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Hello everyone. This is the 3rd lecture of analog integrated circuit design. First, a quick 

recap of what we learnt so far. Basic principle of negative feedback was to sense the 

difference between the desired value and the actual value and to integrate the error. So, 

to drive the desired value in the correct direction, integrate the error or the difference and 

you drive the output from the integrator, such that the error reduces. We look that couple 

of analogies like adjusting the speed of an automobile or adjusting the volume control 

knob and this is what you do. There are many other situations that you can think of. 

Also, we made an amplifier using this principle. 

We took the difference between v naught by k and the input v i and use them to integrate 

the difference and drive the output. In all these cases, we see that finally when studies 

state is reached here; it is assumed that the study state means the output is constant 

because the input is constant with time. When the steady state is reached, the output is 

the ideal value because the integrator will keep on changing its output if the input is not 

zero. 

So, knowingly way for the integrators output to be constant is for the input to be 0 and 

that will happen only if the actual output is equal to the desired output. So, the key to 

proper operation of the negative feedback loop is sensing because you can imagine that. 

For instance, if your speed of meter has an error, then however you drive it, you will 

finally reach the wrong value. 

So, what is the key to the negative feedback loop? It is the sensing and the sensing has to 

be accurate. This we will see repeatedly through the course. This is through an amplifier. 

This is true for amplifier as well because it does not matter exactly how you drive, 

whether you exhilarate fast or exhilarate slow, whether you integrate, whether you are 

integrating faster or slower, what matters is that you do it in the right direction and the 

right direction is given by the correct sensing. So, the sensing is the most crucial part of 

the negative feedback loop, and we will take lot of pain to make sure that the sensing is 



accurate when we build our circuits. So, using this basic principle of negative feedback 

loop, it derived our amplifier. 
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The amplifier looks like this. Omega u is the parameter of the integrator. It says how fast 

the integration is and we saw that for a constant v i. That is the only case we have 

considered so far. The output will reach k times v i. We also saw that the differential 

equation governing this system is, it is a first order differential equation and you can 

clearly see that the steady state solution that is from the derivative of v naught is 0. V 

naught equals k times v i and just to relate this to something, you already know the 

differential equation is the same as what you would see in a first order r c filter and the 

differential equation governing this system as you can see, the differential equations 

describing the amplifier that we design and the differential equation describing the r c 

filter are the same except for the constant k, which appears in the amplifier. 

So, the solutions to them are same as well and the solutions are given by. So, the first 

part is the initial condition which decays with the curtain time constant, and the second 

part is related to the input v i and it grows with the same time constant. It is exactly the 

same behavior that is seen in a first order r c filter. 
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So far we have examined the negative feedback amplifier with a constant input, and we 

see that it behaves ideally. So, the output will be equal to k times v i if you wait for long 

enough time and we also looked that how to calculate the amount of time for which we 

have to wait. Now, what we would like to do is, we also have to see what happens when 

the input is changing because in a real life situation, the input will not always be 

constant. We have to also examine for changing inputs. So, we will consider two types of 

changing inputs. First is a step input that is the input goes from being one particular 

constant to another constant and secondly, a sinusoidal input which is very useful input 

analysis systems because any signal can be decomposed is the sum of sinusoids. 

So, if you know the response of a system to a sinusoid, you can in theory compute the 

response to any other input signal. First, we will start with the step input. This case v i 

will go from constant to another constant and for simplicity, I will take the initial 

constant to be 0 and the final constant to be some v x. So, this is the nature of the input 

signal. Now, during this part when the input is constant, we assume that the system has 

reached steady state. So, v naught also will be equal to 0. This is known as the feedback 

voltage. The feedback voltage is v naught by k and that is also equal to 0 and the error 

naturally is also 0 and the steady state has reached. 

Now, what happens when you apply a step? There is a step and the output of the 

integrator cannot change suddenly. So, even after the input step, the output will still be at 



0. Then, what happens is because the feedback voltage is still 0, the error voltage will 

step up by v x. This is because the input has stepped the integrator, output has not 

changed. So, that means, the feedback voltage has not changed. So, the input to the 

integrator which is the error voltage steps up. 

Now, because it steps up, the output voltage starts increasing. Let me show this with the 

blue pen. So, this part here, the output start increasing and the initial slope of this is 

simply equal to omega u times v x because the step v x appears directly at the input of 

the integrator. So, the slope of the output equals the constant of the integrator omega u 

times the input step v x. 

Now, as the output increases in the feedback, voltage also increases which means that the 

error voltage decreases because we have a fixed input and the feedback voltage is 

increasing, and it is being subtracted from the input. So, the error voltage decreases. So, 

this means that the slope of the output reduces which reduces the slope of the feedback 

voltage, which further reduces the error. 

So, we have already solved this, but now we are looking at it intuitively as what happens 

step-by-step. So, this goes on until the slope becomes almost 0, and the output reaches 

the new steady state and the error does something like this. So, this will be the nature of 

the error. So, it will show an initial step. Initially the error becomes very large because 

the integrator cannot respond instantaneously to its input and then, after the error 

gradually reduces, and then becomes close to 0 and then, the new steady state is reached 

and the new steady state value is when the output v naught equals k times v x. 

So, this is what happens with a step input. We have already seen this from the solution of 

the differential equation. It is exactly the same thing that I have shown here. So, the 

output gradually approaches the ideal value and of some interest is this error will form. 

