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Lecture - 4 

Feature Extraction – III 

 

Good morning, so continuing with our lecture on feature extraction, in the last class we 

have talked about one of the boundary feature, which we have said as signature. And we 

have said that the signature is obtained something like this. 
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That a given a two dimensional shape, what you have to do is you have to find out the 

centroid of this two dimensional shape. And if I take the horizontal line as the reference 

then I have to find out the distance of the boundary points from this centroid by at 

different orientations. So, if I take the orientation at an interval of say delta theta 

something like this. So, this is delta theta, and then if I plot theta versus l theta where at 

every instant of an interval of delta theta I will get some distance value and if I have a 

square or a rectangular shape like this then this distance with respect to theta will vary in 

this form. So, it is like this. 

In the same manner if I have some arbitrary shape again from the centroid of the shape 

you take the distance of the boundary points in different directions where this orientation 

this direction will be measured with respect to the line which is horizontal again I will 



get with respect to theta the distance of the boundary points from the centre which is 

given as l theta. And this l theta will also have some variation of this form. 

So, what I get is this 2 dimensional boundary information that is converted to a 1 

dimensional function where it is a distance function distance with respect to orientation 

that is theta. So, if I take this as the boundary signature then I can generate different 

types of features or feature vectors from this particular pattern itself and 1 of them is the 

moments. 

So, a moment of order say n that is given by mu n of l that will be nothing but l I minus 

m to the power n into p of l I take the summation for I varying from 0 to say capital A 

minus 1 where capital A is the number of samples that I have within this pattern. And 

what I have to compute is p of l i. So, how do I get this p of l i. If this distance values that 

we are getting that we quantize into a number of distance values. Usually this distance 

value will be a continuous value.' 

 So, what I have to do it is do is I have to quantize this distance values into a number of 

bins. And l i is the i th bin and once I quantize it then I have to find out that in i th bin 

how many distance values actually occur. So, for every i th bin I get the number of 

distance values occurring in that i th bin. So, effectively what I get is histogram of this 

quantized distance values. And if I normalize this histogram with respect to the number 

of samples that I have which in this case is a then what I get is some estimate of the 

probability of occurrence of the l i. 

 And then by using this expression I get the nth moment of the distance values are and m 

in this case is the mean of those distance values. And obviously you find that for n equal 

to 2 that is the second moment that has got a spatial significance because if I put n equal 

to 2 this simply becomes l i minus m square into p of l i take the summation which is 

nothing but the statistical variance which is sigma square. So, if I take the moments of 

different orders 2, 3, 4 and so on each of those moments becomes a feature which is a 

feature of this signature. So, these features can be used to represent this signature or it 

forms if I get a number of such features concatenated 1 after another I get a feature 

vector which represents this particular signature. So, this is also one of the boundary 

based features that can be used for recognition purpose. 
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Similarly, I can have other features the other 1 is Fourier descriptor. So, what is Fourier 

descriptor let us assume that we have a number of boundary points, so like this is in or 2 

dimensions. So, I have this x dimension and y dimension. So, every k th point in this 

boundary say this is my k th boundary point is actually a coordinate. So, I can say that 

this is k th boundary point s k is actually having the coordinates x k and y k. So, for 

different values of k I get set of different boundary points I can assume that this 

coordinate can be represented by a complex number. So, I can represent this as x k plus j 

y k. So, it is simply my y coordinate I am assuming to be the y axis I am assuming to be 

the imaginary axis. So, this coordinate I represent by a complex number. 

So, once I do this I can find the Fourier transform of this particular sequence of boundary 

points. So, this Fourier transform I will have. So, if I find out the Fourier transform I will 

get a u it is equal to s k e to the power minus j 2 pi u k upon capital N where k varies 

from 0 to capital N minus 1. And capital N is the total number of samples I have in this 

boundary representation. So, what I am simply doing is I have a set of 2 dimensional 

points which are nothing but the boundary points these points are represented as complex 

numbers. So, I have a set of complex numbers or a complex samples I take the Fourier 

transform of that set of complex numbers. 

