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Dimensionality Problem 

 

Good morning. So, in the last class we have talked about that given the probability 

density function which has a known parametric form, where it is not necessary that the 

probability density function has to be Gaussian or normal. But if it is having any other 

form which can be parameterized, and that is we have the known parametric form of the 

probability density function. Then it is possible to estimate the value of the parameters 

from the training samples and the kind of estimation that we have talked about is 

maximum likelihood estimation of the parameter vector. That is the value of the 

parameter which is best supported by the training samples those are given 

simultaneously.  

We can also have non parametric estimation of the probability density function, because 

in many cases I do not need to know what is the exact form of the probability density 

function? But what we have to find out is p of x given omega or p of omega given x. So, 

given a value of x, I have to estimate what is the probability density function or the 

corresponding or what is the value of the probability density probability for the 

corresponding value of x. So, I need not have the knowledge of the entire parametric 

form of the probability density function, rather if I know what is the value of x for a 

value of x and this value of p x has to estimated from the given set of samples. That is 

what is called non parametric form. I can have both types of estimation whether it is in 

the non parametric form or in the non parametric form.  

Now, today I will discuss about a problem, which is dimensionality problem. That as we 

said that the feature vectors are of dimension d or every component of the feature vector 

represents certain aspects of the pattern. Or it gives some description of the pattern which 

we discussed in our earlier classes when we talked about feature extraction processes. 

So, when I have d numbers of the components of the feature vector, each of these 

components give you some characteristics of the pattern. When all this different 

characteristics or d number of characteristics are taken together, I can have some sort of 



discriminating power given by this feature vectors among different patterns. So, today 

we will discuss that, what is the problem if we have more number of features in the 

feature vector or if the dimensionality of the feature vector increases. So, that is what is 

the dimensionality problem? Now, let us go to the Baye’s decision theory or minimum 

rate classification or we said that if I know the probability density function. 
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So, let me assume that we are having two classes. One is class omega 1 and the other one 

is class omega 2. So, I consider two classes, omega 1 and omega 2 and I also assume that 

say p of omega 1, that is a priory probability of class omega 1 and the a priory 

probability of class omega 2, p of omega they are same. So, by assuming this if I plot the 

probability density functions p omega 1 and p omega 2 and let me also assume that the 

variance of these two classes are also same. That is sigma 1 square is equal to sigma 2 

square.  

So, I also assume that along with this, so p omega 1 is equal to p omega. I also assume 

that sigma squared is equal to sigma squared for simplicity. That means both the 

probability density functions, they have the same size and same shape, but the difference 

is the means are different. That is mu is not equal to mu, obviously because mu and mu 

are also same. Then I have the same probability density functions, there is not different. 

So, given this if I plot p of x given omega and p of x given omega 1, so let me plot in this 



side p of x given omega and suppose the probability density functions are something like 

this.  

So, this is 1, this extends infinitely then the other one, something like they have the same 

form. So, they have the same shape and same size, only thing is one shifted from the 

other because the mu’s are different, mu 1 is different than mu 2. This is for class omega 

1 and this is for class omega 2 or else this is mu 1 and this is mu 2. Then we have said 

earlier when we talked about base decision theory, that whenever the two probabilities 

are same then that is my boundary. So, for all values of x which are greater than this, that 

is p of x given omega is greater than p of x given omega, obviously it is nothing but p of 

x given omega into p omega, which is greater than p of x given omega into p omega . 

That was our base decision theory, but because here we are assuming that p of omega is 

equal to p of p of omega.  

So, it comes to be p of x given omega greater than p of x omega. So, for all values of x 

lying on the right hand side of this point, we will decide that it belongs to the class 

omega. And for all values of x lying on the left hand side of this point we will decide that 

it comes to class omega. Then we have also said when we talked about the base or 

minimum error rate classification, that the error in taking this decision because whenever 

I decide in favor of class omega, that is a finite probability. It may belong to class omega 

as well.  

