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Regularization Networks and Generalized RBF 

Today’s lecture, is going to be on the Regularization Network. 
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Regularization networks something, which we intended to discuss in the last class itself 

and we have already developed the necessary theories pertaining to it, but we will be 

showing that how the regularization networks really looks like. And then, we will be 

going over to the next topic that is generalized radial basis function. Again, I think, we 

have been spending quite a few lectures on the radial basis function, I think last 5 or 6 

lectures have been devoted to the RBF and we have to cover some more of the topics. 

Before the end of this semester course load, that is 40 lecture courses, so we have to 

draw our conclusions, etcetera, quite soon about the RBF and proceed to next chapter. 

Anyway, so today, I think we are going to exclusive devote this topic that we have, as 

our plan for today. Now, you remember that in the last lecture, when we were discussing 

about the regularization, the final solution that we had presented was of this nature, that 

we were of obtaining, that concentrate on the equation 4; that we had got where, the 

function F lambda of x j, x j being the input vector. 
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That is actually expressed as a summation of w i times G of x j comma x i, where G 

happens to be green function, center around x i. And what we have to do is that, we are 

finding the response of the function at the point x j, so it is G of x j comma x i with x i as 

the center. And with the weights w i, which is nothing but the difference between the d i 

and the F x i, the desired and the actual output and it is divided by 1 upon lambda. 

Well, lambda is regularization parameter, so this is the found, that we had got summation 

of i is equal to 1, 2 to N. And from this, we can construct the regularization network, 

where you can well understand that the inputs will be the x i’s, the patterns will be the 

input. And as the output we will be getting this F lambda of x j, so if we see that the 

structure of the regularization network, it should look something like this. 
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Let say that, we have got the inputs, where these are x 1, x 2, so these are the individual 

elements of the input vectors. So, when I write as small x 1, small x 2, etcetera, they are 

nothing but the individual inputs, this is x m minus 1, which is the last part 1. And the 

last is x m, where we are assuming m to be the dimensionality of the input and we are 

going to have the green’s functions realized here. 

So, here we could have some green’s function realizations and can you tell me that, how 

many green’s function, we have to draw out here. How many green’s function equal to 

N, where n is the number of patterns that we are feeding to the system. So, each of the 

pattern is going to be m dimension of vector and we are having N such patterns and the 

equation, which we had return, you see that here, the summation is for i is equal to 1 to N 

and x j comma x i. 

So, what we have to do is to add of the responses of N different weighted responses of 

these green’s function that is what we are adding up. So, what we have to do is to have 

here N number of such green’s function computational blocks, where the centers will be 

like x 1, x 2, etcetera up to x m. So, this will be the green’s function G, were we will be 

having green’s function of sum inputs, but center around x 1. Like that, this will be let 

say center around some x j and this is center around some x N. 

And what we have to do is that for each of this green’s function computational unit, we 

will be having all the m inputs, all the m elements of the input, we have to be pay to 

 



these G function, because the G will be compute over that vector. Because, x 1 to x m 

will compose the input vector and G will be computed on that vector, center around 

another pattern vector, which is there. 

So, what we have to do is do draw the connections like this, here we draw the dotted 

lines indicating that, there will be all together m such inputs. And very similarly, all 

these inputs will be connected to the other green’s function networks as well. Similarly, 

the last 1 also, we should receive x 1, x 2 up to x m minus 1, lastly x m. So, these will be 

the responses of the green’s functions computational unit. 

And what do we have to do, they have to simply weight it, weight the individual weights, 

so this have to be multiplied by w 1, in fact, we do not draw the arrows out here. So, this 

will be another unit, which will be linear, linear computational unit will be kept over 

here. Where, this output, that we are having, this is the first green’s function output, this 

will be multiplied by w 1. 

