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Good afternoon, so we are continuing with the different criteria functions which are used 

for designing for the linear discriminator, so far we have discussed about three types of 

criteria functions. The first one was the perceptron criteria then we have talked about the 

relaxation criterion and the last one we have said was the minimum squared error 

criteria, so what we have seen in case of perceptron criteria is that. 
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You define a criteria function which is given by J p which is nothing but minus a 

transpose y, for all y which are misclassified. So, this was the perceptron criterion 

function and our m was that we wanted to find out the weight vector a, which will 

actually classify all the training samples properly. So, when all the samples are the 

training samples are classified properly in that case the criterion function, the perceptron 

criterion function J p has to be equal to 0 which is the minimum value. If any sample is 

misclassified by the weight vector a, then the criterion function J p will be greater than 0 

and following this what we have done is we have taken the gradient of this criterion 

function J p with respect to a.  



Then we have followed the gradient descent procedure to come to a particular solution, 

to come to the solution of the weight vector a. Accordingly, we had the weight of 

decision rule or the perceptronal algorithm which was given like this that a is 0 was 

initially selected arbitrarily and then in every iteration a K plus 1 was obtained from the 

previous value a K following the gradient descent procedure. It was simply a K plus eta 

times summation of y, for all y which are misclassified and there we have seen the 

problem with this algorithm is that because we have to take the summation of all the 

misclassified samples.  

So, the amount of memory which is required for execution of this particular algorithm is 

quiet high, so we had a sequential version of this algorithm. Here, the first step that is 

selecting a 0 arbitrarily remains the same and what you are doing is you are taking the 

samples one by one and whenever a sample is misclassified instead of trying to 

aggregate all the misclassified samples together. Whenever a sample is misclassified, 

immediately you go for the updation of weight vector a, so accordingly or weight 

updation rule was sample by sample.  

So, if the K-th sample is misclassified then immediately you update the weight vector 

following this updation rule, that is a K plus 1 will be a K plus eta times y K, where this 

y K is the sample which is misclassified by the weight vector a K and eta. We said that 

this is the convergence factor and similarly we have also talked about the relaxation 

procedure.  
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The relaxation criterion where the problem faced with the perceptron criterion that is we 

can have a solution vector which is just on the boundary. So, if you get a solution vector 

which is just on the boundary then it is quite likely that if I use that vector for 

classification of unknown samples. Then the probability of misclassification of the 

probability error will be quiet high, so what you want is that the weight vector should be 

well within the solution region.  

So, that problem is solved by this perceptron criterion y this relaxation criterion and this 

relaxation criterion the criterion function was modified as J r a which is half of a 

transpose y minus b square upon modulus of y square, again. Here, this vector y is 

misclassified, so it has to be done for all y misclassified, but our design rule remain the 

same that is you take the gradient of this with respect to a. Then follow the gradient 

descent procedure starting from some initial weight vector which is arbitrarily and, so we 

have this algorithm relaxational algorithm which is given as a 0 is chosen arbitrarily.  

Then we have this iterative approach that is a K plus 1 will be given by a K plus eta 

times summation of b minus a K transpose y upon mod of y square into y for all y 

misclassified. Then we have seen that the corresponding sequential version where the 

updation rule is modified as a K plus 1 is equal to a K plus eta times b minus a K 

transpose y K upon mod of y K square into y K. Where y K is the sample which is 



misclassified by the weight vector a K and then we have said that both these criterion 

functions whether it is perceptron criterion or the relaxation criterion.  

This is useful when the samples are linearly separable or the classes are linearly 

separable in the sense that given the set of training samples from two classes. Say omega 

1 and omega 2, I should be able to draw a boundary between these two classes but this 

boundary a linear boundary. So, in case of 2 dimensions it has to be a straight line and in 

case of 3 dimensions it has to be a plane or multi dimensions it has to be hyper plane.  

So, it is actually a linear boundary between omega 1 and omega 2, but if the classes are 

not linearly separable then neither the perceptron criterion based algorithm nor the 

relaxation based relaxation criterion based algorithm. They will give you ionic solution 

and the algorithm will never converse, so in such cases we have this minimum squared 

error algorithm. 
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M S E criterion function, but the criterion function is based on an error measure where 

error is nothing but Y a minus b where y is the collection of all the training samples, a is 

the weight vector and b is called a merging vector. So, for these M S E criteria the aim is 

to reduce this square of this error minimize square of this error. So, accordingly you 

define the squared error criteria which is given by J s as a function of a, which is nothing 

but mod of Y a minus b squared. I can expand it as a transpose y i minus b i square of 



this take the summation over all the samples y is equal to 1, 2 n I have n number of 

training samples.  

Then again if I take the gradient decent procedure or going for that pseudo inverse 

concept I get a solution which is given by a is equal to y plus b where this y plus is 

actually pseudo inverse of y. Then we have said that we can still have an iterative 

algorithm following the gradient descent procedure and in which case the iterative 

algorithm will be similar to the algorithms that we have said earlier.  

That is perceptron criterion relaxation criterion, here again or initial weight vector is 0 

this will be chosen arbitrarily. In every iteration step a, a will be modified as a K plus 1 is 

equal to a K minus eta times transpose y a K minus b, but still you find that, here we are 

considering all the samples together to find out the solution vector. Here, again the 

problem of the memory and working with large matrices, so we can also have in the 

same manner a sequential version of this iterative algorithm, and in the sequential of the 

iterative algorithm.  

The iteration step will be modified as a K plus 1 is equal to a K plus eta times b K minus 

K transpose y K into y K. So, find that we can go for a sequential algorithm from this 

updation step from this updation step which actually considers all the samples together. 

Now, again this iterative algorithm or the mean square error criteria function based 

iterative algorithm to find out a solution vector is a problematic in the sense that we have 

said the perceptron criteria. The relaxation criterion is useful when the classes are 

linearly separable and if the classes are not linear linearly separable in that case we can 

go for this minimum based error criterion function.  

But, if I have a problem where the classes are actually linearly separable, but because we 

do not know beforehand whether the classes are linearly separable or not, so a safest 

approach will be that you go for minimum squared error criterion. Based criteria 

function, based approach to get your solution vector a, but the problem here is even if the 

classes are linearly separable it is not guaranteed that linear.  