So, the error involved in taking this decision and that we said earlier is nothing but the 

area under this curve and it extends indefinitely. So, this is error in taking decision, 

whether I decide in favor of omega 1 or I decide in favor of omega 2. So, this area under 

this probability curve, that gives me the total amount error. Now, we find that if I shift 

this mu, that is instead of mu being here, if mu is this class omega probability density 

function is something like this.  

So, suppose this becomes my mu, if this is the mu then this is my decision boundary and 

if this is the decision boundary then the error will be reduced to this. So, earlier my error 

was bounded over this curve, now the error is bounded. Error is bounded under this 

curve. So, definitely the total error in the earlier case is higher than the total error I get in 

this case when the separation between mu 1 and mu 2 becomes large. When the 

separation between the two means mu 1 and mu 2 is low then the total error increases. If 



the separation between the two means mu 1 and mu 2 is large then the total error 

decreases.  

So, that clearly indicates what are the features, which are best suitable for classification 

purpose. It is the features whose means for different classes are widely apart. Those are 

the features best suited for classification. If the means are quite near very near, then those 

features does not give you much of discriminating problem, though even if the means 

differ by some amount. However small it is they still have some discriminating power, 

but the discriminating powers of those features, where the means are closer means for 

different classes are closer is much less than the discriminating power of those features 

whose means are widely apart.  

So, usual practice in pattern recognition problem is that you start with some features 

finding find out what is the performance of classification. If the performance of 

classification, that means misclassification rate is not satisfactory, that is the performance 

is poor. You try to incorporate more and more features because I said if the features 

means of the features are different, they are not same. They have some discriminating 

power, but the extent of the discriminating power depends upon the distance between the 

means. As the distance increases, the discriminating power increases. As the distance 

decreases, the discriminating power also decreases. If I find with certain number of 

features the performance of classification is not very good, you try to incorporate more 

and more features.  

If I try to incorporate more and more features, then effectively what I am doing is the 

dimensionality of the feature vectors I am going to increase. So, the value of d will 

increase as we incorporate more and more features in the feature vector, but that leads to 

another problem. Should we go on increasing the dimension of the feature vector without 

any control? That is what is the dimensionality problem? So, let us see what kind of 

problem that we face if we go on increasing the dimensionality of the feature vector, ok? 
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So, we find that earlier we said that that function g x or discriminating function of 

different classes is given by minus half x minus mu transpose sigma inverts into x minus 

mu minus d by log of pi minus half log of the determinant of the covalence matrix plus 

log of p omega i. So, all these have to be i x minus mu i sigma i inverts into x minus mu i 

and this is sigma i. So, this was discriminating function for the higher class, right?  

Now, see that what is the amount of computation involved in this particular case, out of 

this we said that this term minus d by log of pi. This is class independent, this does not 

depend upon the class. So, we can as well remove it from the definition of discriminating 

function, because for all the classes this value will remain. So, this does not give you any 

discriminating power, but the other terms they really discriminate among different 

classes. Now, from here when I try to compute the value of mu i, you assume that I have 

n number of samples, training samples belonging to class omega i.  

So, when I compute the value of mu I, value of mu i is nothing but 1 upon n summation 

of x k, where k varies from 1 to n, right? So, I have to incorporate n number of 

summations followed by one division, and this x k. That is the feature vector of 

dimension d for every component. I have to compute n number of summations, that 

means the total number of summations that I have to perform is n into d, right? I can 

assume that for this division it takes constant time.  



So, the computational complexity to find out the mean vector is n into d, which is 

dimensional dependent. It depends upon the number of vectors, at the same time it 

depends upon d which is the dimensionality of the vector, right? Now, coming to the 

other term computation of this sigma i or sigma i inverse, ok? You find that this sigma i, 

the definition of sigma i was 1 over n into summation x k minus mu i into x k minus mu i 

transpose, where k varies from 1 to n, right?  

So, this is vector of dimension d by and this is a vector by d, right? This is a vector of 

dimension d by. This is the vector of dimension by d, when I compute I get a matrix of 

dimension d by d. That is d squared and following similar manner if I try to find out is 

the amount of computation will be involved in this case or the computation of the sigma 

i. You will find that these steps are the computation of the order of n into d squared. So, 

to find the mean vector I need a computation of dimension n into d to find the covariance 

matrix, I need a computation of the order n into d squared.  

