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Hello. So, in the last class we have started discussion on radial basis function neural 

network. We have seen that radial basis function neural network consists of three layers, 

1 is of course, the input layer and 1 of the three layers is output layer and in between the 

input layer and output layer we have a hidden layer. So, unlike in case of multilayer 

perception, where we can have 1 or more hidden layers. In case of the radial basis 

function network we have only 1 hidden layer, and every neuron in the hidden layer 

computes a radial basis function. 

So, when I have the neurons in the hidden layer. For every neuron, which computes a 

radial basis function, radial basis functional value for an input feature vector. Every bit 

radial basis function has got 2 parameters, 1 is called the receptor and other one, which 

defines the trade of the radial basis function. So, the architecture that we have is 

something like this. 
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We have 1 input layer, so the input layer contains a number of neurons and the number 

of neurons in the input layer is same as the dimensional, dimensionality of the feature 



vector. So, that if the feature vectors of are of dimension d, I will have d number of 

nodes in the input layer so there will be d number of nodes. When the dimensionality of 

the feature vector is d in the hidden layer I will have a number of nodes. 

And suppose the number of nodes in the hidden layer is M. So, as we discussed in our 

previous talks that the purpose of the hidden layer nodes is to project that d dimensional 

feature vector into a higher dimensional feature vector. So, as I have n number of nodes 

in the middle layer, so obviously this M the number of nodes in the hidden layer is 

greater than the dimensional. As we say it that every node in the hidden layer computes a 

basic radial basis function. 

Like this and at the output layer, which are basically the classifying neurons, I have the 

number of neurons of the number of nodes, which is the same as the number of classes 

that we have. So, if I have c number of classes then at the output layer I will have c 

number of neurons. 

So, there we have c number of neurons. Where c is the number of class in which the 

pattern has to be classified. Then every node in the input layer is connected is feeding 

input to every node in the hidden layer and output of the hidden layer every node output 

from the hidden layer is connected to every node in the output layer. So, I have the 

connections, which is something like this. 

 So, these are the connections from the input layer nodes to the hidden layer nodes. 

Because the purpose of this connection is simply to forward the input feature vector to 

the nodes in the hidden layer, we can assure the weight of each of this connection is 

equal to 1 and that is a difference with the connections from the hidden layer to the 

output layer nodes. Because, in every output layer node, computes a linear combination 

of the outputs of the hidden layer node. So, the connection from the output layer node to 

the connection from the hidden layer nodes to the output layer nodes is something like 

this. 

Where we can say that every field i th node in the hidden layer is connected to the j th 

node in the output layer to a connection weight, which is equal to W i j. So, because of 

this every node in the output layer computes a linear combination of the outputs of the 

hidden layer. Based on this, the value of this linear combination the output layer nodes 

decides to which class the input vector should be classified.  



Now, what can be d1 is these output and nodes can also impose a non-linear function to 

ensure that if a particular input feature vector belongs to class omega j. In that case only 

the output of the j th node will be equal to 1 and output of all other output will be equal 

to 0. Similarly, if a feature vector input feature vector belongs to say class 1 then only the 

output of the first node in the output layer will equal to 1 and outputs of all other nodes 

will be equal to 0.  

So, as I discussed in the previous class that search a radial basis function network and r b 

f network incorporates 2 types of learning. 1 is, we have to learn that for every node in 

the hidden layer, because every node in the hidden layer represents a radial basis 

function, what should be the receptor of that radial basis function and what should be the 

state of that radial basis function. 
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So, if the radial basis function is a caution function, that is if it is something like this, say 

phi of a x is equal to say e to the power minus x minus t square of this upon 2 sigma 

square, where t is the receptor and sigma which is the variance. It decides that what is the 

spread of reduces. So, every for every i th radial basis function y i x t i is the receptor and 

sigma i is the straight, so I have to know that what is the receptor for every radial basis 

function and what is the spread of every radial basis function. So, this is 1 level of 

learning and the second level of learning is once through these radial basis functions our 

d dimensional feature vector is projected onto a balanceable feature vector.  



