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Good morning, so we are going to continue our discussion on neural network for pattern 

recognition. So, firstly I will just briefly go through, what we have done in our last class 

and then we will proceed further. So, in the last class we have talked about a single layer 

single output neural network, where when I say it is single layer, basically there are two 

layers. One of the layers is the input layer and the nodes in the input layer are simply 

used to connect the feature vectors.  

So, the purpose of this input layer node is whatever is inputted to the input layer nodes, 

those nodes simply forward that input to the layer above it. And those inputs get 

weighted by the corresponding connection weights connecting the input layers to the 

layer above it, and summed up at the next layer and on top of that you apply some of sort 

of non-linearity. 

(Refer Slide Time: 01:23) 

 

So, effectively the single layer, single output neural network, we have said was 

something like this, that it has a number of input layer nodes. So, this is the layer which 



is input layer. So, the number of nodes in the input layer is same as the dimensionality of 

the feature vectors, last one which is used to take care of the bias weight. And the 

number of nodes in the output layer in this case will be only one, which will indicate 

either one of the two classes.  

So, if the output of the output layer node is greater than threshold in which is the output 

of the output layer node will set equal to one, which will indicate say plus one and if the 

output is zero, it will indicate plus 2. So, the connections that will have is something like 

this. So, here I have x 0, which is usually set to 1 and the connection weight over here is 

the W 0, which takes care of the bias word. Whereas, the other inputs will have a 

different feature components x 1, x 2 up to say x n and the corresponding connection 

weights are W 1 W 2 up to W n.  

And output of the output layer node, which later say that this output is equal to D. So, 

this is my output layer node, where D will be equal to the weighted sum of the input 

feature vector components. So, it will be simply summation of W i x i, where i varies 

from 0 to N, where N is the dimensionality of the future vector and x 0 which is usually 

set to 1, that is to take care of the bias weight.  

So, then what we said is while training the neural network, you have to decide this 

connection weights or what will be the weight vector that will classify the unknown 

future vectors between one of the 2 classes, say class omega 1 and class omega 2. Now, 

while training because all the future vectors which are given, we know what is the class 

belongingness of those feature vectors. So, we effectively know that what expected 

output is. 

So, if I take training sample, a training feature vector which we know that the training 

feature belongs to class omega 1, we know that the corresponding output as to be equal 

1. If I know that the future vectors belong to class omega 2, then it is known that the 

corresponding output has to be equal to 0. So, for that any sample or for each of the 

sample which is presented to the neural network, we know what the corresponding 

output is. 

And because initially, the weights are not set properly because we start with arbitrarily 

set weights of very low value. So, even if our training sample which belongs to the class 

omega 1 is given to the neutral network, the output may be 0 or output may have any of 



the continuous value between 0 and 1. So, it may not be equal to 1, so what is the 

expected output and what is the actual output that you get the difference between that 

between these 2 is the error. So, if I say that my actual output that I obtain after inputting 

attaining example is given by the expected output is d and the actual output that I get 

capital, which is nothing but the summation W i x i, i value is from 0 to n. 
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And then using the difference between these two, I can define what the error is. So, if I 

define the squared error, the squared error is given by E is equal to half of D, which is 

the actual output minus the expected output or which is also called as target output. So, 

capital D minus d whole square this is my squared error. So, while training the neural 

network, the aim is that we should be able to select the weight vectors of connection 

weights in such a way that, this sum of squared error will be minimised.  

So, for that again we can make use of the gradient descent procedure. So, for making use 

of the gradient descent procedure, you have to find out what is the gradient of the error 

with respect the weight vectors. So, what I have to find out is del E upon del W i for a 

particular weight vector. And if I compute this term, you find that this is nothing but if I 

take the derivative of this with respect to W i, this will be simply d capital D minus d 

into the del capital D minus d upon del W i.  

So, it is capital d minus d into del W i of capital D minus lower case d. So, if I just 

concentrate on this particular, because there was question on how to indicate this. So, if I 



concentrate on this particular term and you find that this work is this. So, what I am 

trying to find out now is, what is del, del W i of capital D minus lower case d. So, as I 

said this lower case d, this is our expected output or target output so that is fixed. Given a 

training sample as I know what the class belongingness of training sample is so my target 

output is fixed, this does not depend upon the W i.  

So, this derivative del, del W i into capital D minus lower case d, this is nothing but del, 

del W i of capital D because lower case d is independent on W i. And this capital D is 

nothing but summation of W i x i, where i varies from 0 to capital N. So, find that if I 

take the derivative of the summation with respect to W i, then only term that remains is 

nothing but x i because all of the terms are independent of W i, only W i times xi that is 

dependent only on W i and if I take the derivative it simply becomes W i.  