Similarly, over here this also takes a computation of order n into d squared. Of course, 

this one is constant, not constant. It depends upon the value of n because when I want to 

compute omega i, I have to take n number of samples in picture. So, this is of the 

dimension n complexity n. So, overall you find the dimensional complexity of this 

dismayed function because this is the highest one. So, I can take the overall complexity 

is of the order n into d squared, not only that I have seen number of classes, right? For 

every class I have to compute this discriminating function and I have to find out which 

one is maximum.  

So, before I get the maximum, I have to compute the discriminating function for each 

and every class and have c number of classes for every class. I have a completional 

complexity of n into d squared. So, for c number of classes the total completional 

complexity will be of order c into n into d squared. So, here you find that the complete 

completional complexity linear in terms of c, that is the number of classes linear in terms 

of n. That is the number of samples in the class, but it is quadratic or square in terms of 

the dimensionality, right?  

If the dimensionality is increased by a factor of 2, the computational complexity is raised 

by a factor of 4. If it is increased by a factor of 3, computational complexity becomes 9 

times, right? So, this dimensionality of the feature vector is very, very crucial determined 



how efficient you classifier will be. So, it is not always good that you go on increasing 

the feature of the dimensional vector by incorporating more and more features. It is true 

that if I incorporate more and more features, the classification performance might be 

better, but the same time the classifier becomes inefficient.  

So, we have to think of the ways in which the dimensionality of the feature vectors can 

be replaced. That means whether it is possible that initially I start with feature vectors of 

higher dimension, but whether it is possible to reduce the dimensionality, but still 

maintaining the separability power of the selected features. That means what we have to 

do is given a feature vector of higher dimension, I have to take the projection of those 

higher dimensional feature vectors on to a lower dimension. But this projection has to be 

in such a way that the space on which, the space your dimension on which I am 

projecting this feature vectors, that space should be as orthogonal as possible.  

That means the different features they should not be correlated because one of the factors 

when I incorporate, more and more features are arbitrarily. I do not guarantee those 

features will be orthogonal, that means one feature may have some correlation with 

another feature. But when I try to project over to lower dimensional space, I should make 

sure that this lower dimensional space is orthogonal. That means whatever feature I try to 

capture, one feature should not depend on the other feature. So, these features should be 

independent. So, coming to this concept of projection with the end to reduce the 

dimensionality of the feature vectors, I can have two types of projections or two types of 

concepts. 



(Refer Slide Time: 20:44) 

 

So, what we are discussing now is the reduction of dimensionality. That means initially I 

have a feature vector of dimension d. I want to reduce this to feature vector dimension of 

d prime, where d prime is less than or equal to d. Obviously, I do not want d prime to be 

larger than d. At most it can be equal to d, but I target d prime less than d so that the 

dimension is reduced.  

Now, while I try to do that there are two approaches, one is PCA or principal component 

analyses. The principal component analyses or PCA approach is that, you try to project 

your higher dimensional feature vectors on to a space of lower dimension in such a way 

that, in the lower dimension whatever feature vector I get or projected vector I get, that 

best represents the initial feature vector, that I have to get the original feature vector, that 

I have to get.  

So, when I say best represents, it is the best representation in terms of list squared error. 

That is the list square error between your initial feature vectors or original feature vectors 

and the reduced feature vectors that should be minimum. The other approach is called 

MDA that is multiple discriminant analyses. The aim of multiple discriminant analyses is 

after a while we are doing or trying to manipulate all these feature vectors, because we 

want to separate among the feature vectors which belong to different classes.  

So, the multiple discriminant analyses, what it has to do is when you type take a 

projection on to a different space on to a q different feature space, it tries to separate the 



mean vectors of different classes and at the same time tries to make the samples 

belonging to the same class more compact. That means within class scatter is reduced. 