So, I get this a u where u will also vary from 0 to capital N minus 1 because if I take the 

Fourier transform of n number of points I get n number of coefficients. So, this u also 



varies from 0 to capital N minus 1 that means I get capital N number of coefficients. So, 

this capital N number of coefficients can be represented as a vector. So, I have an n 

dimensional vector however we know that when I take a Fourier transformation, the 

higher order coefficient gives us the detailed information of the pattern. And the lower 

order coefficient gives us average information of the pattern. 

So, it is possible that if I am not much interested in the higher order coefficients or much 

detailed information within the pattern then I can truncate the vector. So, instead of 

considering all the n values of a u I may decide that I will take only m values of a u 

where m is much less than n, so that I can reduce the dimensionality of the feature 

vector. So, what is the effect if I reduce the dimensionality of the feature vector is that 

once I have taken the Fourier transformation and got the Fourier coefficients. If I take the 

inverse Fourier transformation then I should get back my original pattern or the original 

shape, but as the higher order coefficients I am removing from my feature vector.  

So, whatever the number of features that I have in my feature vector, if I take the inverse 

Fourier transformation of that in that case the detailed information present within my 

original shape they will be lost, but the total number of points will remain the same 

because when I truncate. And I want to take the inverse Fourier transformation to take 

the inverse Fourier transformation all the coefficients which I have removed I set those 

coefficients values equal to 0. And take the inverse Fourier transformation, so that my 

total number of points remain the same. Then how does it affect when I in the shape. 
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So, for example, if I have boundary points something like this. So, it is a square 

boundary and there are 20 boundary points. So, square boundary having 20 boundary 

points. So, when I take the Fourier transformation Fourier transformation will give me 20 

coefficients. So, out of this 20 if I decide that some of the higher order coefficient values 

I will remove.  

So, if for example, I decide that I will retain only 1 or 2 coefficients to represent to give 

me the Fourier descriptor, and using those 1 or 2 coefficients if I take the inverse Fourier 

transformation by setting the coefficients which are removed equal to 0. Then the kind of 

boundary after reconstruction what I will get is a circular boundary something like this. 

Though the number of points on the circular boundary will be equal to 20 I will have 20 

points on this boundary. 

So, all these 20 points will be there, but you find that all the detailed information which 

at there at the corners those detailed information are lost. The reason is very simple that 

if I take only 1 coefficient that simply gives you the d c value. So, your boundary will be 

an uniform boundary whereas, if instead of just 1 or 2 if I decide that I will retain say 15 

or say 16n coefficients and I will take the inverse Fourier transformation by using those 

16 coefficients the remaining 4 coefficients I want to make equal to 0. 

So, reconstructed boundary in that case will be something like this though the total 

number of points on this boundary will remain the same as 20, but you find that these 



corner information which is not there anymore. So, over here these detailed information 

are lost, but overall shape is retained. So, in some cases we may feel that even this kind 

of description is sufficient for all recognition purpose. So, instead of taking all that 20 

coefficients we may decide that I will take 16 coefficients or I will take 10 coefficients or 

even 8 coefficients as representation of this boundary.  

And using those 10 coefficients I get feature vector of dimension 10. And this feature 

vector I will use for recognition purpose. So, these are the various boundary based 

description techniques. Now, let us go to the inside the boundary that what are the 

different kind of region descriptors or region based features that we can extract which 

can help us in the recognition process. 
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So, let us take some region features suppose I have a close boundary something like this. 

Now, far the descriptors that we have discussed those descriptors are based on the 

boundary information. That means it makes use of only the information which is given 

by the boundary I have not made use of any information which is their inside. 

Now, there are different other type of features also which are shape features or boundary 

based features and there are n number of such different features. So, I am not going to 

discuss all of them, but just the concept that I can obtain features only from the 

boundaries and this simply gives you the shape information it does not tell you anything 

what is the inside the shape. 



Now, coming to the region features this region can have different kinds of textures. So, 

this bounded region can have different types of textures or it can have different types of 

colours or different regions if it is a black and white image un textured that is a uniform 

region can have different intensity values. So, this intensity value itself can be 1 feature 

the colour information of the region can be 1 feature as well as texture of that region can 

be another feature. 

