the batch mode of learning is good. Now, the discussion 

that we have been having, so long is as if to say that we are presenting one pattern, which 

we are calling as by the index n. 

That means, to say that when we are putting everything within bracket n means that, it is 

the nth iteration or rather the nth pattern. As if to say that we are presenting one pattern 

and then, we are adjusting all the weights and then, we are presenting the next pattern 

adjusting all the weights and so on followed. We will be given training set a training 

sample is something that we begin with. 



(Refer Slide Time: 50:36) 

 

That means, to say that we will be having set of d and a set of x i's, where x i's are going 

to be the input vector and d or rather to say d i is going to be the desired output. In fact, 

in this case I can say it is d i in the form of a vector or, so meaning that, since the output 

is going to be from several neurons I can describe it in the form of vector. So, I am 

feeding one pattern calculating it is errors at the outputs. And then, making the 

readjustment of the weights, then only feeding the next pattern. 

That is the approach that we have been following and this is called as the sequential 

mode of training, this is sequential mode of training. Now, as we discuss last time that 

we defiantly have a fixed set of pattern fixed set of training pattern. And once, the 

system goes throw the training of one set of training patterns at the complete set of 

training pattern, when that is completed we are calling that, that is one epoch of learning 

is over. 

And then, what we are doing is that, we are can we stop the network there certainly not, 

because this is only once we have gone through all the set of patterns. Now, we are going 

to repeat that epoch again, repeat that epoch means that is again start with the first 

pattern, second pattern, third pattern with every pattern feeding you update the weight 

feed the next pattern like that it goes on. So, again we will be complete in the second 

epoch, then we will be completing the third epoch and so on. 



Now, were to stop that is also a question that we should answer, what should be the 

stopping criteria. But, coming to the question of sequential mode of training we are 

doing epoch by epoch, now one thing which you could have done in alternative way is 

that instead of adjusting the weights at every iteration if we could adjust the weight. 

Once, all the patterns in the epochs are presented, then adjust the weight only once, in 

that case the difference would have been that you could not have in this case, the case of 

sequential mode of training, what is the cost function that you are taking it is simply 

the... 

Student: ((Refer Time: 53:32)) 

Instantaneous value of the error energy, it is simply the instantaneous value of error 

energy that we were considering for a sequential mode of training. And for a batch mode 

of training what we would have considered. 

Student: ((Refer Time: 53:47)) 

Simply the e average, e average that we had discussed few classes back, that would have 

been our cost function. Which means to say that after computing e average, we should 

have taken the gradient of that e average and then would have adjusted the weights 

according to that. Even, that way also we can derive a back propagation algorithms, so 

there what happens is that, the weights will be updated based on that e average once for 

all. 

That means, to say once for epoch it will be adjusted. Now, the debate that one can come 

to our mind is that, whether the sequential mode of training or the one that I described 

just now that is to say the batch mode of training, which one of these to is better. Now, I 

can ask the students present over here to initiate, this kind of a debate, what is in your 

mind let me just hear from one or two of you about your feeling what one would you 

prefer. 

Student: ((Refer Time: 55:04)) 

Sequential is it a kind of consensus in this house, everybody feels sequential one good 

reason and anyone good reason for choosing sequential and rejecting the batch mode as 

such. 



Student: ((Refer Time: 55:23)) 

You see, if I try to counter your debate by say that you were saying that with every 

pattern you have learning and you are contributing that incremental learning. Now, 

whether you incorporate that learning immediately or whether you differ that learning 

how does it matter. Because, after all if you are considering e average, that e average also 

is containing the accumulated errors. 

So, ultimately we are learning it is something like this that, whether you read one page 

and then you try to assess that how much you have read with every page you do that, 

update your learning. Or other thing is the other alternative is that you read the whole 

chapter and then only you think that what you have learnt I do not have much of a time 

to continue with this debate in this particular class. 

So, in next class we will continue this debate and find out that between the sequential 

mode and batch mode, which one are we going to prefer and under what condition. And 

the second discussion that we wanted to make is that what should be the stopping criteria 

for that. So, that we will do in the next class. 

Thank you very much. 


