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Lecture - 26 

Radial Basis Function as ill- Posed Surface Reconstruction 

Today, we going to see another aspect of the Radial Basis Function. That is we would 

look upon the radial basis function as ill Posed Surface Reconstruction problem. 
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We will say why is it ill posed? But I think the aspect of surface reconstruction, we have 

already given some introduction to it. Because, the whole problem, we are having a new 

look at the training of a multilayer perceptron in the sense that, we are looking at it 

exclusively from the point of view of a surface fitting. That is to say, that when the input 

patterns are given and the outputs corresponding to that a specified, then essentially the 

mapping that is done within the network. 

That one way are using for this, so that one we are using as a function which we obtain 

by training. And then, we are interpolating upon it, because the interpolation only would 

lead to the generalization. In the last class, we were talking about the interpolation 

problem as such and we were making some mathematical formulation of it of course, 

thinks where done in a bit of hurry. So, I thought that maybe it is good to spend a of bit 

of time about what we were doing in the last class. 

 



So, you remember that, in fact what we had done in the last class is like this, that while 

talking about the interpolation problem. We said that we have been given these 

information write that, we will have to reconstruct a function f x. 
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In fact, here one correction that we have to make is that, we was saying that we have to 

find a function, that maps from R N space to R 1 space and this is wrong. So, I told 

something wrong it this N is in correct, because essentially what you are looking for is a 

mapping from R m 0 space to R 1. Because, m 0 is taken as the number of inputs or the 

dimensionality of the input vector, whichever way you refer to. 

So, it is R m 0 space at the input and then we were considering the case of single neuron. 

So, the mapping that we are looking for is essentially, it is this mapping function F only 

that we have going to find out, which is essentially from R m 0 to R 1. So, please make 

corrections in your notes that it should not be R N, in fact immediately after the class one 

of the student, so where present here happen to point out this. So, I just remember to 

make a point to make this correction that it is a R m 0 to R 1 space mapping. 

Now, what we are given with is all these points, that we are feeding the training patterns 

and training patterns means that essentially we have got a set of all this exercise as per 

inputs. And corresponding to this F x i, is means F x being the function to be realized to 

the mapping function to be realized. We will be having F x i is equal to d i, for i is equal 

to 1, 2 up to N assuming, that we are feeding N as the total number of patterns. 

 



Now, this means to say that all this F x i is equal to d i is going to be fed as the 

constraints. And as we had written down that we have to, if we have to modulating terms 

of the radial basis function network. Then we are going to write it as F x is equal to 

summation of w i phi and the phi is argument is the norm of x minus x i. And here we 

are adding it F for i is equal to 1 to N. So, this is acting as a linear summation, weighted 

summation just like the way we are doing in any neural network. 

So, that means, to say that after the input space x is mapped in to the corresponding phi 

space, then what we are doing is that after the x to phi space mapping, we are just 

linearly combining all the phi space outputs. And then, having that as our final output, 

that is exactly what we are doing. Now, if we look at this equation, then you can see that, 

it means to say that since we have got x minus x i over here and what is this x i in this 

expression, in this expression x i acts as a center of the basis function. 

You see, we were taking the examples of the Gaussian basis function in the last class, so 

if we are taking the Gaussian basis function, then giving an x i like this would mean that 

you are shifting the origin of the Gaussian function. That is you are making a shift by 

adding the x i to it, so this x i is acting as that, so that means to say because we have N 

such patterns. We have got N such different x i’s, which means to say that as in to say 

that we have got N different radial basis functions. 

We have got N different radial basis functions, which we are obtaining as x minus x 1, x 

minus x 2, x minus x 3 up to x minus x n. So, N patterns that is what we are having and 

we are assuming that we have got n such radial basis functions. Not that we always 

required that, in fact you remember that the last example which we are taking was that of 

an exclusive OR. And in that exclusive OR example we were taking four pattern, we all 

together have four patterns. 

The set of 0 0, 0 1, 1 0 and 1 1, but we were considering in the last example, only two of 

those radial basis functions where we made the radial basis function I think center 

around 0 0 and another be to which is center around 1 1. We did not take the radial basis 

functions center around 0 1 or 1 0, we avoid it taking it, in fact we could have taken that 

also. If we have take, we did not take it because we could solve the problem. 