So, I can obtain the descriptors or the feature vectors corresponding to either feature 

corresponding to colour or even corresponding to the intensity value. So, if it is intensity 

value it is a scalar function. So, I get a single feature it is not a feature vector, but that 

feature can be combined with other features to give a feature vector. 

So, let us first consider what are the different types of texture features, that I can obtain 

from a textured region. So, I will talk about the other extraction techniques like colours 

later on, but first let us talk about the texture feature. So, when I go for feature region 

feature extraction I can have 2 types of approaches 1 is I can extract the features using 

the spatial domain information itself or even I can do some sort of transformation. And I 

can take the transform this feature 

So, like this what I have shown in this case with respect to signatures over here the 

signature is a pattern. So, if I take the samples on this pattern that itself becomes a 

feature vector or I can take the different moments of this that becomes a feature vector 

the moments become a feature vector. If I take the Fourier transformation of this pattern 

the Fourier transformation coefficients become a feature vector. 

So, either I can take the features from the spatial domain that is from the raw data or I 

can also extract the features after taking transformation of the raw data. So, I can extract 

both spatial domain features as well as transformation domain features. So, I will have 

either spatial domain features or I can have transformed domain features. So, let us first 

see that what kind of spatial domain features that can be obtained from a texture. 
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So, when we talk about spatial domain features particularly in case of texture the features 

are obtained from a matrix which is called co occurrence matrix. So, co occurrence 

matrix is defined like this say A l theta i j where l theta taken together defines a 

parameter which is called a position parameter p, l tells you what is the distance and 

theta tells you what is the direction. And i and j are 2 intensity values as we have seen it 

is a co occurrence matrix it tells you that what is the frequency at which an intensity 

value i and an intensity value j will occur together, where the position of i is defined by 

this position parameter p with respect to intensity value j is that. 

That means I will have in the image intensity value i or i th intensity value which is at a 

distance l in the direction theta from another pixel having an intensity value j. So, I have 

to count that how many times this i j pair following this position parameter p occur 

within the image. So, that count that number gives me an element a i j in the matrix A l 

theta p. So, after obtaining this matrix the number of counts in which this intensity pair i 

and j following this position parameter p occur within a given image.  

And if I normalize that then what I get is the frequency of occurrence or the probability 

of occurrence of the intensity pair i j within the image following this position parameter 

p. So, let us take very simple example suppose I have a sample image something like 

this. So, suppose this is my sample image and I want to determine this particular matrix 



A and suppose the value of a l is 1 that means I have to find out the pixel pairs intensity 

value pairs at distance 1 and at an angle of 45 degree. So, how will be this matrix.  

Now, here you find that there are 3 different intensity levels 0 1 and 2. So, these are the 3 

different intensity levels. So, naturally this matrix A will be of dimension 3 by 3 because 

it is indexed by intensity values i and j, i and j are nothing but the intensity values. So, 

the matrix A will also be of dimension 3 by 3. Now, to compute the 0eth element A l 

theta 0 0 both i and j they are 0. So, I have to find out the 0 0 pair occurring like this at a 

distance of 1 and inclined by an angle of 45 degree. So, when you come to this particular 

image sample image you find that this kind of combination I have over, one over here, 

one over here right, one over here is there anymore and of course. 

So, I have 4 such occurrences where this 0 0 intensity value they appear following our 

position parameter 145 degree. So, A 0 0 will have a value 4 over here then coming to 0 

1 I have to have a pattern of this form 1 0 I do not bother about these 2 locations because 

my position parameter is 1 direction is 45 degree and 0 1 means the occurrence of 0 with 

respect to 1 following this position parameter. So, the kind of intensity pairs that I have 

to have is 1 0 like this I do not bother about these 2 whatever be the value of these 2 that 

is immaterial to me. 