Whereas, between classes scatter is increased, ok? That is quite natural because here 

what we said is coming to this diagram or let me redraw this diagram.  
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This is the x, this is p x given omega, ok? So, suppose the distribution is something like 

this. So, this is mu 1 and this is mu 2, we said that we increase the distance between the 

mu 1 and mu 2. My classification error will be less, that is 1 and at the same time if I try 

to reduce the variance of the samples within a class, that means keeping mu 1 and mu 2 

same in the same location. So, this remains mu 1 and this remains mu 2, but now I want 

to have a distribution something like this. So, you find that the distance between the 

mu’s, mu 1 and mu 2 remains the same, but within class scatter or the variance of the 

samples belonging to the same class are reduced. Then also my classification will be 

better, that is error rate will be less.  

So, this MDA approach or multiple discriminant analyses is what it does is, it tries to 

increase the distance between the means. That is the inter class scatter, that it tries to 

increase and at the same time it tries to reduce the within class scatter or tries to reduce 

the variance of the feature vectors on to the projected space. So, you benefit in both 

ways, one is the increase the distance between the means and simultaneously reduce the 

variance within the class so that the overall error is minimized. So, these are two 



different approaches, one is principal component analyses, other one is multiple 

discriminant analyses, ok? Today, what we will discuss is the principal component 

analyses approach. 
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So, we will talk about the PCA or principal component analyses. So, our problem is like 

this, that we have been given n number of feature vectors, every feature vector is of 

dimension d. So, I have n number of feature vectors. The feature vectors are x 1, x 2, x 3 

up to x n each of the feature vector is of dimension d, right? Obviously, the mean of 

these feature vectors is given by 1 upon n sigma x k, k varies from 1 to n. That is the 

mean of the feature vector.  

Now, let us try to see that initially I have the dimensionality of the feature vector that is 

equal to d. Let me take extreme case that I want to represent these by a zero dimensional 

feature vector, right? So, if I try to represent this by a zero dimensional feature vector 

that means within feature vectors I do not have any variance. So, that is nothing but this 

mean. So, this entire set of feature vectors is represented by mean vector, but while doing 

that what I will lose is the variability within the data which is also not good, right?  

So, instead of zero dimensional features, let us assume that I want to represent this 

dimensional feature vectors by d feature vectors, pardon meaning the feature, but the 

entire n number of features is represented by only one feature vector. While doing that I 

lose the variance because I have a single representation. Now, what I am saying is I do 



not want to do that I will represent this d dimensional feature vectors by one dimensional 

feature vector. I will still have n number of feature vectors, the number of feature vectors 

will remain the same.  

So, there will be variability, but the dimension of every feature vector instead of d will 

be 1. So, what I am trying to do is a vector getting mapped to a scalar, because I am 

reducing the dimensionality to 1. Let me take step by step approach so that what should 

be such best type of projection. If I want to project in one dimension and then whether I 

can project on to a multiple dimensions. If I want to project on to multiple dimensions 

what should be nature of such space? So, if I want to project on to a single dimension. 

So, suppose I have the set of points something like this, they are betraying ally 

distributed. I have n number of such points and the mean m is somewhere over here, ok?  

So, what I do is if I want to represent this d dimensional feature vectors by a one 

dimensional feature vector. That means I have to take, I have to represent this feature 

vectors somehow on to a line. The feature d dimensional feature vector will somehow 

mapped to different points on a line, right? So, let us take a line passing through the 

mean of this feature vectors and let me assume that unit vector in the direction of this 

line is given by e, right? So, I am in space x, within the space I have a line passing 

through the mean of sample given feature vectors and the direction of this line I am 

saying it is e, right?  

So, when I do this, you find this the equation of this line will be given by x is equal to m 

plus a e, because it passes through m. That is the mean of the given feature vectors and 

equation of this line if a is equal to 0. Then x equal to m, that means I am at this point m, 

right? For different values of a, I am moving from m in the direction of a. That means I 

am moving along this line.  