This minimum squared error based criterion function based algorithm will give you a 

weight vector which will linearly separate the two classes or it is not guaranteed that I 

will have a linear boundary between the two classes. Where the samples from two 



different classes will be put into two different regions, so I can have a situation 

something like this that. 
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Even if I have the samples belonging to 2 classes which are given like this suppose this is 

a set of samples which actually belongs to say class omega 1 and I can have a set of 

samples over here. Let me use different symbol something like this where these samples 

actually belongs to class omega 2, here you find that I can easily, so these are mine two 

features x 1 and x 2.  

So, I have a two dimension feature vector, so here you find that it is quiet easy to find out 

that I can a line separating these two classes, so because this are linearly separable, so I 

should get an weight vector which will actually define this line. But, when I go for this 

mean square error based criterion function, I may land up with a boundary something 

like this. It is because in case of mean square error based criterion function, it tries to 

minimize the sum of squared distances of the given feature vectors from the line. So, as a 

result the boundary that you get that may not separate the samples belonging to two 

different classes, so how do you solve this particular problem.  

So, though this M S E or minimum squared error based criteria function you need to 

solve this kind of problem, where it can be shown that if the classes are really linearly 

separable then it is possible to have some a. 
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Weight vector a, and some weight vector b where y a minus b or Y a will be is equal to b 

where this b is greater than 0, we did not have any such constant when we talked about 

minimum squared error criteria function. So, if the classes are actually linearly separable 

in that case it is possible to have a weight vector a and a merging vector b where this 

equation will be satisfied.  

That is Y a equal to b, so when I say b is greater than 0 that means every component of b 

is greater than 0 because b are emerging vector, so you say that every component and 

this will have n number of components if I have n number of samples. So, when I say 

this emerging vector b is greater than 0, then every component of this emerging vector is 

greater than 0 and assuming this we have to define a criteria function earlier.  

We have defined the criteria function as a function of only the weight vector a, because 

our aim was to select the weight vector. But, now what we have to do is we have to 

select both a and b because we do not that which particular b will satisfy this equation for 

a particular a. So, we have to try to update or iterate on both a and b, so again we have to 

start with an initial value of a and initial value of b and then we have to update on b. For 

every updated value of a, and for every iterated value b we can find out what is the 

corresponding a, so while doing that where we update b.  

We have to keep in mind that in none of the cases any component of b can be less than 0, 

we always to maintain that ever component of b will be greater than 0. That can be 



satisfied if we start with b, with ever component positive and while updation while 

modification of b, we will allow only a component of b to be incremented not to be 

reduced. It is because if we allow a component of b to be reduced then there is a 

possibility that a component of b may come down below 0 which will not satisfy this 

condition.  

So, while updation we have to keep in mind that we will always allow increment of b, 

but we will not allow reduction of b, because that is a matter of skill factor I have Y a is 

equal to b. So, what I am saying is ill always increment the value of b, i will not reduce 

the value of b because reduction of value of b may lead to a condition where component 

of b say b i may be less than 0. So, this is what I will not permit ill always increment the 

value of b and the scale factor that is incorporated, that will be reflected in the 

corresponding value of x in the weight vector is that.  

So, when I do that, I will redefine my criteria unction that is J s, earlier it was defined as 

a function of only a, now I have to define this as a function of both a and b where a is the 

weight vector and b is the merging vector. However, the definition will demand the same 

that J is a b which is y a minus b square fixed that was fixed in M S E algorithm. Our 

assumption was the merging vector was fixed and for a given merging vector, we are 

trying to find out a value of weight vector. So, the problem that we have faced that 

whenever we fix the merging vector because we never ensure that this condition will be 

satisfied as accordingly, we could have got a boundary something like this it is still a 

linear boundary.  

So, this boundary ensures that your sum of square error will be minimum, but this does 

not ensure that the classes are actually linearly separated. So, i-th classes are linearly 

separate separable, then we have said that we can have a solution of this form Y b minus 

is equal to b, where b is greater than 0. So, we will take the different merging vector 

which are greater than 0, and then find out the corresponding value a, so while doing. So, 

we start with a merging vector and then go on updating the merging vector with a to 

complete proper solution.  

So, this is what we have this is our criteria function squared error criteria function which 

is given by J s a b is equal to Y a minus b take the square of the modulus of this error. 

Then this error function we have to take the gradient, once with respect to a, and then 



with respect to b because we want to update both, so I take the gradient of this J s with 

respect to a is the solution. The gradient with respect to a is what we have seen earlier the 

2 y transpose into Y a minus b, this is part we have seen earlier and I will take the 

gradient with respect to b.  

Then the gradient with respect to b is minus 2 Y a minus b know, once we obtain any 

value of b then the corresponding value of a can be obtained as. So, for any b the 

corresponding weight vector a can be obtained as y pseudo inverse bore, we can go in for 

the same iteration which we have done when we discussed about the mean square error 

algorithm. If we are not sure that this pseudo inverse is non singular because if the 

pseudo inverse is singular we cannot have if y transpose, y inverse is singular then we 

cannot compute the pseudo inverse.  

So, for the computation of a i that we can go for this, if you assure that y transpose 

inverse is into singular or we can imply the same iterated algorithm that we have 

discussed earlier. So, here our main aim is that we have to find out a proper value of b by 

allowing the gradient descent procedure with the help of the gradient of J s with respect 

to b. While doing so, as we said that we have to ensure that none of the components of b 

can all below 0 and that what we said that we can only allow increment of the 

components of b, we cannot allow reduction of the components of b, so if I want to do 

that in that case. 
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At every iteration I can have b K plus 1 which is same as the same gradient descent 

procedure became minus eta times that is rate of convergence of gradient of J s with 

respect to b minus modulus of gradient of J s with respect to b. So, here you find that 

because to obtain b K plus 1, we are subtracting from b K this quantity, so if gradient of J 

s with respect to b is positive. Then what we are able to ensuring s that this total quantity 

will be equal to 0 where as if gradient of J s with respect to b is negative.  

So, here it is minus, here it is also minus, so I get a negative quantity which is twice of 

gradient of J s with respect to b. So, to nullify this factor 2, you incorporate this half and, 

here it is negative here also it is negative, so overall you will get a positive term. So, 

effectively what I am doing is to obtain b K plus 1 from b K to b K, I am adding a 

quantity I am not subtracting any quantity from b K to get b K plus 1. So, that insures 

that you are b K plus 1 can be utmost greater than b K it can never b less than b K.  

So, by this step we are ensuring that none of the elements of the merging vector b will be 

reduced at a step of iteration and, since we are ensuring that it will not reduce in any 

steps of iteration. So, the possibility of having a component of merging vector with b 

which is less than 0 will not arise. So, our iteration algorithm on b will became as before 

that we will have a b 0 greater than 0, but otherwise arbitrary.  