We could make it linearly separable in the phi space, but there would not have been any 

harm, if we had taken four such radial basis function also, because there are four 

 



patterns. Four would not have made it any harm, in fact if we had transform that in to a 

four dimensional space instead of a two dimensional space. So, from the two 

dimensional inputs space to four dimensional phi space, if we had mapped and that to 

nonlinearly. 

Because, the basis function itself non-linear, then our separability would have been even 

better than that because then, we would have got both the advantages of non-linear 

mapping as well as the higher dimensionality space mapping. So, here indeed we are  

writing this equation or writing this expression with the thinking that, normally our N 

that is the number of patterns that we are feeding should be sufficiently greater than that 

of m 0. 

So, which means to say if we are having in such basis functions in such phi functions, 

each of these are center around all this x i’s. Then naturally we are mapping from the m 0 

space to an n dimensional space, which is a mapping in to a higher dimensional space. 

So, in other words, I may let us consider the there are n such basis function and we have 

obtained the F x like this. 

Now, this we can in fact, after putting the interpolation conditions, because this F x i is 

equal to d i, this is a constraint or the restriction that we have to impose upon this 

equation. Because, at all these points we know, for when x is equal to any of this x i’s, 

any of this given x i’s we know that what it is output is going to be d i. So, simply what 

we will be doing is that we pick up the first, let us say that out of this x i we pick up the x 

1 first. 

So, we will put a F x 1 in this equation F x 1 is nothing but, d 1, so we will be having an 

equation like d 1 which will be realized as the summation of w i phi x minus x 1. We will 

be using, no will be using x minus x i only, all these N basis functions, N radial basis 

functions will be used in order to determine this. So, we will be having all these 

weighted summations added up, all these weighted summation of N different radial basis 

functions will be added up to form F x 1. 

And like that we will be having F x 2, F x 3 like that or rather in so many words 

computing the d 1, d 2 etcetera. So, if we do that then the resulting matrix equation, I 

think we have written down in the last class. 
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But, no harm in repeating that just for our ease of reference we can write down here, that 

we are as if to say that having it as phi 1 1 up to phi 1 N, Phi 2 1 up to phi 2 N, phi 2 2 

phi 2 N and then, lastly phi N 1 phi N 2 to phi N N, does not mean that we have got now 

N square number of basis functions. So, let us and not make mistake, we are not having 

N square number of basis functions. 

We are having N number of basic functions only, but the notations, but now we are using 

the double subscripts, so the meaning of this double subscript should be clear to you 

which I am going to write, let me complete this. So, this w 1, w 2 up to w N is easily 

understood by you, so they are the N number of free parameters, because all these N 

outputs of the radial basis function space. They have to be linearly added, so this 

becomes equal to d 1, d 2 up to d N. 

Now, here the meaning of these double superscript, double subscript is that in this we 

define phi j i as the phi function of x j minus x i, norm of this and where j i both of them 

vary from 1 to N. So, you can see that our basis functions still remain as N such basis 

functions only, but you see that when we pickup x 1, then what we do. Supposing this x i 

we have fix to something, let say that x i I have fix to we are taking the very first basis 

function. 

So, x i in this cases equal to x 1 and supposing we take the h first of these, so then 

supposing we take this F x 1 the first one, so F x 1 means that we will have to add the 

 



responses of this from all these. So, that means, to say that we have to add up that x 1 

minus x 1, x 1 minus x 2, x 1 minus 3 like that all these N outputs will be added but, 

because we are having x 1 minus x i. 

And similarly, we will be having while computing F x to we will be having x 2, will be 

having x 2 minus x 1, x 2 minus x 2, x 2 minus x 3 like that. So, in a sense we are 

making the computation of this N number of times, so in effect we are forming and N by 

N dimensional matrix. So, please do not mistreat that is it is as have to say that I am 

realizing N square number basis functions. 

The basic functions still remain as N, now what I will do is that be define, we just want 

to represent this equation in a compact mathematical form. So, what we do is that we 

define d as the vector d 1, d 2 up to d n, the transpose of this and the w vector will be 

defined as w 1, w 2 up to w N again the transpose of this and phi we have already 

defined. Phi will be what, phi will be the set of phi j i’s given that j i is this, 1 to N I am 

not writing the whole thing again. 