The second green’s function like was will be multiplied by w 2 and if these 1, we take as 

the jth green’s functions computational unit, then this has to be multiplied by w j. And if 

this is the last green’s function computational unit, that is G center around x N and then 

this response has to be multiplied by w n. And all these responses will be added of in this 

linear input, in this linear unit and linear computational unit and then, we will be having 

F of x factor. 

And what is the x factor, x factor is nothing but the vector representation of the inputs 

that we are feeding. So, this is the structure of the regularization network, now this has 

got 1 assumption of course that the G of x comma x i. I do not have space to write down 

this, so instead of making the G’s look clumsy, I simply write G, although I try to write 

here. So, let me write G within these boxes and then, actual computation will be G of x 

comma x i. 

And the essential condition for this is that, this has to be positive definite for all i, so it is 

quite simple in structure, in fact this is the structure of the regularization network. It is 

nothing but the simple network representation of the equation that we had got, the 

equation number 4 that we have got. As expressing the F of x j as summation, it is just a 

network representation of this. 

 



Now, this looks that is similar to what radial basis function network looks like, now we 

have discussed about the radial basis function, without of course really drawing the 

actual network structure. Now, here you can see that the number hidden nodes, that we 

are having in this network is, that there are N number of hidden nodes. Where, N is equal 

to the number of patterns that we are feeding to this. 

Whereas, in the radial basis function network, we are not having n hidden nodes, we are 

not putting that restriction, that it has to be N. We can have a number of hidden nodes, 

which is equal to m 1. Now, we discussed the typical m 1 has to be of a dimensionality 

had, then that of m, that is the input dimensionality, because normally, we are mapping 

from a lower dimensional inputs space to relatively higher dimensional hidden spaces. 

So, instead of N, if we take the number of hidden nodes to be m 1; that the total number 

of hidden nodes, then the radial basis function network would look something very 

similar to this, in fact there the G is will be replaced by phi’s. In fact, I discussed last 

time also, that the difference between the phi’s and the G’s are, that in the phi that is the 

radial basis function, we are simply doing the interpolation where, we are putting 

restriction. That the surface that we are going to interpolate is going to pass through the 

given set of points. 

Whereas, in the case of regularization, we are not putting that construct, what we are 

instead sayings that the, surface that we are going to reconstruct has to minimize 

functional, that takes into count of both. That is to say the actual cost function as also the 

variation, that is to say smooth differential; that is what we showed. So, now, very 

similarly radial basis function network would have look like this. 
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So, there also we would have got x 1, x 2 up to here x m minus 1 and the last is x m and 

then, we would have got here the hidden neurons, the hidden nodes where, there will be 

m 1, such hidden RBF nodes, so this all well computed the radial basis function. So, we 

can write here phi, indicating that, all phi has computing the radial basis function. And 

very similar to what we had done, for the regularization network, the radial basis 

function network will contained this. 

In fact, this realization directly follows from a very similar series that we had obtained 

earlier. I think few class back, we had obtained a very similar series of F x equal to i is 

equal to 1, 2 m 1, w i F, the F matrix that we had got. So, it is simply that that realization, 

so x 1 to x m going over to every phi’s and then, we are going to have the output. And in 

fact, here the output neuron will not only add up this, but also we are going to have a 

bias. 

So, here if we take phi to be equal to 1, then we will be having here w 0, which is equal 

to the bias and then we will be having here w 1. And if this is the jth radial basis function 

this is w j and this is the last basis function, last RBF computational units. So, this has to 

be w, m 1, this has to be w, m 1. And this is going realize the F of x, so this one is 

actually call the radial basis function network. 

So, these looks very similar to got the regularization network is, only thing is that here 

instead of m 1, we are considering N. Another question, that because, if we have to 

 



obtain the solution of the regularization equation. Then, the optimal solution that we had 

obtained definitely had got N number of such terms where, N is the number of patterns 

that we had pay to the system. 