Basically, what we are doing is, we are increasing the dimensionality of the feature 

vector. As we have indicated in our last class that the purpose of increasing 

dimensionality is that if the feature vectors are linearly non separable in the 

determination of spires will cost them into higher dimensional space. Then the possibility 

that they will be linearly separable in a higher dimensional space increases and this 

possibility increases with the value of M. So, as we increase the dimensionality more and 

more, the possibility of linear separability of the feature vectors also increases.  

So, the feature vectors in the d dimensional space, which am not linearly separable, when 

I asked them into an M dimensional space at M is greater than d, it is more likely that 

those feature vectors, will be linearly separable in an M dimensional space. Once the 

feature vectors are linearly separable in the M dimensional space, then the linear 

combination of the outputs of this ((Refer Time 10:53)) layers is likely to give me a cross 

belongingness. And that linear combination is decided by the weight vectors by the 

connection weights from the hidden layer nodes to the output layer nodes.  

So, we also have to learn that what should be the connection weight W i j from the i th 

node in the hidden layer to the j th node in the output layer. So, this is the second level of 

learning, so in the first level of learning for every radial basis function, which are to learn 

what is the receptor and what is the spread of radial basis function. 

In the second level, we try to learn what is the connection weight from the input layer 

from the hidden layer nodes to the output nodes. As we have discussed in the previous 

class that the usual way and common method of learning the radial basis function is if 

you are given a state of feature vectors of the training purpose. Suppose, value of M is 

equal to 3, so what we do is we partition weight of cluster the state of feature vectors into 

the number of clusters.  
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So, if we have M number of nodes in the hidden layer and I have say N number of 

feature vectors, N number of feature vectors, which are given for training purpose and I 

have M number of nodes in the hidden layer, obviously in this case N has to be greater 

than M. Otherwise, clustering N number of feature vectors into N number of clusters 

does not make any sense. 

So, I have to have more number of feature vectors than the number of clusters that I have 

to form. So, I cluster this N number of feature vectors into M number of clusters and I 

can assume that centroid or mean of every cluster represent the corresponding receptor. 

So, if I take i th cluster, i th cluster represents the receptor of the i th radial basis 

function, so the situation is something like this.  

If I have a set of feature vectors, say these are the feature vectors belonging to different 

classes. Typically, what I do is I cluster this feature vectors into three different clusters. 

Every cluster center now represents a receptor, so this is 1 receptor, this is 1 receptor, 

this is 1 receptor. So, this is the receptor t 1, this is the receptor t 2 and this is receptor t 

3. So, the first operation we have to perform is the cluster feature vectors and these 

clustering operations we will discuss in details in future lectures. Now, once I have these 

different receptors to find out what should be the spread of a particular radial basis 

function, what you do is force the i th receptor. I find out P number of nearest neighbors 



or P number of nearest receptors and for this P number of nearest receptors, I compute 

what is the mean distance or root mean square distance. 

So, there are different possibilities I can take any value I can choose any value out of 

these t number of receptor. So, what I do is the way I compute sigma i for the i th cluster 

of i th radial basis function is I have t i, which is the receptor for the i th radial basis 

function and then I take P number of nearest receptors, which are nearest to the t i. So, 

suppose 1 such receptor is t k, so what I do is I compute t i minus t k square, take 

summation of this for k is equal to 1 2 P as I have P number of receptors, 1 upon P of this 

and square root of this. So, this defines the spread of the i th radial basis function.  

So, for every i th radial basis function, I have t i and have sigma i and once these 2 

unknown then my radial basis function phi i of a x is simply e to the power minus x 

minus t i square upon 2 sigma i square. Now, let us see that by using this concept 

whether I can make a near classifier using the radial basis function concept for the x o 

problem and x o is very common problem, which is used for illustrating such operations.  
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So, as we have said earlier, if I take an x r function I have a 2-dimensional feature vector 

binary feature vector having components x 1 and x 2. Suppose, this represents 0, this is x 

1 equal to 1 here. I have x 2 is equal to 0 and here I have x 2 equals to 1. The value of the 

x o function when it is 0, 0 is equal to 0 0 1 the value is 1. 1 0 the value is 1 and 1 1 in 

the value is equal to 0. So, find that here I have 2 dimensional binary feature vectors and 



what I do is this 2 dimensional feature vector, I want to cost into a four dimensional 

space, by using four radial basis functions. So, I have the radial function, radial basis 

functions phi 1, phi 2, phi 3 and phi 4. 