So, this is the definition of phi, so this is the d, this is w, so simply this equation which I 

have a return in the matrix form is now to be rewritten as phi, where phi is a matrix in 

fact, phi should be a matrix, so I am putting this notation. 
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So, where phi multiplied by w, basically rewriting this whole equation is equal to what 

this equal to the d vector, so phi times w vector is equal to d vector. Now, what we are 

going solve for the network, we are going to solve for the what w, we are going to solve 

for w. 

So, how are we going to solve it we can solve for w as this, the w should be equal to phi 

again you see that here phi is becoming a square matrix, N by N matrix. And assuming 

that the inverse of this exists, that means to say that assuming that the phi matrix is 

nonsingular, we can write that w is equal to phi inverse times d. So, what do we need 

very simple, we have to determine this w’s, an in order to compute this w’s what we 

need is this d’s, which will be given to us all the training patterns will be given to us. 

And then, we have to compute this phi inverse phi inverse means, basically we have to 

have the knowledge of phi’s. And knowledge of phi’s is not difficult to obtain, because 

we have got N different basis functions already defined for us, N different basis function 

with each centered around the given patterns. And then, we compute the h matrix of that, 

the phi matrix and then, we are taking the inverse of this. 

So, this is possible assuming that phi is nonsingular and therefore, phi inverse exists. 

Now, this is a very important question that how do we assure that phi is nonsingular, in 

fact in recent years, good amount of work has been done related to the radial basis 

function. And there are some typical functions which have been found out to be 

nonsingular, if we are taking those functions as our basis, then the phi matrix that we will 

be getting. 

Then those phi matrix is that we obtain is going to be nonsingular. And let us have a list 

of some of those functions which are of interest to us that means, to say the functions 

which can be used as a radial basis function. And some of these very popular functions 

are. 
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So, we can write down functions of interest in RBF and those functions are multi 

quadrics. Now, multi quadrics expression is given as phi r is equal to r square plus c 

square to the power half. Where c is some constant, let say for some c which is greater 

than 0 and r is number that exist in the real space. We can say as just the r space one 

dimensional real space, but of course the same definition could be extend for the multi 

dimensional case also. 

They are what we have to replace is that, there r will be replaced by the vector that we 

will be feeding as inputs, so this is multi quadrics. Then another function which is used 

as a radial basis function is the inverse multi quadrics. And the inverse multi quadrics is 

given as phi r is equal to 1 by r square plus c square to the power half. For some c greater 

than 0 and r is less than and r belongs to this r space, the real space and then, the third is 

of course, the very popular Gaussian basis function. 

So, for Gaussian basis function in the r space if we write, then it is phi r is equal to 

exponential to the power minus r by 2 sigma square minus r square, as what a realized 

that some mistake, so for some sigma greater than 0 and r belonging to r. So, these three 

functions they are used in the RBF and the reason why we can use them in RBF is, 

because if you are composing the phi matrices out of this. 

Out of any of these functions, then phi inverse is also existing is seen to exist. And 

because of that, these are this can be used for the radial basis function applications is, the 

 



only restriction and I think it is quite logical also is that the set of x i’s that your 

choosing, the set x i’s that your choosing they must all be distinct. 
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So, I can say that if we take x i, for i is equal 1 to N we are saying that all these things 

must be distinct. To ensure nonsingularity of the phi matrix and phi matrix is given and 

name, what name would you think should be more suitable to the phi matrix, this name 

that phi matrix. It is use for what, phi matrix any good name for phi matrix that we can 

give. 

Student: Radial 

Radial basis function matrix, after all we are using it for interpolation, so we can term it 

as an interpolation matrix. So, we can say that this must be distinct in to ensure 

nonsingularity of the interpolation matrix phi. Now, we can have a quick look at this 

functions, that we have already defined multi quadrics, inverse multi quadrics and 

Gaussian. Some of the properties which becomes very obvious out of these three 

functions is that look at the multi quadrics. 

If you increase r, as r tending to infinity, what is happening phi r also tends to infinity, so 

that means, to say that this is not a local function it is increasing. So, we can say that, this 

is a non-local function, in the sense that it becomes unbounded as we keep on increasing 

 



this r. Whereas, inverse multi quadrics and Gaussian there share a common property, as 

you make r tending towards infinity, you can see that the phi r function tends to be 0. 