Student: Sir if we had grad b, J s modulus is it inner orbit? 

Gradient of.  

Student: Is magnitude of every component of gradient  

It is magnitude of every component of gradient vector what I am saying is every 

component it is not modulus 

Student: It is a vector. 

It is a vector, it is a vector only the positive components. 

Student: The vector is minus b1 plus b2. 

It will be class b 2, b 3 yes, is that so what the iterative algorithm will be something like 

this that b 0 will be greater than which is initially chosen. But, otherwise it is arbitrary 

and at every step this b K plus 1 will be b K minus eta times half gradient of b J s minus 



modulus of gradient J s with respect to b. So, once I have a particular value of b I can use 

that b to compute the value of a, either making use of pseudo inverse or following. The 

another iterative algorithm of obtaining a by using the gradient descent procedure with 

gradient of J s with respect to a that is similar to part that we have discussed in our last 

class.  

By doing this because we are ensuring that b will always be grater, will always remain 

greater than 0 it is quite likely that it will even for lineally separable cases. We will get a 

solution vector which will actually linearly separate between the two sets of samples 

belonging to two different classes. Now, all this different criteria functions that we have 

discussed so far whether it is perceptron criteria, or relaxation criteria or this minimum 

squared error criteria in all these cases. We have assumed that we have just two diff 

classes omega 1 and omega 2 and our criteria was that if a transpose y is greater than 0. 

The sample belongs to one class if it is less than 0 it belongs to another class or if a 

transpose y is greater than b it belongs to one class, if a transpose y is less than b it 

belongs to another class. Now, the question is how to generalize this in a multi category 

case using all practical situations will have multiples number of classes, not that we will 

have only two classes, and that is what the essence of linear mission that we have said 

earlier. 
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That is for every class omega i we have a discriminant function defined as j i x where 

this j i x is nothing but W i transpose x plus W i not sorry, so the linear equation or the 

linear discriminate function for every class i. So, for given any unknown sample x I have 

to compute this discriminant function, for all values of i, i varying from 1 to c if c is the 

number of classes. Then for whichever i g i x is maximum we have to assign or we have 

to classify x to that particular x, so we have something like this that we have this g 1, g 2 

like this.  

If there are c number of classes we have this discriminate function g c then given a 

vector x the vector x will be fed to the discriminate function of all the classes then I have 

a maximum selector all these are ports come to this maximum selector. Then maximum 

selected depending upon whichever discriminate function gives you the maximum value 

this gives you the class identification. This is what we have said it is a linear machine 

and we have seen earlier that following the base decision theory if I know what is the 

parametric form of the probability functions, of the samples belonging to different 

classes.  

Then following this minimum error classification or minimum r is j classification we can 

obtain the classifiers or we can obtain the discriminate functions for different classes. 

Then we have discussed about different situation when this discriminate function can be 

a linear discriminate function or when the discriminate function will be a quadratic 

discriminate function.  

But, now we are talking about the non parametric cases, that is we do not know what is 

the probability of the density function of the samples belonging to different classes. So, 

whether it is possible to have an algorithm like this gradient descent procedures to have 

this sort of linear machine which can classify a sample to one of the c different classes. 

So, here we find that our condition is something like this. 
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That if I get that g i x where x is the sample vector g i x is the discriminate function 

corresponding to the class omega i. So, if g i x is greater than g j x for all j not equal to i 

this indicates that x belongs to class omega i because g i x is maximum among all the 

discriminate functions. So, this indicates that the sample x belongs to class omega i or in 

other word if I expand this it simply becomes a i transpose y, where this y is the 

augmented vector x by adding 1 to it.  

So, a i transpose y is greater than a j transpose y, again for all j not equal to i, so that is 

the condition that this sample x or sample y augmented sample y that belongs to plus 

omega a. Since, we are having c number of classes that is i and j that can vary from 1 to 

c, so you find that for a particular value of i when i have this condition that j is not equal 

to i for all values of j. So, this j will assume every value from 1 to c except i that means j 

can have c minus one number of values, so that one which is left out that is equal to i.  

So, this inequality that a i transpose y greater than a j transpose y for all j not equal to i 

this is actually equivalent to c minus 1 number of inequalities is that, so in all those 

inequalities I have to have this particular condition 2 that suppose i is equal to 1. So, a 1 

transpose y must be greater than a 2 transpose y, a 1 transpose y must be greater than a 3 

transpose y, a 1 transpose y must be greater than a 4 transpose y and so on up to a 

transpose y must be greater than a c transpose y.  



Then only I can say that this sample y or the corresponding sample x that belongs to 

class omega 1, so this equation actually corresponds to for all values of j c minus one 

number of inequalities. So, whether it is possible to have an unified approach to take care 

of this c minus 1 number of inequalities simultaneously and give me c number of weight 

vectors a one a two a three up to a c, so over here you find that. 
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Let us take a specific case that is equal to 1, so I want that a 1 transpose y must be 

greater than a j transpose y, for y varying from 2, 3 up to c minus 1 later on we will 

generalize. So, I take a particular value of I which is equal to 1, so you find that all these 

c minus 1 number of inequalities can be put in an unified approach if I take c into d hat 

dimensional weight vector. 

Student: The total number of equalities is c minus 1. 

c minus 1, c minus 1 yes, sorry 2 to c correct, it is 2 to c not c minus 1 total number of 

inequalities is c minus 1, so all these inequalities can be put in an unified form in a single 

expression. If I consider a c d hat dimensional weight vector I am taking the same 

terminology which we used earlier that my weight vector is actually d dimensional. So, 

after appending 1 it becomes d plus 1 dimensional, so that d plus 1, we are talking we are 

taking as d hat. So, I take a d c into d hat dimensional weight vector let us say this weight 

vector is alpha, now what is this alpha this alpha will be nothing but a 1, a 2, a 3 up to a c 

this is my weight vector alpha.  