So, the equation of this straight line in the direction of e, where e i is an unit vector 

passing through the mean m is given by x equal to m plus a e, right? This a now 

represents positions of different points on this line, given this I can represent a point x k 

on this line and that x k point, x k I can represent by m plus a k time c. We will see what 

will be the value of a k, the best possible value of a k for different points I will have 

different values of this a k.  



So, this a k represents that a point x k, where is it met on this line. Now, while doing this 

definitely I have corporate some amount of error, because x k is of dimension d. I am 

representing this x k by a line by a point on the line. So, obviously while doing so I have 

incorporated some amount of error, and what is that error? This is nothing but m plus a k 

times e minus x k, x k is the original one and this is the one that I have represented. So, 

what I can do is for taken all these lines together or all these points together I can define 

an error function or a criteria function, ok? 
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So, that error function or the criteria function is nothing but we represent it as this is the 

initial way, represent it by j. Obviously, it will be a function of a 1, a 2 up to a n and it 

will also be the function of the direction of the line which is e, right? This is nothing but 

m plus a k e minus x k, take the mod squared, take the summation over k varying from 1 

to n. So, this is the squared error within summation, then this becomes sum of squared 

error, right? What we try to do is, we try to minimize this sum of squared error in terms 

of a, right?  

So, I want to find out that what are these ways or what are the positions of the straight 

line by which my d dimensional vector should be represented, assuming e to be fixed. I 

do not touch e for the time being, that is the direction of the line to be faced. So, given a 

line how these points have to be mapped on to the different points on the line. How the 

feature vectors have to be mapped on to different points on the straight line so that your 



sum of squared error will be minimized. So, this expression now I can write by slight 

reorientation. This can be written as a k e minus x k minus m square, take the summation 

over k varying from 1 to n. This x k is same as the previous one, I just have simply 

rewritten this. It is same x k, I am representing as m plus a k into e. Otherwise, how do I 

get the error? This x k is my original point and this is the projected point.  

So, the difference between the original point and the projected point, that is my error. I 

am trying to estimate the error, right? So, this is the same as my original x k. So, this if 

this square I expand, and it simply becomes sum of a k square into mod of e squared 

minus 2 summation a k e transpose x k minus m plus sum of x k minus m square. I am 

not writing the limits of summation. The limit is n varying from 1 to n. So, this is my 

sum of squared error. What I want to do is I want to reduce, minimize the sum of squared 

error by varying the values of a.  

So, what I have to do for that is take the differentiation of this with respect to a, equate 

that to zero, solve for values of a effectively. What I want to do is, I want to take gradient 

of j with respect to a and equate that to 0. And by solving this I get the values of different 

a that comes later. I said I will go stage by stage. Initially I am saying that assuming the 

direction of the line to be fixed, let us not try to handle all together. Dimensionality of e 

is same as e because it is a unit vector in the line in d dimensional space. It is a vector in 

d dimensional space. So, obviously the dimensionality of e will also be d. If I want to 

represent a vector in c dimensional space, the dimensionality of the vector is obviously is 

3, ok? 
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So, when I take the differentiality of this with respect to a, what I get is effectively del j, 

del a nothing but 2 into summation of a k minus e transpose x k minus m, ok? So, if I 

take the differentiation of this with respect to a, then what I get is if I take the 

differentiation of this. And what I forgot is the mod of e, that is equal to 1 because it is 

unit vector in the direction of the line.  

So, mod of e is equal to 1. So, effectively what I have is summation of a k square. Take 

the differentiation that becomes two times a k, take the differentiation of this, I get 

because it is a k into e t transpose x k minus m. If I take to differentiate with respect to a, 

I am left with simply e t transpose e t into x k minus m e transpose x k minus m. This 

term is independent of a. So, differentiate this with respect to a, it becomes 0, right? So, 

after differentiating this term, assuming by making use of the fact that modulus of e is 

equal to 1, I get this output, right? I have to equate this to 0.  

So, when I equate this to 0, I get simply a k is equal to e transpose x k minus m, right? 

Equating this to 0, I get a k e transpose x k minus m. Now, what is this? e is the unit 

vector in the direct from the line, right? So, this simply says that a k is nothing but 

orthogonal projection of x k on to a line, the direction of p passing through the mean m. 