And in fact in the matrix representation also, you could very easily see that we had got 

the matrix that involve the G matrix. Now, G matrix is essentially and n by n matrix and 

then, we had to obtained and inversion of that the G plus lambda I, we have to obtained 

the inverse matrix to that. And that 1 was having actually, if when N is very large, then 

this requires actually N cube number of computation, for the computation of the inwards 

to that matrix. 

So, if N, the number is very large, if the number a pattern is extremely large, in that case, 

the computation of the regularization involving the green’s function, requires N norms 

amount of computation. Because, it will polynomially increase with N and typically, N is 

going to be large, because if our given set points is large. And the essential requirement 

there is, that we have to designed, that with every such input pattern, we have to design a 

green’s function that center around that pattern. 

And in that case, only we can obtain an optimal solution, now the question is that, if we 

impose a practical implementational restriction to it is, especially in the case, where this 

n is going to be very, very large. In that case, while designing the network, instead of 

designing with N number of hidden neurons, we arrive at a figure, let say m 1, which is 

typically, much less as compare to that of N. 

And if we can obtain network with m 1 number of hidden nodes using this function only, 

if we obtained m 1 number of such hidden nodes. And if we can solve the regularization 

network, that does not involve N number of terms. But, rather m 1 number term, but m 1 

is the number up to which, we go. Instead of taking all the N green’s function, we take 

and m 1 subset of it, we take m 1 number green’s function and we try to sallow the 

problem. 

Using those m 1 as the centers, in that case, we are not obtaining an exact solution; we 

are not obtaining optimal solution to it. But, definitely some sub optimal solution that is 

what we are getting, which could be used for the practical implementation of 

regularization. So, we will go into the theory of this, which is known as the generalized 

radial basis function. 
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So, we are now going to discussed about the next topic of day, which is generalized RBF 

or the generalized radial basis function. And the essence is that, there we avoid having N 

number of such hidden neurons. Instead, we designed it with m 1 number of hidden 

neurons. Where, m 1 is less, mathematically we should say that m 1 should be less than 

or equal to N. When, m 1 is equal to N, then it leads to the optimal solution, which we 

had of already obtained. 

So, now you remember, that we had got a solution of this from, may had to obtained a 

solution of F x equal to summation of w i phi i x. And where we have to add up i is equal 

to 1 to in fact, if it is with N number of patterns, we are going up to N, but here we are 

going up to m 1. And in fact, as a solution to the regularization equation, if we assume 

function of this nature, where we are not taking N terms, mind you, we are taking m 1 

number terms. 

Taking m 1 number of terms obviously means that, it is not be optimal solution; it is 

definitely some kind of approximated solution. And as new symbol to the approximated 

solution, we writhed down as F star of x, so this is the approximate solution. So, this is 

the approximate solution to the regularization problem. Now, in this case, we set phi i 

that we are considering, that is a new set of basic functions. 

Now, mind you, we are not writing it has G, we are writing it has phi i’s, why, because 

with G as basis function, we required N number of terms. With G, we would have 

 



required N sub G’s, but here instead of using N such G’s, we are using m 1 number of 

sum basis functions. This may not be the radial basis functions, which we had used for 

interpolation purpose strictly. 

But, here definition wise, we can say that, this phi i x, the set of such phi i x, with i is 

equal to 1, 2 up to m 1. This is new set of basis functions which are linearly independent. 

Now, with the radial basis function in mind, with RBF in mind, we can set the phi i x to 

be equal to G, the green’s function of we can say norm of x minus t i. In fact, we can 

write either G as x comma t i or G of norm x minus t i, whatever we represent, it does 

not, really matter. 