So, you find that how many such occurrences I have within this image 1 0, 1 is over here 

1 0 and 1 is over here. So, this value will be 2. So, if you compute like this all the pairs 

where the intensity values are 1 of 0, 1. And then you get this matrix as four 2 1 2 3 2 0 2 

0. So, this is matrix A A l theta i j where this is the kind of occurrences of the intensity 

pair that I will have.  

Now, from this matrix I compute the co occurrence matrix C which is nothing but 

normalization of this matrix l theta with respect to total number of occurrences. So, if I 

take the sum of all these elements in the matrix theta that gives you the total number of 

occurrences of the intensity pairs. So, divide this A by total by the sum of the elements in 

this matrix A I get this co occurrence matrix C. 

So, this co occurrence matrix C simply tells me, what is the frequency of occurrence of 

different intensity pairs following this parameter position parameter p. So, I can have 

multiple numbers of such co occurrences co occurrence matrixes for multiple position 

parameters because I can define any position parameter. And for every such position 



parameter I will get a co occurrence matrix. So, find what do you get the information that 

you will get from this occurrence matrix because you are looking for the intensity pairs 

which occur within the image following some position parameter. So, it gives you 

various information like what is the regularity what is the interval at which the different 

intensity pairs they occur. So, various such information can be obtained from the 

occurrence matrix. And the kinds of features which are actually obtained which are 

computed from the co occurrence matrix are given by this. 
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One is the maximum probability. This maximum probability is nothing but max of C i j 

where the maximum is taken over i and j. So, this maximum value tells you that what the 

pattern predominant within the texture is. So, if I take different samples of the same 

texture then this max value will remain the same more or less same. So, this gives me an 

indication that how I can identify 2 patterns or 2 samples of the same pattern or 2 

samples of the same texture. If the texture are different textures are different then this 

max C i j will also be different I will get a maximum, but for different values of i and j 

not for the same values of i and j. So, this is 1 of the features that can be obtained from 

the co occurrence matrix. 

The second type of feature that can be obtained from the co occurrence matrix is element 

difference moment which is defined as i minus j to the power k C i j take the summation 

of this over i and j. So, what does this feature tell you find that you are taking i minus j to 



the power k into C i j. So, naturally these value will be minimum whenever i and j are 

same that is whenever i is equal to i is equal to j means I have this matrix i is equal to j 

means the elements on the main diagonal of the matrix. 

So, when I compute this the value will be very low if most of the C i j or the maximums 

of the C i j they appear along the main diagonal. If most of C i j are away from the main 

diagonal for all the elements away from the main diagonal the values of i minus j is high. 

So, the value will be more the summation sum of value will be more whereas, if C i j non 

most of the non 0 C i j or maximum values of C i j they appear along the main diagonal 

then this value will be more quite less. So, this is another feature describing the textures. 

The other can be just inverse of this which is called inverse element difference moment, 

where it is defined as C i j upon i minus j to the power k take the summation over i and j. 

And naturally this is not defined for i equal to j, because i equal to j i minus j to the 

power k becomes 0, so this term becomes undefined. So, it will have this inverse element 

difference moment will have just an inverse effect of element difference moment 

wherever element difference moment is high inverse element difference will be low and 

wherever the other 1 is low this 1 will be high. So, this gives you an indication of how 

the co occurrence matrix of a given texture look like. And if I have samples from the 

same co occurrence matrix from the samples of the same texture the co occurrence 

matrices will also be similar similarly, the other feature. 
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That can be obtained from the co occurrence matrix is what is called uniformity. And 

uniformity is simply defined as summation of C i j square you take the summation over i 

and j. And you will find that this value will be higher if all the C i j are similar or same. 

That means all the intensity pairs they are equally likely within the given image. So, that 

becomes a regular pattern. And the other features which is typically obtained from this C 

i j because C i j gives you the joint probability of occurrence jointly i and j, how do they 

occur following the position parameter. And whenever I have a probability measure I can 

define something called entropy. 

So, I can also find out what is the entropy and as you know that the definition of entropy 

is simply given by C i j then log with respect to base 2 of C i j take the summation over I 

and j and negate it. So, if every C i j value is random the entropy will be very high that 

means this value will be quite high if the C i j values are random whereas, if the C i j 

values are more or less same the entropy value will be very low. 