It is just orthogonal projection of point x k on to a line in the direction of p passing 

through the mean point m, right? So, simply what we get is when I have these sets of 

points, this a k represents these projected point on to this line. 
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Now, how do I complete this? This is nothing but projections of different a k’s. 

Projections of different a k’s on to this line and these projection are nothing but 

orthogonal projection and that gives the position a k. So, the best kind of representation 

in one dimension is to project the d dimensional feature vectors take the orthogonal 

projection of the d dimensional feature vectors on to a line passing through the centroid, 

ok? 

Now, see that our assumption was we started with a given line, whose direction was 

known as e and for the given line the best type of projection is taken orthogonal 

projections on to that line. So, given a line and the best representation is orthogonal 

projection on to the line. Now, which given line is best, that is the question that he has 

raised, so far we have considered that our line is given. Now, which particular direction 

of the line is best, that is what direction is best? Let us try to answer that. So, for doing 

this I start with the same one that. 



(Refer Slide Time: 42:48) 

 

Now, I have to find the direction of the line, that is e. Now, a I have determined that to 

find out s it should be orthogonal projection. Now, I have to determine that which 

direction of the line, which line will be best, that means what should be best e. So, I write 

this j, the criteria function as a function of e, you remember? This e is not error, I am not 

saying this as error. This is the unit vector in the direction of the line j e is equal to a k 

squared minus. What did I have for that expression? y a minus y a, a is a vector having 

different a k’s as components. When I say differentiation, it is gradient because in the 

vector space I cannot differentiation in the vector space. I have to take gradient which are 

nothing but components of that gradient comes as partial differentiation with respect to 

individual components.  

So, I had j e e is equal to j k squared minus a k e transpose x k minus m plus sum of x k 

minus m square. I am not writing the limit of summation. Now, this a k we have found 

that it is the same e transpose x k minus m. So, this I can simply write as this one. So, 

this will be a k squared. This will also a k squared, this is minus a k squared minus 

summation of a k squared. This is plus summation of a k squared, effectively I get minus 

summation of a k squared and a k is nothing but e transpose x k minus m. So, I can 

rewrite this expression as minus summation of e transpose x k minus m into x k minus m 

transpose into e. See here what I have is this is the case first, this is minus. There should 

be a 2 over here, y a minus 2, 2 a k squared because e transpose x k minus m is nothing 

but a k.  



So, effectively I have minus a k square plus a k square minus a k square. So, I have 

minus a k square and a k is nothing but e transpose x k minus m. So, it is minus 

summation of e transpose x k minus m square. If I break that, I can write this as e 

transpose x k minus m into x k minus m transpose e, it is in the matrix expression. So, 

this plus sum of the other term remains as it is, x k minus m square. Now, this e is 

independent of k. So, this e terms I can take out of summation expression.  

So, this I can write as minus e transpose summation x k minus m into x k minus m 

transpose e, because e is independent of k. So, I can take this e out of the summation 

expression, because this summation is over k, k varying from 1 to n, right? Plus 

summation of x k minus m square. So, it remains the same, right? Now, you find what is 

this term, sum of x k minus m into x k minus m transpose. 
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If you remember from our earlier expression, what is our co variance matrix sigma upon 

n summation x k minus m into x k minus m transpose. Take the summation k equal to 1 

to n and here you find that this term is nothing but a scaled version of this term. If I 

multiply this co variance matrix this is upon n, sorry if I multiply the co variance matrix 

by n, which is the number of samples over which I am trying to compute the co variance 

matrix. I get this term and this is what is called scatter matrix.  