Now, here i is equal to 1, 2 up to m 1 not N, so these are the set of center, so what are the 

centers of the basis functions, all this t i at the centers. Now, this particular 

representation, actually guarantees that in the case of m 1 equal to N. 
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In the case of m 1 equal to N, we will be having t i equal to x i per i is equal to 1, 2 up to 

N. Whereas, when we are having a number m 1, that is less than N, when we are 

obtaining m 1 less than or equal to N. Then, centers here remain as t i, they are not 

exactly the x i, we have somehow designed m 1, such different centers, which may not 

be exactly matching with the patterns that we are feeding. There are m 1 such centers, 

indexed has t 1, t 2 etcetera up to t m 1. 

 



Only in the special case of m 1 equal to N, t i is become equal to x I’s and which case, all 

the N number of patterns that we are having, they are individually the centers of the 

green’s function. Now, what we have to design as this function is that, in case of m 1 

equal to N, the correct solution should be consistently recovered. In fact, that is very 

much possible. 

Because, what we will be having, in that case is that phi i x, in such case will be equal to 

G of x comma x i and G of x comma x i, if we substitute over here. And if m 1 is equal 

to N, then we are obtaining the regularization solution that we already obtain. So, this 

representation is consistent with means as special case taking m 1 equal to N. This F star 

x will become equal to actual F x of F lambda x. But, otherwise we are taking the 

approximated representation. 

So, in this representation, we can write down F star of x equal to summation i is equal to 

1 to m 1, w i G x comma t 1, which is equal to t i sorry, x comma t i and this can also be 

represented as i is equal to 1 to m 1, w i G of norm of x minus t i, whichever we are 

representation, one chooses. Now, this could be represented, the expansion of this could 

be actually leading to i is equal to. 

Now, the approximating function F star of x, if we take F star of x, mind you, has got 

two terms. The basic equations as got two terms, one is the standard error term and the 

next one is the regularization term, regularization term means d of F star in this case. 

Whereas, the standard error term is going to be, if we take the d i as the desired input, in 

that case, it will be what, d i minus this one, this one is going to be the actual outputs. 

So, d i minus, if I take i to be the index over here, then while summing it up, we should 

use a different index, so j is equal to 1 to m 1 of w j G of x i minus t j. This term and we 

have to square this thing up and this has to be, this is the error for walk, this is the error 

for the ith pattern. So, we have to added of for i is equal to 1 to N, not m 1, because N is 

the number of patterns, that we are feeding to this system. 

Whereas, m 1 is the number of hidden nodes that we had chosen, the number of green’s 

function with which we are going to approximate the regularization solution. So, here the 

index is m 1, whereas outside here the summation is up to N. So, please note this, so this 

is the standard error term. And then, we have the regularization term as lambda times 

norm of D F star, this as the squared norm of this. 

 



Now, we look at the first term of this expansion, the standard errors term, this can be 

easily represented in a better form using the matrix. And how do we do it, very similar to 

what we did earlier; that means to say that defining a d vector, where d vector will 

contain all this that is d 1, d 2 up to d n, the desired outputs. 
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They will be composing the d vector and then, here we are composing a G matrix, now G 

matrix you tell me, that is this is the summation representation. We are obtaining here G 

x i comma t j. Now, when we come to t j that is the centers, they are m 1 number of such 

centers, but coming to this x i that is set of first argument of this. Coming to this x I, how 

many x I’s are there, there are N number of x I’s, but there are m 1 number of t j’s. 

So, how many elements are there in that G matrix, that we are going to compose, m, so 

here, we are going to have N by m as the matrix composition. Where, N is the number of 

patterns that is x 1 to x N, they will compose the rows of the matrix and t 1 to t m 1’s, 

they will be along the column of the matrix. So, we define a matrix G, which is not a 

square matrix any more, last time the G matrix was an N by N square matrix. 

Whereas, in this case, it is going to be N by m 1, known square matrix, so here, this will 

be G, the first element will be G of x 1 comma t 1. The second element will be G of x 1 

comma t 2; like that the last column will be G of x 1 comma t m 1. And now, coming to 

the second row, it will be G x 2 comma t 1, G x 2 comma t 2, the last will be G x 2 

comma t m 1. 