In fact, here this c square is there, but as r tends to 0, it is 1 by c, we have a very small 

quantity, normally c is not choose in to very high. So, you can then have the phi r a 

tending to 0, so this is more a localized function and even Gaussian also is localized 

function. Now, it is seen that for this localized functions, which are realized out of the 

inverse multi quadrics and Gaussian; the phi matrices which are realized out of them, out 

of these to functions they happen to be positive definite. 

And so obviously, they are phi inverse exists, now this one multi quadrics although it is 

not positive definite. Because of this property that as r tends to infinity, we find that it is 

the function is also tending to infinity. So, it is not positive definite, but even though it is 

not positive definite still the phi inverse exists, and one can use these radial basis 

functions, for the interpolation problem of a here. 

So, this is all that I want to talk about interpolation, but let us now see that whether such 

kind of interpolation is always going to be good for us. You see now what we are trying 

to say is that, you have to train a network with m 0 number of inputs. You have to 

generate single output that is a example with which, that is condition with which be 

proceeded. You can generate multidimensional outputs also there is no harm, it is just a 

simple extensional that idea. 

But, you have to do this kind of think by feeding N different number of patterns, where 

you are assuming that N will be sufficiently largess compared to m 0. And you will be 

using for N corresponding to N different patterns, you will be using N different radial 

basis functions. Now, mind you one very important think to note here is that, we have 

taken N patterns and we have taken N radial basis function. 

So, the realize matrix that we had got is an n by n dimensional matrix that we got. And 

the nonsingularity condition etcetera, etcetera are coming for that n by n matrix, if you 

have chosen less than N, then such kind of a nonsingularity is not always guaranteed. We 

may be luckily finding out the reconstruction problem, we may be having somehow 

generate a linear separability in the phi space and feel happy about it, but all the time it is 

not possible. 

 



So, think is that in that case what is to be ensure, that if there are N patterns unit N radial 

basis functions and I think the naturally thinking is that in order to have a good surface 

fitting, you should have as large a value as for N as possible. More number of training 

points, if you are having, in order to learn better what we do in real life, we read more 

and more example. But, very often we also come across the situation that learning too 

many examples is also not good. 

Supposing, somebody is trying to learn mathematics, now he just sees some book where 

there are some worked out examples he studies that and then, he goes in for another 

book. They approach of that could be different may be one or two problems are solved 

wrongly. Now, if we sees too many examples, then may be is that times we will feel 

confused and ultimately when the student is asked to solve an unknown problem. That is 

student would find it difficult to answered to that problem. 

Because, he has got lot of confusions in mind by taking to too many examples, why 

because he has picked up 5 or 6 books in mathematics and may be that 1 or 2 books are 

not really good books. Their approach might be different, they are examples are not 

good, so such 1 or 2 books are, we can say noisy books, so likewise if you are having too 

many number of patterns taken from the real life. 

There will be some pattern which are noisy, but in this interpolation problem which we 

have discuss so far, what are we trying to tell. We are trying to tell that interpolation 

means that inevitably all the points that unknown to you the surface must pass to that. 

Now, there lies the problem, if we constrain always that through every training pattern 

the fitted surface must be passing. And we will be having the interpolation in between, 

then it not only learns the good patterns. 

It also tries to learn the idiosyncrasies that are present in the pattern set, all the noise that 

is present in the patterns set will also be there. So, strictly looking at it from interpolation 

point of view is not the best think that we are looking for. We should also try to make it 

noise free and how do we make anything noise free, we try to is move then. Whatever 

surface we fit if after fitting that surface we try to smoothen it out, why are we 

smoothening, because we are not totally relying on the data set that we have got. 

We assume that inherently there is some amount of unreliability in the data that we have 

got, so that why after fitting the surface we try to smoothen it out. That means, to say that 

 



during the surface fitting itself, we should try to evaluate that whether we have not only 

minimize the errors. See minimization of a error is one of the considerations, now 

definitely if you are fitting a surface, through a set of given points. 

Naturally you have to have a situation that the error between the fitted surface. And the 

corresponding actual points if you take those errors square it up and add it up, make it as 

the some squared errors. Those some squared errors you can minimize that is what you 

have been doing for so long. But, we are saying that if you have to look at it from the 

point of view of avoiding such kind of results or our surface interpolation problem, 

getting affected by the idiosyncrasies of the data or the noise present in the data. 