So, the entropy of a source which generates random symbols is quite high the entropy of 

a source which generates the same symbols or the symbols which can be predicted from 

the previous symbols that is very low. So, these are different kinds of features we can 

obtain in the spatial domain by making use of the co occurrence matrix of the texture. 

There are various other ways to generate the spatial domain features also, but I am not 

going into details all of them in fact there are numerous ways in which, the feature 

vectors can be generated.  

And the way you generate the feature vector that depends on what kind of application, 

you have maybe that for a kind of application you will be, you may find out, that you can 

generate some sort of feature which is not really even in textbooks that is also possible. 

So, what kind of feature you use for a particular application that depends on the 

application or that depends on the kind of objects that you have. Now, let us see that, 

what are the different kinds of transform domain features that can be obtained for 

textures. 
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So, let me go for the transform domain features. So, whenever we talk about 

transformation the first kind of transformation that comes into mind is the Fourier 

transformation, or that cosine transformation the difference between Fourier 

transformation and the cosine transformation is that Fourier transformation gives you the 

complex coefficients. So, you also have phase information embedded into the Fourier 

coefficients the cosine transformation or the discrete cosine transformation gives you the 

real coefficients. So, you lose the phase information, however both Fourier 

transformation and cosine transformation they are very popular in signal processing. 

Now, the problem with textures is that textures are some sort of random pattern they 

have both high frequency comp1nts as well as low frequency comp1nts. So, if I take the 

Fourier transformation or the discrete coefficient or the discrete cosine transformation of 

the textures. The Fourier coefficients or the DCT coefficients they do not give you much 

of discriminating power because I have all high frequency components as well as low 

frequency components appearing in different degrees in different types of 

transformations. 

So, the kind of transformation which has become very, very popular for characterizing or 

for describing textures is, one is wavelet transformation. And the most popular to 

represent textures or to describe textures is gabor filter or gabor transformation. So, let us 

first talk about the wavelet transformation. For those who have done my image 



processing course wavelet transformation was not covered I do not know whether others 

have done it have you done wavelet transformation. 
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So, let us see what is wavelet transformation when you take the Fourier transformation or 

cosine transformation what is it that you do effectively anybody have the answer what 

does this coefficients mean whether it is Fourier coefficients DCT coefficients ((Refer 

Time: 39:50)) that is what you effectively get, but what does the transformation give 

you. 

Whatever is the set of data you have you represent that set of data by a set of sinusoidal 

waves. So, if you have one dimensional signal you have one dimensional sinusoid, if you 

have two dimensional signal like images you have two dimensional sinusoid. For Fourier 

transformation I get two coefficients one is the cosine coefficient other one is the cosine 

coefficient the cosine coefficient gives you the real part and the sine coefficient gives 

you the imaginary part. 

These two taken together gives you the phase information when you take the cosine 

transformation I get only cosine coefficients I do not get the sine coefficients. So, 

effectively I lose the phase information. So, when I take Fourier transformation or cosine 

transformation as I represent the data by a set of sinusoidal waves these sinusoidal waves 

are infinitely extended. So, what I have is I can equivalently say that I have wave 



transformations even a set of samples I am representing them by a set of sinusoidal 

waves of different frequencies and different magnitudes different amplitudes. 

In case of wavelet transformation it is not wave it is wavelet that means part of wave or a 

small wave. So, in case of wavelet transformation the same signal is represented by tiny 

wave portions. Now, how I do not want to go into details of that because wavelet 

transformation will itself will be full time semester course, but I will simply touch up on 

how you implement wavelet transformation and what you get out of wavelet 

transformation. 

So, when we talk about the wavelet transformation it is something like this suppose I 

have a signal let us assume I have one dimensional signal initially. And suppose the 

signal has a bandwidth of say w, what wavelet transformation does is wavelet 

transformation breaks this signal into sub bands the total bandwidth is w. So, let us 

assume that it is 0 to w when I apply wavelet transformation wavelet transformation 

breaks this bandwidth into two sub bands one is 0 to w by 2 and other sub band is w by 2 

to w. 