Each of these weight vectors say a 1, a 2, a 3 up to a c each of them are actually d hat 

dimensional I have c number of such weight vectors. So, that overall dimension of this 

vector alpha is c into d hat, thank you j equal to 2 to c, so this overall vector that 

becomes c into d hat dimensional. So, we can think that these particular weight vectors if 

I have this condition that a 1 transpose y greater than a j transpose y for all values of j 

varying from 2 to c. So, I can equivalently say that effectively this c into d hat 

dimensional weight vector alpha will properly classify all the c minus 1 number of 

feature vectors, but the feature vectors will be of the form. 
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Say let me put it as eta one two which is nothing but y minus y 0, 0, 0 eta 1, 3 will be y 0, 

minus y 0, 0, 0 it will continue like this eta 1 c will be is equal to y 0, 0, 0 minus y. But, 

this 0 actually means that this is a column vector of dimension d hat y is obviously a 

column vector of dimension, d hat minus 1 y is also a column vector of dimension, d hat 

0 is also a column vector of dimension d hat at every component is equal to 0. So, as 

there are c number of such vectors, every vector having a dimensionality of d hat, so the 

overall dimension of these vectors eta 1, 2 or eta 1, 3 up to eta 1 c each of them are of 

dimension c in to d i. 
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So, this inequality that a 1 transpose y greater than a j transpose y for j varying from 2 to 

c, it is equivalent to say alpha transpose eta 1 2 is greater than 0 is it not, if I put these 

two side by side. So, let us take these two vectors side by side alpha is y a 1, a 2, a 3 up 

to a c eta 1 2 is y minus y, then all components to 0. So, if I take alpha transpose eta 1 2 

that computation will be equivalent to a 1 transpose y minus a 2 transpose y rest of the 

components in eta 1, 2, 0.  

So, that corresponding vector multiplication will have null effect will not have a any 

effect on the result is that, so if I take alpha transpose eta 1 2 that is simply a 1 transpose 

y minus a 2 transpose y. Similarly, alpha transpose eta 1 3 that will be simply a 1 

transpose y minus a 3 transpose y is that, similarly alpha transpose eta 1 c it will be a 

simply a 1 transpose y minus a c transpose y. So, this condition that a 1 transpose y 

greater than a j transpose y or a 1 transpose y minus a j transpose y greater than 0 for all 

the values of j for y to be classified to plus omega 1. That is equivalent to saying that this 

weight factor alpha properly classifies all these c minus 1 number of feature vectors.  

But, these feature vectors are actually generated from the original feature vector y, so 

you find that the overall data that we are generating over here that increases dramatically. 

That is quite obvious because from a 2 dimensional, from a 2 category case we are 

moving to c category case, so your computation obviously will be c fold. So, for every 

feature vector y, I am generating c minus 1 number of feature vectors, but the 



dimensionality of the feature vectors each of this feature vectors is also being 

implemented by a factor c initially y vector y is of dimensionality d hat.  

Now, each of them are of dimension c in to d hat, so the dimensionality is increasing by 

the number of pluses that we have and the number of vectors for every original vector is 

also being increased by a factor c into c minus 1. So, the amount of data that we are 

generating that becomes quite high, so this is what we have considered for a particular 

case by assuming i is equal to 1. 
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In general, a feature vector eta i j will be something like this that I will have this vectors 

having component 0 i-th component will be equal to y j-th component will be minus y. 

Then for this 0 again this is my i-th component and this is my j-th component is that and 

this alpha transpose eta i j greater than 0 that is equivalent to if you follow from here it 

will simply be a i transpose y minus a j transpose y that will be greater than 0. So, if this 

condition is satisfied for all values of j not is equal to i then we say that the sample y 

actually belongs to class omega i it does not belong to class omega j.  

So, when I have this sort of formulation that alpha transpose eta i j for every such 

inequality I actually have the weight vectors corresponding to discriminate functions of 

two different classes. Omega i and omega j involved in it and for proper classification of 

any sample, y i must have that it alpha transpose, eta i j must be greater than 0 that means 

a i transpose y minus a j transpose y must be greater than 0. So, if I find that this 



condition is not satisfied for any value of y for any sample y then I have to modify 

actually two weight vectors not only a.  

But, I will also have to modify a j because both of them are responsible in earlier case 

because the 2 plus problem, so I had a single weight vector, so I have to decide whether 

that to modify two weight vector. If it is to modify in which way it has to be modified, 

now I have 2 weight vectors involved one for the discriminate function of class omega i 

and the other one of that discriminate function of class omega j. So, any time any sample 

is misclassified by alpha I have to what modify both these weight vectors a i and a j 

involved that particular eta i j, so the weight updation or weight vector updation rule in 

this case can be simply like this initially I assumed. 
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That a i 0 is arbitrary for all i that is for every class I assume an arbitrary weight vector 

initially and then for any vector which is misclassified. So, with the help of this initial 

weight vector i have to form initial alpha which is just concatenation of all this different 

weight vectors. Using that I have to go for classification of the samples are the samples 

to be modified in this form whenever I know that our sample belongs to class omega i.  

So, for every such i I have to generate eta i j, but the i-th component will be equal to i 

and the j-th component will be minus y. So, I have to comp generate eta i 1, I have to 

generate eta i 2, I have to generate eta i 3, I have to generate up to eta i c. So, for each of 

these samples I have to generate c minus 1 number of sample vectors and I have to make, 



I have to ensure that each of those modified sample vectors are properly classified by the 

corresponding alpha.  

If any of those samples is not properly classified by alpha then I have to modify both a i 

as well as a j, so that weight updation rule will be a i K plus 1 will be is equal to a i K 

plus y K. This is the sample which is misclassified and this is what we have obtained 

using our percentile criteria this expression is same. So, we are incrementing a i in 

particular direction a j has to be incremented in a negated direction because we want to 

analyze a j.  

Else we want to revert the i and a j K plus 1 for this the weight updation rule will be this 

will be simply a j K minus y K, so I find that only two weight vectors. So, updating one 

is a i and a j for every eta i j which is misclassified and all other weight vectors will say 

that a l K plus 1 will remain as a l K where l is not equal to i and l is not equal to j. So, 

only i-th weight vector and the j-th weight vector these 2, we are modifying modification 

of i-th vector follows the same updation rule that we have obtained in the percentile 

criteria modification of the j-th weight vector a j similar updation rule.  

But, it is instead of incrementing we are decrementing it, so a i is actually rewarded a j is 

analyzed all other weight vectors other than a i and a j, they remain unchanged because 

these weight vectors really does not take part to tell us. Whether alpha transpose eta i j is 

greater than 0 or not these weight vectors do not tell us anything about this only the 

weight vectors say i and i j decide whether this condition will be satisfied or not is that. 

So, we are keeping a l K plus 1 is equal to a l K for all values of l, which is not equal to i 

and not equal to j and this kind of construction because we find that every time from a i 

we are constructing this with vector alpha.  