Then we should do something more, then we should in addition to this minimization of 

the error, we should also try to see that there is some aspect of smoothening that is to be 

done. Now, mind you because we have such kind of noisiness which are present in the 

data set itself. The problem that we are going solve, the surface interpolation problem 

that we are going to solve is not a well posed one, it becomes what is called as ill posed 

one. 

Now, some people may not be very familiar with these two terminologies of what is 

mean by well posed and what is mean meant by ill posed. So, I would like to spend of bit 

of time, in order to make it clear in your mind that what is a well pose problem and what 

is an ill pose problem. And in fact, we are going to see that the surface interpolation is 

and ill posed problem, it can be reliably solve. 

And in order to solve it reliably, we have to make and ill posed problem in to a well 

posed one by making some kind of transformation, which we will be discussing shortly. 

So, essentially this we are now looking at the hyper surface reconstruction problem, as 

an ill pose problem, but again digressing a bit that what is meant by ill posed. And in 

order to know what is ill posed, the definition that I would like to simply says that, 

whatever is not well posed is ill posed. 

If somebody is not well his stated to be ill, so if some problem is not well pose that is an 

ill posed, so we must now that what is meant by well posed. 
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So, well posed problems definition, we can just put forward over about here. So, well 

pose means that let us take a, in order to defined it let us take a domain X and 

correspondingly we take a range Y in the matrix spaces. And they are related this domain 

on the range are related to a each other by a mapping function, so the domain a range 

related to domain. They are related by a mapping function, we should say by a fixed, but 

unknown mapping function. 

We do not know that what exactly that mapping function is, we are determine. Now, 

having defined this, that it is just a mapping from the domain to the range, using N 

mapping function, now when are we going to say that this mapping is a well posed 

problem. The mapping is say to be well posed, if it for fulfill three conditions. So, 

mapping is well posed if three conditions are fulfilled and what are those conditions. 

Number 1 is existence, by existence we mean that for every x vector which are belonging 

to a set H that means, to say that from the domain we pickup all these x’s. And for every 

x belonging to H, if they are exists an output y and how is y because we are considering 

the mapping function to be f. So, we are going to write y as f of x vector, so yes. 

Student: ((Refer Time: 36:23)) 

x 

Student: ((Refer Time: 36:25)) 

 



H, H is the space, H is the set from which we are choosing this x domain, set taken from 

the domain space that is. And is the output of that, so output will be expressed as f of x, 

so there is an existence of direct mapping simple. That you pickup any point, supposing 

we can the pick it using small illustrative diagram. 

(Refer Slide Time: 37:05)  

 

Let us say that this our input set, the range set, the domain set let say, the input set and 

supposing this is the output set, so we pickup any x. So, what the existent condition is 

saying is that, you pickup any x which is defined within the set and for every x there is a 

corresponding value in the y space that is so in the range space. So, if every x present it 

this set, this is the H set we obtain and output, then we can say that the existence 

condition is fulfill. 

If for any one of the points like say for example, if for any of this points we cannot 

compute, given the mapping function we cannot compute any corresponding value of y. 

If the corresponding value of y becomes undefined, in that case we can say that the 

existence condition will be violated. Because then, the mapping from this space to this 

space for this particular point does not exist. So, the existence must be fulfill by all the 

points in this set, that is what this definition say. 

H being the this set, that is the domain set and the second condition is written as the 

uniqueness condition, that is say that there is unique mapping and what is that translated 

in analogical terms. That for any pair input vectors, let us take any pair of input, we take 

 



one of the input vectors as let us say x vector. And another input vector we are taking as 

said t vector and all this input vector x, as well as the vector t they are belonging to the 

set H. 

So, if for any pair of this input vectors we have f x is equal to f t. Now, f x is equal to f t 

means what f x is equal to f t means that as if, that x will be map to this point and t will 

be map to the same point. So, two of the inputs we take and they are getting mapped in to 

the same point, if that happens then it is a not unique mapping. So, for uniqueness 

condition to be fulfilled you take any pairing x and t, x and t any pairing you form out of 

all the patterns that have present in the H set. 