So, it simply represents that how that data is spread in the space because you remember 

that from your one dimensional Gaussian function variance is more. The curve is flat if 



the variance is less, the curve becomes sharp. That means the point is distributed over a 

smaller space, if the variance is small. The points are distributed over a larger space if 

the variance is large, same is for co variance matrix. The co variance tells you shape as 

well as size, that means to what extent that data is distributed and whether the data 

distribution is oriented in some particular directions. Only that is what is captured by co 

variance matrix, same is the case of scatter matrix. Scatter matrix gives you the same 

information, but with a scale factor of n. So, if I multiply co variance matrix by the 

number of samples n, I get the scatter matrix, right? 
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So, this expression now becomes this j e, see if I simply write this, rewrite this it 

becomes j e is equal to minus e transpose s. That is the scatter matrix, e plus summation 

of x k minus m square. Now, what is our aim? I want to minimize this j e by varying e, 

this should be within bracket, as a function of e j e by varying g, varying e and you find 

this term is independent of e. So, if I want to minimize j e, what I have to do is, I have to 

maximize this. It is a variability sign, minimization of j e effectively means 

maximization of minus e transpose s, sorry maximization of e transpose s e.  

So, if I maximize this e transpose s e, effectively I am minimizing this criteria function j 

e. So, how what I have to look for is the maximization of this e transpose s e and for this 

maximization, if I make use of Lagrangian. So, I can have an expression of the form u is 



equal to e transpose s e minus lambda e transpose e minus. So, I have to maximize this 

using Lagrangian, subject to the constraint mod of e is equal to 1.  

So, to maximize what I have to do is I have to take the differentiation of this with respect 

to e. So, what I have to compute is del u del e and if compute del u del e then over here I 

simply get expression s e minus lambda e. Differentiate this with respect to e, I get s e 

minus lambda e. I have to equate this to 0, right? If I equate this to 0, I get simple 

expression s e is equal to lambda e. What is this expression? This is an Eigen value 

expression.  

So, this simply an Eigen value expression, where the vector e is the Eigen vector of s and 

what is lambda? It is the corresponding Eigen value. Now, you remember I have to 

maximize. Our aim is to maximize e transpose s e, right? Our s e is equal to lambda e, 

that means I have to maximize e transpose lambda e. Our constant is modulus of e is 

equal to. So, if I want to maximize e transpose lambda e, that means I have to take the 

maximum value of lambda, that effectively says that when I am considering the direction 

of the line in the direction of the vector e. From here I find that this e is nothing but the 

Eigen vector and which Eigen vector I have to consider?  

The Eigen vector corresponding to the maximum Eigen vector value and by using 

whatever value of a, I get because my ultimate aim is I have to find out to get the value 

of a k, that is what represents the point. So, that value of a k is called the principal 

component. That is why it is principal component analyses, people also call it k l 

transformation.  

Now, you remember how this k l transformation came into picture? You had the co 

variance matrix, take the Eigen values of the Eigen vectors of the co variance matrix. 

Corresponding to the largest Eigen values, from that you form a transformation matrix 

and the transformation you get is the k l transformation. That is not like this and there we 

said whenever we talk about the k l transformation, we talk about principal 

transformation analyses and why this principal component. This is the reason it is 

principal component.  

So, here you find that if I take only one Eigen vector, corresponding to the largest Eigen 

value, then the corresponding principal component is a scalar one and effectively my d 

dimensional feature vector I am converting to one dimensional feature vector. Now, 



instead of considering only single Eigen vector, if I consider multiple Eigens of vector 

corresponding to largest Eigen values.  

So, instead of considering only one Eigen vector if I consider d dash, d prime number of 

Eigen vectors, d prime is less than or equal to d. Corresponding to d prime number of 

largest prime values, then take the orthogonal projection of your feature vector, d 

dimensional feature vector on to those Eigen vectors. The corresponding principal 

components of the projection values, projections that you get that gives you d prime 

dimensional feature vector and because my scatter matrix is real and symmetric the 

Eigen vectors are orthogonal. That means, the principal components that I get they are 

also orthogonal, and because they are orthogonal one is uncorrelated from the other, ok? 

So, if I go for this principal component analyses, I can reduce the dimensionality. 

Simultaneously, I also ensure that my d prime dimensional feature vector that I generate 

those feature vectors will be or the components will be uncorrelated. That means every 

component of the feature vector gives you independent information that no other 

component will give. So, let us stop here today. We will continue with MDA approach in 

the next class. 