For every sample y we are constructing alpha eta i j this kind of construction is what is 

known as Keslers construction, yes one is sufficient. But, there is nothing wrong if you 

do both of them together because our aim is that we want to have a i transpose y minus a 

j transpose y greater than 0, so increment one reduce the other one. So, that this condition 

is reached quite fast is that if you do not do this will get the number of iterations that will 

be taken will be more nothing else, so let us stop here today. Thank you. 
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Neural Network for Pattern Recognition 

Good morning, so today we are going to start our discussion on use of neural network of 

pattern recognition, so far what we have discussed. Initially we started discussing about 

the base decision theory or you have seen that the classifiers are to be designed using the 

probability density function of that any samples. Later on we have gone to non 

parametric classification techniques where we have seen that different types of criteria 

functions like perceptron criteria relaxation criteria.  

Minimum squad error criteria which are to be designed which are to be minimized for 

designing of linear classifier, so before I actually go to this use of neural network for 

pattern recognition. Let me detail about two more techniques of non-parametric pattern 

classification pattern classification, so one of them non parametric technique for the 

pattern classification is called nearest neighbor rule. 
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Nearest neighbor classification or it is also called N N rule, so the only use this nearest 

neighbor classification technique what you do is instead of trying to find, design any 

classifier or any discriminate function. For any of the classes what I have is, I have a set 

of samples that samples coming from different classes, so if it is a 2 class problem I have 

training samples coming from two different classes. For a c class problem I have training 

samples coming from c different classes in nearest neighbor classification, what we do is 

whenever an unknown sample is given we have to classify. This unknown sample to one 

of the classes for which I have the training samples, so what I will simply do is I simply 

find out the nearest training sample which is nearest the unknown sample.  

That means you try to compute the distances from the unknown sample to on all other 

training sample feature provided and you find out the minimum of those distances. So, 

whichever sample is nearest to the unknown sample, or the distance is minimum I know 

what is the class belongingness of that particular sample of that training sample which is 

nearest with the unknown sample. So, accordingly you classify this unknown sample to 

that class of the training sample which is nearest. So, I have situation like this see if I 

have a set of training samples say these are the training samples which belong to one 

class and suppose these are the training samples that belong to another class.  

Suppose I have an unknown sample which is somewhere over here, so if these samples 

actually belong to class omega 1 and these are the samples which belong to class omega 



2, I just find out that which sample is nearest to this unknown sample. So, find that the 

distance between this sample and this sample is minimum, so the nearest sample is this 

one and this sample belongs to class omega 1. So, I simply classify this unknown sample 

to class omega 1, but this particular approach has a problem. The problem in the sense 

that is a sample nearest does not mean that it is most probable class, so I can have a 

situation something like this. 
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So, I put again I take 2 dimensional feature vectors having the feature component x 1 and 

x 2 and the samples are for one class it is something like this, and for another class the 

samples may be something like this. So, I said that these are the samples training samples 

taken from class omega 1 and these are the training samples taken from class omega 2 

and in over here if the unknown sample is somewhere at this position. So, find that as 

before this unknown sample will have a minimum distance from this training sample 

which belongs to class omega 2. So, I will classify this sample to belong to class omega 

2, however you find that here I have a single point a single sample from class omega 2.  

Whereas, I have more number of samples from class omega 1 which may actually or 

which would actually influence the classification of this unknown sample. But, without 

looking at the density of the training samples, we are blindly classifying this unknown 

sample to a class which is nearest to one of the training samples. So, this sort of nearest 

neighbor rule does not take into consideration the maximum probability of the class. So, 



a solution to this is that instead of taking a single point which is nearest to the unknown 

sample, you take a piece specified number of points which is more than 1. Then try to 

classify this unknown sample to one of the classes based on a voting mechanism which is 

given by those training samples where the number of training samples is pre specified. 
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So, accordingly we have a rule which is K nearest neighbor rule or K N N classification 

rule, so over here what you do is instead of taking single point which is nearest to the 

unknown sample. You take K number of points, K number of training samples which is 

nearest to the unknown sample and these samples. These K number of samples may 

come from single class may come from multiple number of classes and out of this K 

nearest neighbors or K nearest training samples that we get. You try to find out that 

which class is mostly occurring is maximally occurring in that K number of samples or K 

number of training samples. So, whichever class is maximally represented in that K 

number of samples you classify these unknown samples to that particular class so 

considering that. 

Student: Sir, how will that is K number of samples from omega 1 class or omega 2 class. 

It may be from any class, I just want that I have to have K number of samples which are 

nearest to the unknown sample I do not bother about whether it belong to class omega 1 

or it belongs to class omega 2. Once I have that K number of training samples from 

whichever class it is without any class consideration you take K number of training 



samples which are nearest to unknown samples. Within that K number of nearest 

samples, now you find out that from which of the class I have got maximum samples.  

So, which class is maximally represented in that K number of samples, so whichever 

class is maximally represented in that K number of samples, I classify the unknown 

sample to that particular class coming to this same example. Say, this is the position of 

the unknown sample and these are the samples which are from class omega 1, these are 

the samples from class omega 2. So, what I do is I try to incorporate K number of 

samples which are nearest to this, so for doing that what I have to do is I have to find out 

the distance of the training samples. Whether it is coming from class omega 1 or it is 

coming from class omega 2 irrespective of that I have to find out K number of samples 

which are nearest to this unknown sample.  

So, suppose I decide this value of K is equal to 5, let us take any value, so I will take 5 

samples which are nearest to this unknown sample, obviously this is nearest to this 

training sample. So, this will be included in that 5 samples among the remaining suppose 

this, this, this, these 3 of the samples or may be this one, say these 4 of the samples 

which are also nearest to this unknown sample. So, I have selected 5 number of samples, 

out of 5 you find that there are 4 samples which are coming from class omega 1 and I 

have only one sample which is coming from class omega 2.  

So, it is class omega 1 which is maximally represented in those 5 training samples, so I 

have to classify this unknown sample x, to class omega 1 rather than class omega 2. So, 

find the difference that if I go for simple nearest rule that is I find out one training 

sample which is nearest to the unknown sample. In that case, this unknown sample is 

classified to class omega 2 or as if I take 5 nearest samples and out of those 5 I find out 

which class is maximally represented.  