For phi 1, I choose t 1, is equal to that is the receptor of the radial basis function phi 1. 

Similarly, for phi 2, I can choose t 2 which is a 0 1, that is the basic receptor of the radial 

basis function phi 2. Similarly, the receptors of other radial basis functions I can choose 

as t 3 is equal to 0 1 and for this I choose t 4 is equal to 1 1. So, these are the four 

receptors for the fourth radial basis functions.  

Next, I had to choose the spread sigma 1. For the first radial basis function I have to 

choose sigma 2 for the second radial basis function, sigma 3 for the third radial basis 

function and sigma 4 for the fourth radial basis function. Now, for this for every receptor 

I have to find out P number of nearest receptors and suppose I choose that the value of P 

is equal to 2. Now, here you find that for every receptor there are three neighbors, 2 of 

the neighbors are at a distance, are at distances of 1 and 1 of the neighbors is at a 

distance of 1.4, that is square root of 2. So, that is easily verifiable from here I have 

receptor over here, which is t 1, t 2 is at a distance 1, t 3 is at a distance 1, but t 4 is at a 

distance of square root of 2, which is 1.4 or 1.414. 

 So, when I take P is equal to 2, I had to take 2 nearest neighbors both of them are at 

distance 1 and root mean square distance of these 2 distances will also be equal to 1 so I 

have spread sigma 1 is equal to 1 I have spread sigma 2 also equal to 1, have spread 

sigma 3 also equal to 1 and have spread sigma 4 that also equal to 1. So, I get phi 1 x, 

which is of the form e to the power minus x minus t 1 square of this, upon 2 sigma on 1 

square and sigma 1 being equal to 1. This will be equal to 2.  

Similarly, for phi 2 x, I will have e to the power minus x minus t 2 square of this upon 2 

phi 3 x will be e to the power minus x minus t 3 upon 2 and phi 4 x. So, if I compute to 

these values for each of the feature vectors taking 0 0 is 1 of the feature vector 0 1 as 

another feature vector 1 0 as another feature vector and 1 1 as another feature vector the 

functional values will be something like this. 
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So, I put that in the form of a table here I have input feature vectors inputs are 0 0, 0 1, 1 

0 and 1 1 and I have the r p f functions phi 1 phi 2 phi 3 and phi 4. So, when you input 

the feature vector 0 0 to phi 1 you find that your x is equal to t 1. So, this exponent is 

equal to 0, which means that phi 1 x will be equal to 1. So, this phi 1 x over here this will 

be 1.0. Similarly, for phi 2 my x is 0 0 t 2 is 0 1, so if I compute this phi 2 x, you will 

find that this phi 2 x with be equal to 0.6. 

Similarly, I just put the values over here. Phi 3 x will also be 0.6 and phi 4 x will be 0.4. 

When the input vector is 0 1, phi 1 x will be 0.6, phi 2 x will be 1.0, phi 3 x will be 0.4, 

phi 4 x will be 0.6. For 1 0 this is 0.6, this is 0.4, this is 1.0, this is 0.6 again and for the 

input feature vector 1 1, I have phi 1 is equal to 0.4, phi 2 x will be 0.6, phi 3 x will be 

0.6 and phi 4 x that into 1.0. 