So, that is why this del E del W i that we have obtained as capital D minus lower case d 

into x i. So, only this simple derivative expression this has given me this particular 

expression. So, while the training the neural network as our aim to set the weight vectors. 

So, we have to go for a weight adjustment of that is what is neural network training? So, 

in this weight adjustment problem initially will have to start with arbitrary weight 

vectors. So, you select with some random weight vectors for different W i, you select 

some random values and the values are quite small. So, you generate small random 

values which are taken as W i or I generate a random web vector. 
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So, I have that W i 0, that is the initial with vector which is set randomly random, but 

very small value. And then in every iteration W i k plus 1 will be some update on W i k 

that was the value of W i in the previous iteration. So, this will be W i k minus eta and 

eta and our eta represents what is the date of convergence into this expression del E del 

W i, which is nothing but capital D minus lower case d into x i. So, this will simply be 

capital d minus lower case d into x i, this is my opted rule. So, how trained the neural 

network, you feed the training vectors one after another.  

For a every research training vector, you find out what is this component d minus capital 

D into x i, which is the input vector compound and this W i k was the previous vector. 

So, modify the previous weight according to this update formula, so that you do in the 

phosphors every sample, with every sample for the weight will be modified. So, was the 

weight is modified for every sample, I do not know whether if you sample for which the 

weight was modified, because after modification with the previous unclassified sample, 

victors are going getting modified treatment.  

So, it may happen with the previous sample either the previous sample will be properly 

classified or it will be wrongly classified. So, if it is wrongly classified I have to modify 

the weight vectors again. And this iteration is continued, until and unless either all the 

training vectors are properly classified or I come to a situation where the error that is d 

minus capital D minus d, that error is quite small. So, the convergence criteria of the 

termination criteria of this iterative algorithm will be that either, in a complete pass all 

the training samples are properly classified or I get an error or the error is big or small, 

the error which I can tolerate.  

So, that will be my termination criteria or convergence criteria for this training 

algorithm. So, with the single layer single output neural network, we have considered 

only two class problem, that is if the output is greater than threshold or if the output is 

greater than zero, I say that sample belongs to one class. If the output is less than zero, I 

say that the sample belongs to another class. So, the kind of thresholding which we are 

applying is a hard threshold, but when you have multiclass problems, naturally the 

multiclass problems cannot be taken care of by a single output. So, I have to have 

multiple outputs. So, that gives you multiple output single neural networks and the action 

of this will be similar to all linear machine.  
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In case of linear machine, we have said that for every class omega i, I have a 

discriminant function g i of x and we say that if g i of x is greater than g j of x for all g 

not equal to i. So, this indicates that the feature vector x belongs to class omega i, that is 

for every class, I have a discriminant function for the given unknown feature vector x, 

you compute the discriminant function for every class. And whichever class gives you 

the maximum value of the discriminant function, you assign this unknown feature vector 

x to the corresponding class. 

So, if I want to have this similar kind of action using this neural network, then obviously 

I have to have a neural network with multiple numbers of outputs. So, the input layer as 

before will remain same that is the number of neurons in the input layer will be same as 

the dimensionality of the feature victors of class 1, so that additional node takes care of 

the bias weight. And in the output layer, we have a number of nodes, which is equal to 

the number of classes that we have say if there are m numbers of classes, then in the 

output layer I have to have m number of nodes.  

And here I have n plus one number of nodes and n is the dimensional to open. So, you 

apply the feature vectors to this inputted nodes, as you have assume the first component 

is equal to 1, that takes care of the bias weight w 0 other components are x 1 x2 up to 

hear have its x i and here it is x n. Now, the connection is like this that for every inputted 

node, the output of a every node will be connected to the input of every node in the 



output. So, the connection will be like this. Let us consider one node so here this is j 

node.  

So, similarly it will be like this. Similarly, this will also be connected to every node in 

the output here. And these are the outputs from every output of the output layer node. 

Now, the output of the j node suppose, I call it j th node in the output layer. Output of the 

j th node in the output layer will be nothing but if I represent this by saying D j, which 

will be equal to some of W i j x i, where i varies from 0 to capital M. And what is W i j? 

And W i j is the connection weight from the output of the i th layer in the input node to 

the input of the j layer in the output node.  