 



Like that, we go on the last row will be G of x N comma t 1, G of x N comma t 2; the last 

will be G of x N comma t m 1. So, this composes our N by N matrix, so this is N by m 1 

matrix for G, not a square matrix any more. So, this is the green’s function matrix and 

then, w which is equal to here, how many elements will be there with w vector, m 1 

number of elements will be there. 

So, it will be w 1, w 2 up to w m 1 determining the dimension of the w is very easy, 

because as many hidden neurons has you have in the system. You have to add of the 

responses, waited responses of all these hidden neurons So, there are m 1 number of 

hidden neurons, so necessarily there will be m 1 number of synaptic weights, which will 

be associated with it so. This will be w 1 to w m 1 and since, it is to be represented in 

form like this and we have to take the transports. 

Now, actually one property that we are getting here is, that last time we had obtained G 

matrix as a symmetric matrix, whereas in this case, G is no longer a symmetric matrix, 

because it is not square matrix any more. And last time, we had N element w vector, here 

we are having m 1 element w vector, so these are the two thinks that we are observing. 

Now, taking care of the second term, that is to say the regularization term D of F star, 

this can be represented very conveniently in the form of the inner products representation 

in the Hilbert’s space, which we had already done last time. So, writing in this form and 

then, doing the simplifications, we should obtained the expressive for D F star like this. 
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So, this is the deferential operated on the F star; that is the approximating function D F 

star, F star. So, taking the deferential of that and we have to computed D F star square, 

the square of that. So, in the inner product representation should be D F star comma, D F 

star, the inner product with itself in the Hilbert's space. And this could be represented 

now by making use of the adjoint property. 

By making use of the adjoint property, we can write it as this form of inner product, i is 

equal to 1 to m 1, this one can be return as follows i is equal to 1 to m 1, w i G x comma 

t i. In fact, this from as you can see is the representation of F star, directly because F stars 

got, it term like this. And then, we can write it down, making use of the adjoint, we can 

write it down as D star D of this, i is equal to 1 to m 1, w i G x comma t i. And we take a 

taken inner product of this and this in the Hilbert's space. 

This on simplification leads to this sort of a summation j is equal to 1 to m 1, summation 

i is equal to 1 to m 1, w j, w i, G of t j comma t i, sorry t j comma t i. So, this is the 

representation that we are getting by simplification and in fact, so this is t j comma t i, 

mind you. And this in the form of matrix, matrix vector one can represent it as W 

transpose, as the vector W transpose is nothing but the transpose of the W vector, that we 

have already defined. 

And then, there will be a term corresponding to this G and mind you here this is a double 

summation that involves m 1 in the inner loop, m 1 in the outer loop also. So, in the 

matrix form equivalently for this G, what we are getting is an m 1 by m 1, matrix. So, 

this being m 1 by m 1 matrix, we can write this thing in the form of a new matrix G 0. 

We are going to write down the G 0 representation soon, so this will be of the form W 

transpose G 0 w, this will be the matrix representation of this D F square term. 
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So that, I think, the first term, we have already got to which is nothing but W G. That is 

the first term representation and second term representation is W transpose G w where, G 

w is going to be, G o in this case is going to be like this, it is G of t 1 comma t 1, G of t 1 

comma t 2 and last will be G of t 1 comma t m 1. And then, the second row will be G of t 

2 comma t 1, because what we are doing is that the centers, there are m 1 centers, which 

we are writing along the columns. And there are m 1 number of inputs considering over 

here, so which is becoming G of t 2 to t 1, here this will be G of t 2, t 2 up to here G of t 

2, t m 1. 

And the last row will be G of t m 1, t 1 this will be G of t m 1, t 2 and these one will be G 

of t m 1, t m 1, so this will be our G 0 matrix representation Now; that means to say 

what, that means to say that we are having, now you see we had a term like this, d minus 

w j G, we were taking a square of that. So, essentially in the matrix representation, you 

remember that we had a matrix representation earlier also. 