So, you find that given a 2 dimensional feature vector 0 0 this has been cost into a 4 

dimensional feature vector where the components of this 4 but, dimensional feature 

vector are 1.0, 0.6, 0.6 and 0.4. Similarly, 0 1 is a 2-dimensional input feature vector, 

which has been cast into a 4 dimensional feature vector the components being 0.6, 1.0, 

0.4 and 0.6. So, every input feature vector at the input feature vector is a 2-dimensional 

feature vector. Every 2-dimensional input feature vector is converted to a four 

dimensional feature vector by using four radial basis functions. Now, if a take a linear 

combination of this and for linear combination for phi 1 if I give an weight of, I give the 



weight for phi 1, I give an weight of minus 1, for phi 2, I give an weight of plus 1 for phi 

3, I give an weight of plus 1, for phi 4, I give an weight of minus 1. 

So, function that I will finally, compute at the output at a node in the output layer will be 

phi 2 plus phi 3 minus phi 1 minus phi 4 and if I compute this, let us see what are the 

values that I get. So, here I will write, sum of W i times phi i where i varies from 1 to 4. 

So, here it will be 0.6 plus 0.6 is 1.2 minus 1.4, this will be minus 0.2. Similarly, here it 

will be 1.4 minus 1.2, so it will be plus 0.2. Here, again it will be 1.4 minus 1.2, so it will 

be 0.2 and here it will be a h1 0.2 minus 1.4, so this is minus 0.2. 

And if I take a decision that if the value is more than 0 the output will be 1, if it is less 

than 0 without putting 0 then the final output that we have is here I write output. This 

will be 0, this will be 1 and this will be 0. So, which is nothing, but the extra function 

output. So, over here the architecture of the radial basis function that we have used is we 

had two input layer nodes. 
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Where x 1 is stretch to 1 node and x 2 is paid to another node, I had 4 nodes in the 

hidden layer, which computes the radial basis function. And I had 1 node in the output 

layer which I can say that it is finding out it is a non-linear operator or a threshhold 

operator. The connections are like this, but each of this collection has a connection 

weight is equal to 1. 



Over here these connections are as you can see over here phi 1 2 output layer node has a 

connection weight of minus 1, phi 2 2 output layer node has a connection weight of plus 

1 phi 3 2 output node again has a connection wide of plus 1 phi 4 2 output layer node has 

a connection weight of minus 1. So, here the connections are minus 1, plus 1, plus 1, 

minus 1 and this output actually gives me the x o function, okay? 

So, this example clearly shows that by casting the two-dimensional feature vectors into a 

four-dimensional feature vector. I can implement the x o function using a linear network 

or a single ((Refer Time 30:29)), because this part is nothing, but a single ((Refer Time 

30:34)). Now, let us theoretically try to find out or try to find out an expression for the 

training of the output layer or how do I find out this connection. So, in general I have a 

network something like this. 
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I have a set of input layers, set of input layer nodes, I have a set of hidden layer nodes 

and I have a set of output layer nodes. The feature vector is fed to the input layer nodes, 

so here I feed x, which are fed to the hidden layer nodes through connection weights, 

which are one and outputs of this hidden layer nodes. These are my radial basis 

functions. Outputs of the hidden layer nodes are connected to the output layer nodes. 

So, like this and I take the output from entry output layer node. So, if my input feature 

vector x belongs to the i th class then output of the i th output layer node will have a high 

value likely to be 1 and outputs of all other output layer nodes will have a low value 



likely to visit. I have shown that the i th node in the input layer is connected to the j th 

node of the output layer, through a connection weight say W i j. 
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So, given this, if I say the output of the i th j th layer node is o j, I will have o j is equal to 

sum of W i j times phi i X for an input vector X and this summation I have to compute 

over all nodes in the hidden layer. So, here I will have this summation has to be 

computed over i is equal to 1 to M, as I have M number of nodes in the hidden layer. 

Naturally over here, if this feature vector X centre it if X belongs to plus omega j then I 

had to have sum of W i j times phi i X, i is equal to 1 2 M. This has to be equal, this must 

be greater than 0. 

I will put this as plus 1 and if X does not belong to omega j that indicates that sum of W i 

j into phi i X, i varying from on to capital M that must be equal to 0 or I can also put it as 

minus 1. So, let us assume that if x belongs plus omega j W i j times phi I x that has 

equal to plus 1 and if x does not belong to omega j this has to be 0 and that is what have 

to be the output from the j th node in the output layer.  