So, when this is my i th node in the input layer and this is the j node in the output layer, 

this connection weight from the i th node in the input layer to the j th node in the output 

layer is W i j. So, given this sort of connection and the sort of network topology, here 

training of the neural network means that I have to select all the connection weights W i j 

for all values of i and all values of j. And unlikely in case of single layered network and 

single output neuron at the output was of scalar value, it was not a vector, it was a single 

value either 0 or 1.  

In case of multiple outputs, the output will not be a scalar, but the output will be vector 

because I have capital M number of components. All the output layer nodes will give me 

some output, so the output was also a vector not a scalar. However for unknown feature 

vector that is during training as well using the entire feature vector belonging, this is 

known. So if I know that a feature vectors belongs to class omega 3, I know my target 

output should be only the hard neuron in the output layer should give me a value 1. All 

other neutrons and output layer should give me value 0.  

If the feature vector belongs to class omega 1, then only the first output layer neutron 

should give me an output 1, all other output layer neurons should give value 1. So, my 

target feature vectors will have only one of the components to be equal to one, the rest of 

the components should be equal to 0. However, as initially the weight vectors are not 

properly set, I may get an output vector, which is not the same as target vector. So, 

accordingly the error that I get is affecting the difference between 2 vectors, the target 

vector and the actual vector. 
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So, accordingly we have to define the sum of squared error, which in this case, we can 

define as E is equal to half of D j minus lower case d j. So, this D j means the actual 

output of the j th neutron in the output layer or else this lower case d j, this indicates that 

what should be the value of the output of the j th neutron in the output layer in my target 

vector. And because I have M number of components in output vectors, so the sum of 

squared error will be simply this square, take the summation for j is equal to 1 to M as I 

have M number of components in the output vector.  

Now, given this, here again you find that for the training algorithm or for learning of the 

neural network I have to take the gradient of this with respect to W i j. Again following 

the similar derivative to procedure I can find out that this del E del W i j will be simply 

being D j minus d j into x i. Our x i is the i th component of the input feature vector. I 

will get the same, with following the same procedure I get this. So, once I get this, now 

my training algorithm before will be W i j 0, that is the initial weight.  

You have to set arbitrary or this will be random, but a small value and while iteration, 

this W i j k plus 1 will be equal to W i j k minus eta, which is nothing but that of 

convergence. This result set of convergence into D j minus d j, which is an error time x i. 

So, this is what the Training algorithm is. So, as before the training algorithm being an 

iterative procedure, I have to decide what are the convergence criteria. So, again the 

convergence criteria can be altered, all the training samples are correctly classified by a 



particular set up with vectors or I reached a condition at the electrons small that is the 

error is tolerable.  

Now, if you look at the disc made function that this kind of neural network actually 

imitates, this is the linear disc made function, because it is nothing but sum of W i x j for 

all values of i varies from 0 to M. So, it is a linear equation for fixed weighed vectors. 

So, that means for every neuron in the output layer node, actually gives me linear 

equation of the straight line or an equation of a hyper plane. So, that simply says that if 

the classes are linearly separable, I can design the decision boundary using this sort of 

neural network, but if they are not linearly separable a single layer neural network cannot 

give me the decision boundary. 
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So, let us take some few examples from say binary arithmetic. So, let us take the case of 

an AND gate. So, all of you know the truth table of an AND gate. If I have two variables 

x 1 x 2 and I have this output y, the truth table of the AND gate, it is simply 0 0 0 0 1 0 1 

0 0 and 1 1 1. I can consider these to be a 2-dimensional binary feature vector, x 1 x 2 to 

be 2 dimensional binary features, which can assume one of these four different values. 

And I want to design a neural network, which will give me the function of an AND gate, 

that means output should be equal to 1, only when both the feature components are equal 

to 1 and output should be 0, if any or both of the input feature components are equal to 0.  



So, if I plot it in the form of a graph something like this. This is my x 1 dimension, this is 

my x 2 dimension and this is the origin. So, for 0 0 I take 0 some over here, this is 0 and 

somewhat here it is 1. So, if x1 is 0 and x 2 is 0, so the output should be equal to 0, if x 1 

is 0 x 2 is 1, then also output should be equal to 0, if x 1 is 1 x 2 is 0 then also output 

should be equal to 0, if x 1 and x 2 both of them are 1 then output should be equal to 1. 

So, find that given this sort of the outputs, I can define a boundary line somewhere over 

here.  

So, this is my classifier and given the sort of classifier, you find that I can have a single 

layer, single output neuron network, which will give me this sort of decision boundary. 