If for all the mapping is distinctly different, then this is unique, so we have f x is equal to 

f t, under what condition f x is equal to f t will be there taking any pair only when x is 

equal to t. So, we have f x is equal to f t if and only if x is equal to t, so that is the 

uniqueness condition. And then, comes the third condition which is called as the 

continuity condition and what is continuity condition meaning, that if for any epsilon 

greater than 0. 

Let us take it like this, let us say that we have got here point that is a which is f x, f x 

vector, we can write it as f x, because it is already a mapped point mapped from this x 

space this. So, f x a point we are taking and let us consider a region surrounding this 

point, this point in the multidimensional space of course, so this region is say having a 

radius equal to epsilon. Now, if for any such epsilon greater than 0, they are exists a 

mapping function delta is equal to delta of epsilon. 

Such that, I am go to explain it after write it down such that, the condition rho x x 

comma t is less than delta implies rho y f x comma f t less than epsilon. So, this means to 

say what that, we are taking again a pair x and t from the H domain and we are mapping 

it in to the f x domain. And in f x domain we are having that us f x and f t, and their we 

are saying that here the bounding is that it is less than epsilon in this space. And if 

correspondingly we have here a bounding of taking x and t to be like this, so if this is x 

and if we take h region surrounding delta over here. 

So, delta is the region that we are taking from the input space, then correspondingly it 

gets mapped in to the region center around this and with epsilon, so delta is going 

mapped in to epsilon. So, if from this to this such a kind of mapping exists, then it is 

 



continuity taking in a very, if the mathematical definition seems to be little confusing. In 

fact, it is not, but one can also physically image in also that means, to say that you take a 

small region. 

And if that region entirely can be mapped in to a bounded region, you take the things 

within a bounded region in the input space, in the H space. And if it gets mapped into 

another bounded region in the output space, then the mapping is continuous. If that is not 

then, there is a problem, then it is lacking continuity, so if all these three condition that is 

to say existence, uniqueness and continuity. If all these three conditions are fulfilled, 

then only we are going to say that the problem is well posed. 

If any of these three conditions is violated any, then the problem is not well posed and it 

is refer to as ill-posed problem. And let us see that the problem which is at our hand now 

that is to say the surface reconstruction problem, using the radial basis function, if that is 

a well posed one or an ill posed one. Now, the thing is that, first of all that let us see that 

when we are deriving the training set from the examples, that is a well posed. 

Because, we are taking the examples from the physical process itself and that is a well 

posed problem, but when we are doing a surface fitting, then is it a well posed one and 

not, because the data may be continuing lot of noise. The data may be contaminated with 

lot of noise which are present in the example itself, but noises present in the physical 

process itself and that is why we got the noise in the examples. 

So, physical process to example that mapping is well posed, even though noise is present 

in the physical process, noise is also present in this. But, the thing is that because of such 

kind noisy patterns, in fact it can be seen that in typical cases any of these three condition 

could be violated. You may be having some input points for which the output becomes 

undefined, if that is the case, then you are violating the existence condition. 

Uniqueness definitely means that you cannot have a function to be multi valued, but 

because a here you can see that, you cannot have f x is equal to f t unless x is equal to t. 

So, uniqueness condition also can be violated, in the sense that it mean, so happen that, 

because of the noise x gets mapped to a point t also gets mapped to the same point. 

Although x and t are different, but x and t may be getting mapped in to the same point in 

the output space. 

 



And noise can also drive you out of the continuity, so because of this all these three 

conditions, can I times we violated and that is reason, why the surface interpolation 

problem is always taken as an ill-posed problem. 

Student: ((Refer Time: 47:44)) 

That is the same thing yes, absolutely, whether you take delta here and epsilon here, it is 

to say that one bounded. Let us look at the this way that it is a mapping from one 

bounded space to another bounded space that is all, the mapping does not get unbounded. 

Now, the thing is that yes, because it is ill-posed, but we want to solve it and how are we 

going to solve it, so in order to solve it we should not look at it simply from an 

interpolation point of view. 

Making a strict restriction that, it has to pass through all the points that we have defined 

in the training set. Let the surface be little more flexible, you have defined, let us say you 

have specified a bed of nails and you want to put some surface over it. Does not matter 

that this surface has to lie on the bed of nails, you can play with your surface, you can 

make it smooth. So, that the interpolation capability of the generalization capability of 

that is better and it does not get affected by noise. 