Now, taking this, now I can go for training of the output layer that means I have to find 

out what should be the values of this W I j. Now, if I compute only the connection 

weights, if I write. Now, can consider only the connection weights, which are connected 

to the j th node in the output layer then for every vector X k, suppose I have capital N 

number of vectors. 
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So, I have vectors X k for k value from 1 to capital N. I have capital N number of input 

vectors, which are given for any training purpose or for learning as ((Refer Time 36:13)) 

then phi i of X k. For simplicity I will write this as phi i k. now, by using this I can as I 

said that sum of phi I x k into W i j k 

So, my condition is, if you remember this one, if you remember this one. So, sum of W i 

j into phi i k for i varying from 1 2 M. This has to be equal to plus 1 if X k belongs to 

plus omega j, if X k belongs to omega j and this has to be 0 if X k does not belong to 

omega j. So, this is the output that I expect, so for X k I have for every X k, I have such a 

kind of linear equation that this summation will be either plus 1 or 0 and all those capital 

in number of equations. Now, I can write in the form of matrix. 
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So, in the matrix form this can be written as, let me write the matrix equation that phi 1 

1, which means phi 1 X 1, phi 2 1 that is phi 2 of X 1, phi 3 1, phi M 1, this means phi M 

of X 1. Similarly, phi 1 2, which means phi 1 of X 2, phi 2 2, phi 3 2 upto phi M 2 and as 

I have capital M number of samples for training so I will have phi 1 N, phi 2 N, phi 3 N 

upto phi M N, which indicates phi M of X N into W 1 j, W 2 j upto W M j.  

So, you find that what it computes? W 1 j times phi 1 1 plus W 2 j times phi 2 1 continue 

like this W n j times phi M 1 that is for the first input vector x 1. Whatever is the output 

of individual middle layer nodes or hidden layer nodes. This equation simply makes a 

linear combination of outputs of the hidden layer nodes for the input feature 1 or X 1. So, 

this has to be equal to, again I put the output in the form vector b 1 j, b 2 j up b N j. For 

every b i j will be equal to 1.  

If the corresponding X belongs to plus omega j and that will be equal to 0, if the 

corresponding X i does not belong to plus omega j. So, every b I j will assume a binary 

value either 0 or 1. So, this b i j will be equal to 1. If X i the corresponding input vector 

X i on belongs to plus omega j, the j th class or it will be equal to 0, if X i does not 

belong to omega j. So, this is the kind of situation that I have.  
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This four expressions, this matrix equation I can write in a short form, that is phi W j is 

equal to b j at this phi is this matrix, W j is weight vector which are connected to the 

output layer node j and b j is the output of the j th node in the output layer, which is 

represented in the small vector like this for different input vectors. So, if the network is 

properly trained, that is of all the W i j has got the trained value then this equation should 

be satisfied.  

But, what we are trying to do is, we are trying to train the network that means we are 

trying to set the weights W j, so you cannot expect that this equation is satisfied initially. 

So, if this equation is not if this equality, this equality is not satisfied then what I can do 

is I can define an error e which is nothing but, phi W j minus b j. Now, training involves 

adaptation of this weight W j, so that this error can be minimized. 

So, in order to do that as we have done one earlier for mean square error optimization for 

mean square error technique for classified learning or classified training. I can also 

define here function criteria function j of W j, which is given by phi W j minus b j log of 

this and then I take the gradient with respect to W j, so grad of j W j which will be 

simply 2 phi transpose into phi W j minus b j. By equating this to 0 what we get is w j is 

equal to phi transpose phi inverse of this into phi transpose b j. 

As you have seen earlier this phi transpose phi inverse phi transpose phi inverse into phi 

transpose, this is what is called pseudo inverse and that is represented as phi plus. So, we 



have W j by this pseudo inverse technique, so we have this W j is equal to phi pseudo 

inverse into b j, by b j is defined before hand every component of b j will be either 1 or 0. 