When I continue further this 0 to w by 2 is further converted into 0 to w by 4 half of this. 

And the other sub band will be w by 4 to w by 2 and this one is retained w by 2 to w. So, 

I am always dividing the signal into a number of sub bands. And the same operation is 

repeated in the lower sub band. So, effectively what I get is a tree kind of structure. 

Now over here you find that I have the original signal of bandwidth 0 to w when I 

convert this into a signal of bandwidth of 0 to w by 2 naturally the detailed information 

present in the signal is lost because high frequency components I am removing. So, this 0 

to w by 2 it is a coarser version or a signal same signal at a lower resolution. Whereas, 

the higher sub band w by 2 to w that gives you the detail information which is present in 

the... 

So, I can represent this kind of filtering in the form of form like this. So, I have 2 filters 

one is a high pass filter of cut off frequency w by 2 and I have a low pass filter of the 

same cut off frequency w by 2. And this is my input signal say f I retain the output of the 

high pass filter. And this output of the low pass filter that again I want to sub divide into 

2 sub bands as has been d1 here 0 to w by 2 has been divided into this sub band whereas, 

the higher sub band w by 2 to w that has been retained. 



Now, there is information here that my original bandwidth was 0 to w. And from ((Refer 

Time: 44:14 ))sample rate you know, that when you have a bandwidth of w the minimum 

sampling frequency has to be twice of w that is what is your sampling ((Refer Time: 

44:25 )) sampling rate otherwise you lose the information. 

So, if I have total n number of samples within this to represent this particular signal. 

Now, because I am reducing the bandwidth to w by 2, so following the ((Refer Time: 

44:47)) t sampling rate my sampling frequency comes down by a factor of 2. So, I have 

to retain total n number of samples, but by using n by 2 numbers of samples I retain the 

same information. So, similarly here... So, there is a concept of sub sampling by a factor 

of 2. 

So, we find that when I have total n number of samples if I simply do the filtering low 

pass filtering and high pass filtering the output of this band will be n number of samples 

this band will also be n number of samples. So, total from n samples I generate 2 n 

samples, but I can reduce the size by using this concept of sub sampling by a factor of 2. 

So, this also reduces to n by 2 numbers of samples this also reduces to n by 2 numbers of 

samples. 

So, the total number of samples that I retain is again n. So, I go for this n by 2 sub 

sampling and this 1 I called as high frequency band and this is the low frequency band. 

Now, I apply the same filtering operation over here high pass filter over here low pass 

filter over here because I am going to further subdivide the signal into different sub 

bands. So, this is low pass filter this will again be sub sampled by a factor of 2, this will 

again be sub sampled by a factor of 2. So, that way your total numbers of samples remain 

the same. 

And this sub band now I call as LH because this was let me reverse this notation I call it 

HL because this sample was this sub band has been obtained by first low pass filtering of 

the original signal. And that sub band further high pass filtered. So, first low pass filtered 

then high pass filtered. And this sub band I call as LL this is low pass filtered low pass 

filtered. 

So, I can continue with this further to give me different levels of decomposition. And this 

set of coefficients that I get in different sub bands this is what my wavelet transformation 

coefficients are. So, this is what I have in case of one dimensional signal what do I have 



in case of images because image in a 2 dimensional signal. So, when I have images and 

that has two dimensional that is a two dimensional signal I can do high pass filtering 

horizontal direction I can do low pass filtering in horizontal direction, I can perform high 

pass filtering in vertical direction, I can also perform high pass filtering in vertical 

direction. So, I actually have 4 different combinations low pass filtering horizontally low 

pass filtering vertically high pass filtering horizontally low pass filtering vertically low 

pass filtering horizontally high pass filtering vertically high pass filtering horizontally 

high pass filtering vertically. 
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And all this different sub bands if I put in this form because every time I decompose by 

using sub sampling I reduce the image size by 4 half in the horizontal direction half in 

the vertical direction. So, you over here I put the sub band which is low pass filtered 

horizontally low pass filtered vertically. So, this is nothing but our reduced resolution 

version of the same image. Over here I can put that particular sub band which is high 

pass filtered horizontally low pass filtered vertically. Here I can put the sub band which 

is low pass filtered horizontally high pass filtered vertically and here I put HH band. 