And one of the possible neural networks that can give me the sort boundaries is like this. 

I will have three inputs and one output, so one of these three inputs will have input is 

equal to 1 and the other inputs will have my feature components x 1 and x 2. The 

connection weights can be something like this, I put minus 1.5 here, 1 here and 1 here 

and this is my output y.  

So, find that this y actually, gives me the equation of the straight line which is nothing 

but x 1 plus x 2 minus 1.5. So, here find that if any of the components or both of the 

components are 0, output is minus 1.5. If any of the components is 0 the other one is 1, 

then the output is minus 0.5. Now, in all three cases output is less than 0, if both this 

component are 1 then output is 0.5 which is greater than 0. So, whenever this y is less 

than 0, I can set output to be equal to 1, whenever y less than 0, I can set output to be 

equal to 0, whenever y greater than 0, I can set output is equal to one. So, this simple 

neural network can perform the function of AND gate.  
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Similarly, if I take another example that is an OR gate. In case of an OR gate, the similar 

plots should be something like this, that is this is x 1, this is x 2. I put 0 here, 0 here, 1 

somewhere here, 1 somewhere here. So, in case of OR gate, you find that only when 

both the inputs are 0, output is 0; if any of the input is 1 or both the inputs are 1, in that 

case output is 1. So, I have 1 here and 1 here and I have one here. Again in this case, I 

can define a straight line, which will separate between these 2 regions. And again a 

simple neural network like this with three input layer nodes and one output layer node, 

but this y again gives me linear equation, which are nothing but x 1 plus x 2 minus 0.5.  

So, here you find that both x 1 and x 2 both of them are 0, the output is minus 5 which is 

less than 0. In all other cases if any or both of them becomes 1, the output becomes 

greater than 0. So, following the same logic if the output is greater than 0, I put it to 1, if 

the output is greater than 0, I put it to 0. Then to find that this particular neural network 

will give me an OR function. 
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Now, if I take another gate of similar nature that is X-OR gate. In case of X-OR gate, if I 

put similar functions x 1 x 2, I put 0 here, 0 here, 1 here and say 1 here. In case of X-OR 

gate if the inputs are 0 0, the output is 0, if the input are 1 1 then also output is 0, if the 

inputs are 0 1 or 1 0 then only output is 1. So, I have a 1 here and I have 1 here. Now, 

given this sort of situation, you find that I cannot draw a single straight line which will 

separate this space where in one of the half space, the output 0 and the other half space, 

the output is 1.  

Effectively, what I need is I have to define two straight lines here so that I can put the 0 

output in one region and the output 1 to be in another region. So, this is very simple 

example and I cannot have the equation of a single straight line, which can divide this 

space into such a sort of region. So, naturally of single layer neural network cannot give 

me a solution for a simple problem something like this, of its other region cannot be 

divided into 2 half spaces using linear equation.  

So, exactly for this kind of situation or the region is not linearly separable, I have to go 

for multilayer neural network, the single neural network does not work for this set of 

spaces. So, I had to have multiple, a neural network are one of the layer, obviously the 

input layer, which we do not consider in deciding the number of layers and the other 

layer is the output layer. In case of single layer, we have the output layer and in between 

I have to have a number of hidden layers.  



And it is observed that if you have 2 hidden layers, 1 or 2 hidden layers, two at the most 

that is sufficient. Most of the practical problems should go for multilayer neural network 

with one output layer and 2 hidden layers or if the problem is simpler, we can have one 

output layer and one hidden layer. The number of nodes in the input layer will be same 

as the dimensionality of the feature vector plus 1, the number of nodes in the output layer 

will be same as the number of classes, for which we are designing the classify.  

And the number of nodes in the hidden layers those are actually variable. And so far 

there is no formal way in which you can decide that how many number of nodes in the 

hidden layer, which we have to have that type of problem. So, it depends upon how 

complex the decision boundaries are among the different classes. So, in case of this 

multilayer neural network, this is also called multilayer perceptron or MLP. 

(Refer Slide Time: 36:32) 

 

This is multilayer perceptron, we have obviously one layer which is input layer, we have 

one layer which is the output layer and we have either 1 or 2 hidden layers like this. So, 

this is my input layer, this is the output layer and these 2 are the hidden layers. So, as 

before the outputs from the k th layer goes to place of the k plus plus layer. And every 

neuron output of every neuron in the k th layer is connected to the input of every k th 

plus plus layer, so I have putted like this.  