Now, essentially if we minimize the minimization of F starts; that is what we are 

attempting. Yields what, this will yields G transpose G plus lambda G 0, all of them are 

in the matrix. So, G transpose G plus lambda G 0, times the w vector is equal to G 

transpose d vector. I think this one, you should get here, what you can see is that, we are 

taking this square of this. 

So, essentially this one becomes lambda square is  

 



Student: ((Refer Time: 41:52)) 

W transpose, but actually D F square, we are already getting as W transpose G 0 w on 

differentiating, so now this is what we have got as the minimization equation. Now, what 

we have got is, that we have to solve for this w. Now, the solution of this we can obtain 

only in an approximation, only in approximated sense. Now, what happens is that, as the 

regularization parameter lambda approaches 0. 

So, as lambda approach 0, then the weight vector becomes what, that we can find out 

from here, that the weight vector in accordance with this equation. 
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What we are showing as lambda tends to 0, the weight vector w is equal to G transpose 

G and we have to take the inverse of this, G transpose d, from this you see, as we make 

lambda attending to 0, this left hand side terms becomes G transpose G w. Now, this G 

transpose G should now go to the other side as inverse. So, it will be G transpose G 

inverse tines G transpose d. 

So, this whole term G transpose G inverse G d, this could be consider to be, you see the 

dimensionality of this. This G transpose G is going to be of what dimension, this is going 

to be G transpose m 1 by m 1. So, G transpose G, again m 1 by m 1 and take the inverse 

of this and then, you are multiplying it by G, G is what, G is m 1 by N. G transpose m 1 

 



by N and d is N dimensional vector and we get the m 1 dimensional solution to this 

problem. 

So, w is of dimension m 1, so this equation should solve for w, now this term, what we 

had written as the products of this is written as the Pseudo inverse of the matrix G. So, 

this will be written as G plus, so defining that G plus is equal to G transpose G, inverse 

of that, this is the Pseudo inverse of matrix G. Now, that is under the condition that 

lambda tends to 0, we are making this terms, regularization term, very small. 

Otherwise, there is a contribution from this lambda G 0 term also, actually speaking the 

strict solution for w will involve this also, but assuming that this contribution is very 

small. We can take it to be as G transpose G, so under that assumption, w is equal to 

pseudo inverse of G d. So, this is the solution, where we are taking the functional to be F 

start of x, instead of F of x. 

So, instead of F of x, when we take F star of x and minimize it, up to m 1 number of 

terms, then the corresponding solution comes in this form. We had obtained, you 

remember, that we had obtained last time. The w solution was G inverse, not G inverse 

exactly; it was G plus lambda I, that inverse we have considered, whereas here, it is 

coming out to be on in the form of the Pseudo inverse. 

Student: ((Refer Time: 46:51)) 

G t G, I had omitted this term, very correct, this whole thing is the Pseudo inverse, any 

questions pertaining to this, regularization function and the generalized RBF 

Student: ((Refer Time: 47:29)) 

Yes, we are not considering this smoothing term, I think somebody already pointed out, 

that if we take this smoothing term, this is under condition that lambda is consider to be 

0, lambda tends to 0, in that case, it is Pseudo inverse directly. Otherwise, if you are 

considering lambda, then also the solution is possible, then what happens, that w will 

become equal to this whole terms inverse. 

This whole terms inverse times G t times d, where we should not have told this to be the 

pseudo inverse. We can tell this whole term as Pseudo inverse, only when lambda tends 

to 0, so thank you for today. So, we will have some discussion pertaining to RBF, that is 

 



to say, comparison between the radial basis function and multilayered Perceptron, which 

we will be covering in the coming class. 

And then, we will be going over to the new chapter, which is the principal component 

analysis; that we intend to do from the next class on words,. 

Thank you very much. 

 