Here, it is class omega 1 which has 4 samples output, the 5 or as class omega 2 has got 

only 1 sample out of 5, so accordingly this unknown sample is classified as class omega 

1 rather than class omega 2. Now, naturally if I go for the nearest neighbor classification 

where value of K is equal to 1, the error rate or the errors bound will obviously more 

than error bound that you get by using base decision. Base minimum error classifier 

because in case of base minimum error classifier we classify an unknown sample to a 

class for which the probability of a particular class is maximum.  



In case of a single 1, N N or nearest neighbor classification rule, I am just taking a 

sample which is nearest to the unknown sample. That particular sample training sample 

may be just I may not have other training samples nearer to this belonging to the same 

class, so accordingly the probability of that particular in that region is very less. So, 

naturally the error that you get in case of nearest neighbor rule is more than the error that 

you get using base minimum error classifier or else. If I go for this classification where I 

am telling to find out that which class is maximally represented in those K number of 

training samples and it can be shown that if value of K as well as value of N by K.  

Where N is the total number of samples is very large in that case the error bound of K N 

N classification approach is the error bound of base minimum classification. The reason 

is very simple that if K is very large and also N by K is very large, then the number of 

samples within a small region that gives you good approximation of the probability 

density function of the samples tends to be in different classes. So, in the limit when K 

becomes very large as well as N by K becomes very large the error bound given by K N 

N classifier approach is that of the base minimum error.  

Classifier approach is that of the base minimum error classifier, now following this if I 

go for simply nearest neighbor rule, I should be able to find out what is the decision 

boundary between different classes. So, let us take a very simple example something like 

this say I have a number of samples say this is one sample, this is one sample, this is one, 

and this is one and I may have another samples somewhere over here. Let us assume that 

this sample belongs to class omega 1, this sample belongs to class omega 2, this sample 

belongs to class omega 3, this one belongs to class omega 4 and say this one belongs to 

class omega 5. Now, following nearest neighbor rule of I want to find out what is the 

decision bounded which separates all this different classes.  

So, find that whenever I go for nearest neighbor rule the nearest neighbor classifier is 

nothing but a minimum distance classifier because the class to which I am classifying 

this unknown sample I have one sample. From that class whose distance from the 

unknown sample is minimum, so naturally this is nothing but a minimum distance 

classifier. If I have a minimum distance classifier then the decision boundary between 

the two classes or where I have representatives of 2 classes, then the decision boundary 

is nothing but a perpendicular bisector or orthogonal bisector of the line joining those 2 

examples or those 2 representatives. 



So, following that you find that the decision boundary between class omega 1 and omega 

2 will be an orthogonal bisector of the line joining these two samples. So, the decision 

boundary that I have is simply this and it will be extended on this side as regards omega 

1, omega 2 and it will be extended on this side. Now, coming to the decision boundary 

between class omega 1 and omega 5, that will also be an orthogonal bisector of the line 

joining omega 1 and omega 5, so this decision boundary will be simply this. Similarly, 

the decision boundary between classes omega 1 and omega 3, that will be orthogonal 

bisector of this line.  

So, this particular decision boundary, sorry it will be something like this will be, this one 

in the same manner the decision boundary between omega 3 and omega 5 will be this 

between omega 5 and omega 4. It will be this between omega 2 and omega 4 the 

decision boundary will be this between omega 3 and omega 4 the decision boundary will 

be this. Between omega 2 and omega 5 the decision boundary will be like this is it so if I 

follow the nearest neighbor rule, I can very easily find out the decision boundary among 

different classes for which I have the training samples is it. So, these are the different 

non parametric techniques for classified design or for classification of unknown samples 

to one of the known classes. 
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So, now let us start our discussion on use of neural network for pattern recognition, so 

when we talk about a neural network neural network is nothing but a computational 



model which tries to imitate the human brain. So, when we talk about human brain or 

human nervous system this actually consists of a number of numerous of cells and in the 

nerve cell. The nerve cell is something like this if you draw any particular nerve cell it 

goes like this where this whole thing is a cell body, these are what are called dendrites or 

sensors inside I have the cell body and these 5, these are actually called axons.  

So, these dendrites of the sensors they actually sense different stimulus and that signal is 

carried to the brain by this axons. Now, depending upon what kind of stimulus or what 

kind of sensing this cell body has done the brain takes a particular axon decides an axon 

and sends that in information to or different muscles through a set of such neurons. Then 

we take certain axon by activating corresponding muscles, so when we talk about the 

neural network the neural network also tries to imitate a functional is something like this. 

So, our neuron model for machine intelligence or for artificial intelligence will be 

something like this. 
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Say I have to have something like a cell body and then I have to have a set of inputs 

which act as dendrites and then I have to have an output which will act as the axon. So, 

what I have is I give the feature vector as input to this neuron and our feature vectors are 

having different components x 1, x 2, x 3 up to say x N. If I have N dimensional feature 

vector then the cell body performs a weighted summation of these different feature 

components and weighted sum is read as an input of a non linear function. In most of the 



cases this non linear functions is some sort of threshold function or it may be account 

inverse non linear function as well as different types of neural networks used, different 

types of non linear.  

This is our output let us call it as y and because this will be this particular cell body will 

compute the weighted summation of this different feature components. So, I have to have 

the corresponding weights, so those weights are say W 1, W 2, W 3 and W 4, so what I 

have at the output of this is just like summation of W i x i where i varies from 1 to N. So, 

on this I have a nonlinear function F and there is one output Y if I use this non linearity 

as simple threshold function then what I will have is if this non linear output. If it greater 

than threshold, I set Y to 1 and if this is less than or equal to threshold I set Y to 0, so 

having this kind of functionality you find that it has a very close similarity with one of 

the linear discriminators that were designed earlier.  

That is we have said that g i x is greater than 0 it belongs to some class if it is less than 0 

it belongs to some other class and if I have a linear discriminant function that g i x is 

nothing but the summation of W x i, i varying from 1 to N. Where my feature vector is N 

dimension and if this function is greater than threshold I said y is equal to 1 indicating 

that this x belongs to 1 class. If this is less than or equal to threshold I set Y is equal to 0 

indicating that this x belongs to the other class, earlier we have said that if it is equal to 0. 

Then x actually belongs to the boundary, I can also put that condition over here if this 

function becomes equal to 0, I will not take any axon, whereas if it is less than 0, then 

only ill set y equals to 0.  