It will be equal to 1 in the corresponding feature vector input feature vector belongs to 

plus omega j and the component will be equal to 0 if the corresponding input feature 

vector does not belong to plus omega j. So, I have this vector b j, phi actually indicates 

that what should be the output of the hidden layer nodes for every feature vector to from 

that I compute what is my matrix phi. So, once I have this matrix phi and I have this b j I 

can compute what will be the connection weights for different nodes in the hidden layer 

to the j th output layer node.  

This if I do for every output layer node I can compute what is the connection weight for 

from different outputs of the hidden layer nodes to different output layer nodes and that 

is what completes my training of the r p f neutral network and the r p f neural network 

ready for classification. Now, if you compare this r p f neural network with your against 

some multilayer perceptron you will find that the training of the r p f neural network is 

faster than the training in multilayer perceptron, because in case of multilayer perceptron 

the training is d1 by back propagation algorithm which takes large number of iterations. 

So, the training of the r p f neural network will be faster than training of the multilayer 

perceptron. 

The second advantage is that I can easily interpret, what is the meaning or what is the 

function of every node in the hidden layer, which is difficult in case of multilayer 

perceptron. I cannot easily interpret the role of different nodes in the hidden layer in case 

of multilayer perceptron. And not only that I also cannot easily decide that what should 

be the number of hidden layers and what should be the number of nodes in every hidden 

layer. So, those are the difficulties in case of multilayer perceptron, which is not there in 

case of r p f network. 

However, r p f network has a disadvantage that though the training is faster, but you find 

that the classification takes more time. In case of r p f network than in case of m l p, 

because in case of r p f network every node in the hidden layer has to compute the radial 

basis functional value for the input feature vector, which is time consuming function. So, 

the classification in case, the classification in case of r p f network takes more time than 

the classification time in case of multilayer preceptor, okay? So, with this so we come to 



a conclusion on the new radial basis function neural network. Now, over here I will just 

briefly discuss about another kind of classifier which is called a support vector machine. 
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So, I briefly discuss support vector machine. So, support vector machine is another type 

of linear classification. So, if you remember what we discussed in case of a linear 

classifier, that given a two class problem, we have said that I can define a discriminating 

function say g of X, which is of the form say W transpose X plus b. We have said in case 

of linear discriminator that if this g of X and W transpose X plus b this is greater than 0 

that indicates that feature vector X belongs to plus omega 1. If this is less than 0 then 

feature vector X belongs to plus omega 2. 

So, here we find that for classification purposes the actual value of g X is not really very 

important, but what is important is what is the sign of g X. If the sign is positive I infer 

that x belongs to plus omega 1 if the sign is negative I infer that x belongs to plus omega 

2, right? So, over here with every X, if I or if with every x I indicate a number say y I 

that y I can be either plus 1 or minus 1. 

In that case this Y I times W transpose X i plus b it will always be greater than 0. If the 

sample X i is properly classified, which is quite obvious, because if I say that Y i equal 

to plus 1 for a sample X which belongs to class omega 1 and for a sample which belongs 

to class omega 1 this W transpose X i is greater than 0 Y i is also positive. So, Y i times 

this will obviously be greater than 0 if X i belongs to class omega 2 then W transpose X i 



will be less than 0. For that I have set Y i equal to minus 1 times W transpose X i plus b 

will obviously be greater than 0. 

This is a concept that actually we have used when we have discussed about the 

perceptron criteria or designing the linear classifier that is for every feature vector 

belonging to class omega 2. We have negated the feature vector before we try to design 

the classifier, so that for every feature vector irrespective of whether the feature vector 

belongs to class omega 1 or the feature vector belongs to class omega 2 my discriminate 

function value will always be positive. 

If the feature vector is correctly classified, so that is to if the feature vector belongs to 

class omega 1 or even if the feature vector belongs to class omega 2, because of the 

feature vectors belonging to class omega 2 before trying to design the classifier we have 

negated this feature vector. So, we will discuss about the support vector machine more 

details in our next class. 

Thank you. 