So, similarly here all of them are connected. Similarly, here and finally, you get the 

output from the output layer nodes. So, when I consider any layers the k th layer. Now, 



find that the number of weight vectors that we have is much more than the number of 

weight vectors that we had in earlier classes, because from the nodes of every layer to the 

nodes of the upper layer is set of weight vectors. And the number of weight vectors of 

the sets of weight vectors that we have depends upon how many layers you have in this 

neural network. So, if I consider say node, and not only that each of the nodes, in all the 

layers except the input layer gives a non-linear function, employs a nonlinearity, which 

earlier this week said that, the small layers nonlinearity was hard non-linearity or 

threshold linearity. That is, over there are non-linear function in this case was something 

like this. 
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The non-linear function that we had also of this form that is, if y is less than 0 then 

output is 0, if y is greater than 0 then output is 1. So, this was also a non-linear function, 

but this nonlinearity was harder nonlinearity. Whereas in case of multilayer neural 

network, the nonlinearity which is used is not a hard non-linearity, but it is sort of 

sigmoidal function.  
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The sigmoid function is given by this expression, say if s is a argument, then r is which is 

a sigmoid function is 1 upon 1 plus e to the power minus s. And if you plot this R s 

verses s, this is the s and this is R s, then the plot will b like this. You find that when s 

tends to minus infinity, R s tends to be 0 because as s tends minus infinity, this e to the 

power minus s that tends to be infinity. So, 1 upon this term tends to be 0. Similarly, as s 

tends to class infinity, then this R s tends to be equal to 1.  

So, I have the output function which is limited between 0 and 1, as s tends minus infinity 

R s tends to be 0, as s tends to minus infinity R s tends to be 1 and at s is equal to 0, the 

value of R s is equal to half. So, it is a symmetrical non-linear function around the values 

s is equal to 0. The advantages that we get by using this type of nonlinearity are that, this 

function is differential. In case of hard nonlinearity because I have a discontinuity act is 

equal to 0, it is not differentiable. As this function is a continuous function, it is 

differentiable and not only that, if I take the differentiation of R s del R s del s, that gives 

us a very simple form, this is nothing but R s into 1 minus R s. If you differentiate this R 

s with respect to layers will sort of differential output.  
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So, here I assume that in this multilayer neural network, I have total capital K plus 1 

number of layers. One of them is input layer and I have capital K number of layers 

including the hidden layers and the output layers. So, the total number of layers is K plus 

1. And when you say, we say that it is K layer MLP, where k indicates the number of 

layers excluding the input layer.  

Now, given this sort of situation, I have to when I talk about the input to a particular note 

or when I talk about output to a particular node, I also have to identify that which layer it 

is. So, I have to identify which layer and at the same time, which neuron in that 

particular layer. So, if I say the output of the K th layer neuon or say the i th node in the 

k th layer neuron. 
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Then that will be represented by x i k, this is output of i th neuron in the k th layer. Let 

me put it as lower case k, so it is a variable. So, we have said that capital K is number of 

layers. So, x i k as K superscript and i subscript, this represents output of i th neutron in 

the k th layer. And obviously this output is straight as an input to a node in the k plus 

plus layer. So, when I talk about the output of the k plus plus layer and the output of the j 

th neuron in the k plus plus layer, that I can write as x j k plus 1.  

This is output of the j th neuron in the k plus plus layer, which gets input this sort of 

input for different values of i. So, this I can write as W i j because every i th node in the 

k th layer, this j node in the k plus plus layer gets input. So, the W i j and between which 

2 layers so I write it as k plus 1 indicating that it is the connection weight between the k 

layer neutron and the k plus plus layer neuron. So, W i j with k plus 1 into x i k that is 

output of i th node in the k layer neuron.  

Take the summation of this, for i varying from 0 to let us put it is as M k indicating, I 

have M k number of nodes in the k th layer. And i is equal to 0 indicates that, if I want to 

incorporate any bias in the k th layer also, I can have bias only in the input layer, I can 

also have bias in every layer as well. So, M k is the number of nodes in the input layer 

and plus 1, so the total number of nodes in the input layer is M k plus 1. So, i set 0 is 

equal to M k and on top of this, I have to have this non-linearity.  



So, the whole thing will be a non-linear function of this, so R of this. So, output of the j 

th neuron in the k plus plus layer is the weighted sum or non-linear function of the 

weighted sum of outputs of all the neurons in the k th layer where, this weight is given 

by the corresponding connection bias j k plus. And this is valid for all the hidden nodes 

and output nodes. So, every node in every layer gets outputs from the nodes in the 

previous layer, except the input layer node.  