So, accordingly this function will be different from threshold function will be equal to 

will be different where if this weight age sum becomes equal to 0, then I will not take 

any axon. However, in case of linear function we have seen that before you go for 

designing the classifier you have to append one to the feature vector, so we get a 

modified feature vector. This purpose of this modified feature vector is that I can 

incorporate a bass weight with a different corresponding to different classes, that is W i 

0, I can also incorporate the same bias within a linear model what I do is I can simply. 
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So, let me draw the same neural model where I have this addition and I have different 

inputs, one of the inputs I can put equal to 1 constantly and the weight given to this 

corresponding input can be W not. Whereas, to other inputs I have the different 

components of the feature vectors that is x 1, x 2 up to x N the other functionality 

remains the same I have this non linearity and then I have get this output y is it. So, 

where here you find that output of this is summation of x i into W i, i varying from 1 to 

N plus W not and on top of that I put this non linearity which gives me the output Y.  

Again I can have similar kind of decision that Y will be set equal to 1, if this term is 

greater than threshold it will be set to 0, if this term is less than or equal to threshold and 

accordingly I can go for classification. So, find that in both the cases the model that we 

have is closely similar to what we have followed in case of linear discriminant function. 

We have seen that they have different approaches of designing linear discriminant 

function like percent criteria relaxation criteria mean square derive criteria minimum 

square derive criteria and so on.  

So, what I have to do whenever I go for designing such a kind of neuron is that I have to 

select the weights a W, i-th properly which was the purpose of having different types of 

criteria functions. We wanted to have different weight vectors a weight vector which 

gives you proper classification between 2 or more classes. So, here also the major task is 

to decide about this connection weights and that is what is done during training or 



learning of neural network and as it is very close to what we have got in case of 

perceptron criteria.  

A neural network formed out of such neuron models they are also called perceptron, so 

in the simplest case I can have a single output. So, single perceptron which is nothing but 

a single neuron like this, so in case of a single output single perceptron, the neural 

network is simply this. 
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So, now all this function we put in the form of a node these 2 taken together can be 

represented by a node, so when I say a node the node includes both this adder which 

performs the weighted summation as well as this non linear. So, I am, so node gives me 

this particular output for a given input, so a single output single perceptron is a single 

node something like this.  

So, which is a number of inputs and one output I can say that, so this is my neural node, 

let me not use M because in many cases we are using N to represent the dimension if I 

have a bass 1. One of the inputs will be equal to 1 and the other inputs will be the 

different component of the feature vector up to say x M, let us say. Here, my g i x what 

this node compute is simply summation of W i x i, i varying from 0 to M and we say that 

if this is greater than 0 then we say that the vector x belongs to class omega 1.  



If this is less than or let us include equal also if it is less than or equal to 0, we say that 

the sample x belongs to class omega 2. Now, in case of perceptron criteria we have said 

that this weight updation rule was that initially we decide W 0 to be arbitrary when we 

had the perceptron criteria initially decided that W 0 the weight. Initial weight is chosen 

arbitrary then at every iteration stage the weight was chosen as W K plus 1 was equal to 

W K plus eta times Y, this is what we had in case of perceptron criteria. 

Now, similarly in this case also we have to have some weight updation rule which will 

update the weights of the input links and this weight updation has to be done using the 

training samples that which is provided. So, we have to make use of all the training 

samples feature that are provided then keep on updating the weights until and unless we 

get the correct output. Since, the training samples we know what are the cross levels of 

the training samples then for attaining sample, I know what should be the corresponding 

output.  

Say if the, if a training sample x belongs to class omega 1, I know that output should be 

equal to 1, if the training sample belongs to class omega 2 I know that output of the 

neuron has to be equal to 0. So, what I can do is I can find out what is the difference 

between the target outputs if the actual output, I call it as weight output. That is what is 

expected and because of improper weights improper connection weights I may get an 

output which is actually the target output.  

So, the difference between the target output and the actual output is the error and all the 

weight updation rules connection which updates the connection weights. In a neural 

network it tries to minimize that output error because I know that what the exact output 

is, but should be my target output and what output I actually get. So, I can compute what 

is the error then try to minimize that error by modifying the connection weights, so over 

here you find that for a given input x for a given training sample x. 
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If I know that my output the target output is say d or as the actual output that is get is 

nothing but summation of W i x i where i varies from 0 to N. So, this is my target output, 

this is the actual output that I am getting, so the error is nothing but D minus d, I can 

have sum of squared error from this. So, I can say that sum of squared error, let me write 

it like sum of E is nothing but, half of summation d let me say that this is for p-th sample. 

So, the p, so I will have D p minus d p where p varies from 1 to N or N is the total 

number of training samples, so every sample i have an error take the summation of that 

error summation of square p f.  

The error which gives you the sum of squared error out of this if you find that the sum of 

squared error is actually a function of W, where W is the connection weight. So, the 

simplest approach that can be taken is you try to minimize this by differentiating this 

with respect to W and as W has got M plus 1 number of components. So, by 

differentiating this with respect to W and equating that to 0, I will get M plus 1 number 

of simultaneous linear equations. You solve that simultaneous that set of simultaneous 

linear equations which will give you the values of different components of W.  

Your set of different values of was your connection weights and your neural networks 

should give you that classification result whenever an unknown sample is fed to the input 

of the neural network. However, as we have done in our earlier case that instead of trying 

to solve this number of simultaneous equations we can have sequential algorithms or 



iterative algorithm which will iteratively update the weight vector or the connection 

weights. For that what we have to do is we have to go for gradient decent procedure 

pardon x is the input vector yes x i is different, you mean to say that I should put it as 

like this does it really matter if it is p-th sample.  

Yes I can put it like this also, this is the i-th component of p-th sample, you can put it 

like this, so we can again follow the gradient decent procedure for that we have to take 

the derivative of this square it with respect to or weight vector W. So, if I take the 

gradient of this say dell E upon say del W i which is the i-th component of the weight 

vector where this i varies from 0 to M as there are N number of M plus 1 number of 

components. Including that one that we have added as bias, so this dell E dell W i if you 

compute this it will simply become D minus d into x i. If you differentiate this with 

respect to W i then what i get is this D minus d is the actual output that I get lower case d 

is the target output, so D minus d is the error that I can easily compute into x i. 
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So, accordingly or weight updation rule will be W K plus 1 is equal to W K following 

that gradient procedure minus eta times D minus d into x i, so you find the difference 

between what we had in case of perceptron criteria. In case of perceptron criteria our 

weight updation rule was something like this that W K plus 1 is equal to W K plus eta 

times y where y is the vector. So, the entire weight vector was modified simultaneously 



and in this case it is that, know that differentiation you do it will come this because we 

are differentiating with respect to W i that is the i-th component of W.  