Now, coming to different sub bands this is nothing but lower resolution of the same 

image what is this I am doing high pass filter horizontally low pass filter vertically high 

pass filtered horizontally means it will try to enhance all the vertical edges you are taking 



differentiation in the horizontal direction. So, all the vertical discontinuities will be 

highlighted. So, mainly the high vertical edges will be highlighted in this LH sub band. 

Similarly, HL sub band will highlight all the horizontal edges right HH which is high 

pass horizontal high pass vertical that will mostly highlight all the diagonal edges right 

then I perform further subdivision on this LL sub band go continue with this every time I 

get sub bands at different resolutions. So, that is what wavelet transformation? There is 

another concept which is called wavelet packet. Wavelet packet is I go for 

decomposition of each of these sub bands in case of wavelet only the LL sub band you 

go on decomposing in case of wavelet transformation packet. Wavelet packet 

transformation, you sub divide each of the sub bands. So, I get a set of different sub 

bands let me show an example of this.  
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So, this is an image suppose this is my original image after first level of decomposition I 

get this lower resolution version of the same image. Over here I have all the horizontal 

edges here the combination was different high pass filtered horizontal low pass filtered 

vertical it does not matter whether I put that sub band here or I put that sub band here. It 

is simply position and this is high, high HH sub band. So, this is what I have after first 

level of decomposition. After second level of decomposition this is what I get, because 

then this LL sub band is further sub divided after third level of decomposition this is 



what I get this LL sub band is further sub divided. Similarly, in case of wavelet packet 

transformation what I get is something like this. 
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This is a finger print image. So, you find that every sub band has been sub divided 

further. So, the size of every sub band is same after wavelet packet decomposition 

whereas, after wavelet decomposition as I go higher up in this tree the sub band size 

becomes lower and lower every time it is 1 fourth of the sub band size of the previous 

level. So, effectively what I do is given a signal I divide the signal I have broken the 

signal into a number of sub bands.  

Now, depending upon the type of the signal the energy of the coefficients in the energy 

sub bands will be different all the signals will not have the same energy in the same 

frequencies. So, if I compute the energy of these different sub bands put them in a 

particular order. Then this ordered arrangement of the energies of different sub bands 

that itself gives me a feature vector right, which can be used for pattern recognition 

purpose. Similarly, the other transformation that I was talking about is gabor filtering. A 

gabor filter is given by an expression like this. 
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Exponentiation of minus x hat square by sigma x square plus y times square by sigma y 

square into cosine 2 pi omega x time. So, this is my expression of the gabor filter. So, 

here you find that this term is nothing but a Gaussian envelope in 2 dimensions centred 

at 0. And this is a cosine term which actually modulates this Gaussian envelope. And this 

x prime and y prime are given by x prime is equal to x cosine theta plus y sine theta and 

y prime is minus x sin theta plus y cosine theta where theta is the orientation of this 

Gaussian envelope. 

So, if I convolve my image if I do filtering of my image using this Gaussian filter for 

different orientations for different values of omega and different values of this spread 

sigma x and sigma y I get different sets of coefficients. And that different set of 

coefficients can give me the feature information. And this particular filter is very, very 

popular for texture classification as well as texture segmentation. 
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Here, I want to show you just some result texture classification result that has been 

obtained using this sort of gabor filter coefficients. So, here you find that this is a 

combination of three textures 1 texture over here, one texture here and though here it 

appears to be two different textures, but it is the same texture, one is the rotated version 

of the other. And after classification using this gabor feature you find that this part has 

been put into one class this part has been put into another class, and this entire part has 

been put into another class similarly, in other examples. So, this clearly shows that gabor 

filter coefficients have high discriminating power of the textures and. So, this gabor filter 

coefficients can be used for texture descriptor and as well as for texture recognition 

purpose. So, we will stop here today. 

Thank you. 