To the input layer node with great effect, the inputs and the output of the output layer 

nodes, that we get directly as outputs that is not fit to the neurons of any other layers. So, 

given this sort of formulation, of this sort of architecture of the multilayer neural 

network, here again I have to find out what will be my training procedure. So, to do the 

training procedure, I follow the similar type of approach that is the gradient descent 

approach. So, for that I have to find out what is the error I get at the output of every 

layer. 
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 So, finally, when I am saying that capital K indicates my output layer. Let us see that 

what is the either at the output. Every neuron except the input layer, in input layer it is 

unity. Just linear in an input, whatever is the input, to pass it to output, but in all other 

layers this nonlinearity. In case of single neutron, we said that this nonlinearity is present 

only in the output layers node not in the input layers node and there we have considered 

the nonlinearity to be hard threshold.  



Here we are considering this nonlinearity to be single sigmoidal function, it is in the hard 

threshold. No, that is what I am saying, we will come to realise that, why this 

nonlinearity are putting. We can do it definitely because that is also linear, but the 

problem was there is if you do not put any such limit, then your network may have 

becomes saturated. So, that is why you put the limit at every neuron. And we are not 

putting the hard threshold, but we are putting this continuous non-linearity, that is will be 

obviously talked about the training algorithms.  

Student: Sir, number of nodes in hidden layer that may vary layers to layers? 

May vary from layer to layer. 

Student: On what factors it may vary? 

That is what I said, there is no analytical approach to find out what is how many number 

of layers you need or the how many nodes in every hidden layers you need, there is no 

such analytical factors. 

Student: If we increase the numbers means the quality of output 

Up to some level the quality of output will increases beyond that the quality may fall.  

Student: This non linear function is different for different layers. 

It can be different for different layers or it can be same. The usual practices you use the 

same non-linear function. What is needed is in each of this layers the nonlinearity that 

you introduced, the nonlinearity should be a continuous function or it should be a 

derivable function or it should be able to find its derivatives, its derivatives should exists, 

that is the constant. Why as I said that will be clear, when I talk about the training 

algorithms. Why we want that this function should be differentiable function?  

So, what is the error, let us assume that in k th layer, as before the sum of squared error E 

will define as half of say x j k, that is the output that you get from the j th neuron in the k 

th layer minus the d j. Let us put k here also, that is the target output, square of this. Take 

the summation for j varying from 0 to M k and this is the number of nodes in the k th 

layer. Now, what is this x j k, this x j k is of this form. Here in place of k plus one, you 



would just take k and accordingly modify this expression. So, that is what is x i j, that is 

what I get from the j th neuron in the k th layer.  

So, to apply my training algorithm problem the between this and procedure are to take 

the trivet individual layers with respect to do to W i j k. So, what to find out is, I have to 

take del E del W i j k, what will be this? Again following the similar derivative approach, 

this will be simply x j k minus d j k into del of x j k upon del of w i j k. Now, here we 

find that, why I am putting this del of x j k del of W i j k, which I did not put because of 

single layer.  

The reason is this x j k is again a weighted sum of the output from the neurons from k 

minus first layer. And outputs of the k minus first player are actually weighted by the 

corresponding W i j k. So, I have to do this and not only that this x j k is now on non-

linear function of the weighted sum of the outputs of the k plus first layer neurons. So, 

when I take this gradient, this gradient has to take care of the nonlinearity as well. So, 

when I compute this, as I said earlier that the nonlinearity that I have is of this form R s 

is equal to 1 upon 1 plus E to the power of minus s.  

And if I take the derivative of this with respect to the W s, the derivative is like this. So, 

if I concentrate on this term that is del of x j k upon del of W i j k so this will be nothing 

but del w i j k of the non-linearity R of W i j k, x i k minus one. This summation will be 

for i is equal to 0 to M k minus 1. So, if I take this directive you will find that, this will 

be nothing but x j k into 1 minus x j k, coming from this particular expression times x i k 

minus 1. So, if I put this in this expression. 
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What I get is del E del W i j k, that will be simply x j k minus d j k into x j k into 1 minus 

x j into x i k minus 1. So, this will be the derivative of the error with respect to W i j k. 

So, naturally when I go for the iterative training algorithm, I have to use this derivative 

for updation of the reflectors and this is become from layer to layer. And in case of 

single layer output, it was only one layer now I have multilayer perceptron so this weight 

updation has to be done from layer to layer. So, let us stop here today, we will continue it 

in the next class.  

Thank you. 