So, j-th component, that is W j x j which is the independent of W i that will become 0, so 

i will be left with only x i the contribution of this x i into this error term was W i into x i. 

So, what is the differentiation dell E dell W i is nothing but if I expand this whole term 

because this is square, I will have 2 into this into dell W i of D p minus d p summation. 

Student: Sir, this for p-th sample and for p-th sample. 

I am not for the time being i am not considering p-th sample given a particular sample 

what is the error, so given a sample the error is D minus d. 

Student: So, in that above equation there is the possibility that p-th. 

This is p-th sample this is for individual sample I am trying to compute what is the error 

for individual sample and whenever I face an error I am trying to modify the weight 

vector. So, you can say that this is the p-th sample variable, so this is what I have for an 

individual sample, so our training sample which is fed to the input I know what is the 

target output. That is what is d I know what is the output that I am actually getting that is 

D difference between these two my error, so the weight updation rule in this case. Unlike 

this case, perceptron criteria or the weight updation rule was this over here the weight 

updation rule is W K plus 1 is equal to W K minus eta times D.  

But, sorry this will be about i-th component because I am talking about i-th component 

W i K plus 1 is equal to W i K minus eta D minus d into x i where x i is the i-th 

component is that. So, this is what I have in case of a single output single perceptron this 

W i actually represents the connection weight from i-th component x i. So, this is my W 

i, so for every individual component I am doing it and this single output neuron 

perceptron actually takes care of only 2 class problem.  

If the output becomes 1, I will say that the sample belongs to 1 plus if the output belongs 

to becomes 0 I will say the sample belongs to another class. But, if I have multiple plus 

problems then this single output neuron model is not sufficient I have to have a neuron, I 

have to have a neural network having multiple numbers of outputs. 
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So, I have one input layer where I fill in the feature vectors and I have an output layer, 

but the neurons in the output layer are same as the number of classes that I have the 

inputs is the feature components. These are fed to input layer which is simply crossed to 

the output of the neural of the input layer neurons, so this is my say this is 1 then x 1, x 2 

say this is x i. Then I have this x M, I have the connections from outputs of each of the 

input the neuron to the input of every neuron of the output layer.  

So, I have connections like this and these are my outputs, so I represent the connection 

weights as W i j. So, this W i j connection weight means that this is the weight of the 

connection from i-th node of the input layer to the j-th node of the output layer. So, this 

W i j this represents say this may be my i-th node of the input layer, and this is the j-th 

node in the output layer, so this connection weight from the i-th node of the input layer 

to the j-th of the output layer.  

So, this is represented by W i j, so accordingly you find that if this output i say Y j, so 

this Y j will be nothing but Y j summation of W i j x i, i varying from 1 to or 0 to M then 

the non linearity which is applied at the output of the output layer nodes. So, for different 

values of i the individual components are being weighted by the corresponding W i j, so 

the output layer what I get is W i j into x i. This also inputs the bias because I have 

started i equal to 0 M, so i equal to 0 means this W 0 j this connection component will 

actually correspond to the bias or bias way.  



So, I have this Y j which is a non linear function of sum of W i j into x i where i varies 

from 0 to M in some cases. As we said earlier that this non linearity can be a threshold 

function, in other cases the non linearity can also be a sigmoidal function, but the 

sigmoidal function is.  

Student: Over here input in node is only single, it may be multiple links. 

Pardon  

Student: In the first column of the notes why there is single input is having, in previous 

case we have multiple are there. 
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You are talking about this one, here this is my say actually each of these are actually 

nodes because when I am feeding this inputs where do I feed these are actually nodes 

which are unit again nodes. That means whatever is fed to the input that is simply passed 

to output when I say that the number of layers this input layer is not really specified 

because this comes by default. 

Student: So, single input is input to these nodes 

Input to this nodes, here I said that this single layer single output neural network when I 

say single layer apart from this input layer how many layers I have. So, that is only 1 



here also it is single layer I have only the output layer input layer comes by default it is 

simply what I hook into the inputs.  

So, whatever input you are feeding here the same input is simply crossed to the output 

and when these are connecting to the inputs of the output layer nodes. So, every such 

input or output of the input layer node that gets weighted by the corresponding 

connection weight. So, accordingly the input to each of the output layer node that is input 

to the j-th output layer node is this part of W i j x i, I can consider that this is the input to 

the j-th output layer node. 
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This node I can break actually in 2 parts every output layer, node I can break into 2 parts 

one portion computes the summation and the other portion gives you the non linearity. 

That is F coming to our initial nodes followed by for which we have defined I have an 

adore unit followed by a non linearity. So, I can say that each of these nodes actually are 

broken into 2 parts, one part computes the summation which is this followed by non 

linearity f that is not layer multiple layers I will come later on. So, because this question 

has come let me just clarify this say what we have done in case of this single layer single 

output neural layer network I get a liner equation of this form.  

This linear equation is equation of single straight line is that if the point when it is greater 

than 0 means a point which risen the positive of the straight line which is given by this 

equation. Here, if it is less than 0 means the point which belongs to the negative side of 



the straight line given by this equation. So, this single layer single output neural network 

actually divides the feature space into 2 half line, one half is positive the other half is 

negative extending that to this single layer multiple output neural network. You find that 

each of these output neurons actually defines equation of a straight line is it not because 

this W i j into x i, i varying from 0 to M for a particular j it gives me equation of one 

straight line.  

For another value of j it gives me equation another straight line, so when I have, say on 

this output layer that if I have a c class problem I have C number of output layer nodes 

every node corresponding to one class. So, when I have this C number of output layer 

nodes each of these nodes define equation of the straight line or each of them give you a 

linear equation which is the discriminant function for individual classes. For 

classification I will come later on, what I will do is I will find out that 4 are given input 

which of these output layer nodes gives you the maximum output.  

This sample will be classified to that particular class which gives the maximum output 

which is nothing but discriminant function. That we have said in other cases coming to a 

linear seperability because each of them are actually representing your linear equations. 

So, it assumes that the classes are linearly separable what you do in the classes are not 

linearly separable then this single layer will not be sufficient I have to go for multiple 

layers. So, when I go for multiple layers what I get is a non linear boundary is actually 

broken into linear cases. So, piece wise linear approximation is required, so I will come 

to that later on, let us stop here today.  

Thank you. 