So, that means, to say that we have to incorporate some kind of a smoothness condition 

also into it and that is what is called as the regularization. 
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So, I can say that it is the process of regularization or regularization may appear to be 

little more sophisticated English, more common English smoothness, we want to make 

the surface smooth that is all. So, regularization of smoothness is used to make an ill-

posed problem in to a well posed one. And in this case we are going to make use of the 

Tikhonov’s regularization procedure, so we are going to make our mathematical 

formulation based on that. 

So, how are we going to do it, so let us first take the input signal, so the input signal for 

us is the set of x i, where x i will be belonging to what R m 0 space. The input space is m 

0, so it is 1, i is equal to 1, 2 to N and the desired response that we have is the set of d i 

is. So, d i and in this example we are having d i getting mapped in to just one, we are 

assuming only one output to be there, so d i getting mapped in to R 1 space. 

Again i is equal to 1, 2 to N assuming that there are N patterns and we consider the 

approximating function or the interpolation function whatever you say. This 

approximating function is considered to be F of x, now Tikhonov’s regularization 

procedure that involves two terms and what are those two terms. 
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Two terms of taken of regularization are number 1 is the standard error term, however, 

we are going to defined the standard error in our usual way, what we had already done 

earlier. So, that is the error term E s of F, we can write down as what half of summation 

di minus y i whole square summed up form i is equal to 1 to N. D i is the actual response 

 



and y i is the, no y i is the actual response and d i is the desired response. So, that means, 

to say that we are allowing the surface to deviate from the desired points. 

So, only if it is so that all the y i are equal to d i’s, then the standard error term would 

have been 0, but we may not want that, we may not wanted to pass through all the given 

points, we may allow it to deviate. So, that is why d i and y i are taken to be different 

assuming that the surface may not pass through the given set of point, so d i minus y i 

whole square adding it of ovaries is equal to 1 to N with would give us a standard error 

of fitment. 

In fact, instead of y i one can always express it as F x i yes, that is correct, so it is d 

minus F x i, because F x we are taking as the approximating function. So, this is di minus 

F x i whole square this is the standard error term. And then, in addition to this where we 

are actually making it regular i’s or smoothened is done by the second term which is 

called as regularizing terms. And the regularizing term is E c of F is equal to can you tell 

me that how would you regularize a function. 

Student: ((Refer Time: 54:19)) 

Can I just have the answer from one of you 

Student: ((Refer Time: 54:25)) 

Differentiate yes, and what that differential should lead to, the differentiation result 

should be minimum, because if the derivative is small in magnitude that means, to say  

that fitted surface is smooth. And this differentiation we have to do in how many 

dimension we have to do it in N 0 dimension. So, definitely we would like to do a 

multidimensional differentiation and just like the way the error term should be less, even 

the differentiation or rather multidimensional derivative also should be less 

So, the problem is now to be reformulated in the sense that instead of like we are doing 

earlier, earlier we were only saying that minima the error that is all. Now, we are saying 

that not only minimize the error, but also have a smoothening on the surface. So, in order 

to import the smoothening in to consideration what we are doing is that, we are 

introducing this regularization term which is defined as half, again this half is to be used 

for a consistency. 

 



Because, the measure of this regularization is the derivative operator D on the function F 

and D is very rightly written in the vector notation, because this differentiation of the 

process of taking derivative would have to be done in the m 0 dimensional space. And 

takes the squared norm of this, this becomes your regularization terms, so here we can 

explicitly write down that where D is a linear differential operator. And given these two 

terms E s and E c, one can combinedly put forward a measure like this. 
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One can make a combined measure E F, which is equal to E s F plus, shall I put E c F, 

but mind you one thing which is to be noted is that if I put E s F and E c F. That means, 

to say that as if to say, that I am giving to equal importance to the standard error 

minimization and to the regularization. Now, whether I should give equal importance to 

not is a debatable question. 

So, to make it general on to place safe that one can play with it, let us about a term of E c 

F multiplied by lambda over here, where lambda is a regularization parameter we can 

say. So, we want to play with it, we want to play with this regularization parameter and 

how to fix of this lambda, that we will discuss in the coming class, because again I am 

exhausting my time limit. 

Thank you very much. 

 