You can see that the error becomes very large equal to the input and then, comes down 

and gradually becomes 0. 
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So, this is again through every negative feedback amplifier because the error cannot 

immediately become 0. The tracking cannot be immediate. Again, we can take the 

analogy of driving the automobile. Let us say you are driving at 40 kilometers an hour 

and then, I say 50, that is I tell you to go at 50 kilometers an hour. We cannot 

instantaneously change from 40 to 50. It will take some time for you. So, during 

sometime, there will be a speed error that is the desired speed will be 50 and the actual 

speed will be different from 50. This is exactly what happens. 
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Just to look at this a little more that may draw the wave forms, the input waveform is like 

this and the output waveform should reach k times v x, but it does not do it 

instantaneously and I will also plot the error. This is the output v naught and this is the 

error v i minus v naught by k. So, that will be 0. Initially, it will also be 0 after steady 

state is reached, but in the middle, it jumps up and gradually comes down. 

Similarly, k times v x will not be reached instantaneously. It does something all that 

shown. Now, we already saw how long it takes to reach a certain percent of the steady 

state. Yesterday we evaluated that it takes 4.6 k by omega u, this much time to reach 99 

percent of steady state. So, we also see what happens if omega u increases. If omega u 

increases, then the amount of time taken to reach steady state is decreased. 

Now, what is the case for a higher value of omega u? So, let me do it here. So, for higher 

value of omega u, this rises up faster and it goes that way and the corresponding error 

waveform will be like that one. So, the error will still jump from 0 to a value equal to v 

x, but when omega u is larger, it comes down faster. When omega u is small, it takes a 

long time and this is of some interest in practical applications as well. This we will see 

later. 
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So, if you want to reduce the energy of the error, so to speak by energy I mean the area 

under this curve, you have to increase the value omega u. Higher value of omega u 

means that you have a faster approach to steady state. It also means that smaller energy 



by this. I simply mean the area under the error curve. So, to make the feedback system 

more accurate for step inputs, you have to increase the value of omega u. Now, the 

expression for the output is this. Once again let me emphasize that is for constant inputs 

v i. 

Now, in this expression you see that the time constant depends on omega u as well as k, 

that is the time constant is what decides how fast the steady state has reached, and that 

depends on the speed of integration omega u as well as the gain that you are trying to 

realize. So, let us quickly a look at why this is slow. So, first of all let me draw a unit 

step. Let me assume that this is the input to the system. 

So, there is one volt and this is v i. Now, what should happen if left side again is k? Then 

the output should be k volts and if the gain is some other k prime which is greater than k, 

it should be k prime volt. Now, the time constant of the system is k by omega u and you 

see that as you increase the value of k that is you try to make an amplifier with a higher 

gain, the time constant increases. 

So, let us quickly see why this is the case. Let me redraw the amplifier. Let me again 

assume that the output is initially 0. So, what happens if the output is 0 and if the input is 

a step, the feedback voltage is also 0 that is v naught by k also equals 0 initially. So, that 

means that all of the input steps appear at the input of the integrator. So, as we discussed 

just a few minutes before the output starts ramping up and the output starts ramping up at 

a rate which is omega u times the size of the input step and the input step is one volt. So, 

the slope is simply omega u volts per second. So, that is always the starting slope. 

Now, as the output increases, the value of the error decreases and the slope gradually 

reduces, but the initial slope is independent of the value of k. Let me draws this line all 

the way through. So, what happens is that for the k shown in the red that is for a gain of k 

is such with this slope and then, gradually reaches steady state and for the k shown in 

green, it again starts with the same slope and it has to reach a higher steady state. So, it 

has to increase to a larger value of the output. That is why it takes a longer time. That is 

the reason why the time constant is also proportional to the gain k. 

So, for a higher value of k, you have to reach a higher voltage and you always start with 

the same slope. So, it takes a longer time to reach the higher voltage. So, that is an 

intuitive explanation for why the time constant is higher when you try to make an 



amplifier with a higher gain. So, that is what happens when you excide the negative 

feedback amplifier with a step input that is we know two things. Now, first of all when 

the steady state, the output is ideal that is in steady state, the output voltage is k times the 

input voltage where k is the gain of the amplifier because the integrator output reaches 

steady state only when the input to the integrator is 0, that is when v i minus v naught by 

k equal 0. 

So, in steady state we have ideal behavior. Now, when you apply a step, what happens is 

that the integrator cannot respond instantaneously to a step. So, initially the integrator 

does not respond at all. The error will be quite large and as the integrator output ramps 

up, the error reduces and the error gradually reduces to 0, and the output gradually 

approaches steady state, and we also know how to calculate the amount of time during 

which it reaches a certain percentage of steady state, and we see that if you increase the 

value of omega u that is if you increase the speed of integration, you can reach steady 

state faster. This is intuitively obvious. If you ramp up faster, then you will reduce the 

error faster and you will reach the steady state quicker. We also see that the energy or the 

area under the error curve will be smaller if omega u is higher. 

Now, we also see that from the expression, the time constant depends not only on the 

speed of integration omega u, but also on the gain k. Now, this can be intuitively 

explained by looking at what happens when you apply a step input. When you apply a 

step input, the input to the integrator is the step itself initially because the feedback value 

does not change instantaneously. 

So, this means that when you apply a step, the output of the integrator does not change 

and then, it starts ramping up at a given slope and that slope is given by omega u. It is 

independent of k. Now, if the value of the gain k is larger, you have to reach a higher 

steady state because the output is k times the input and it takes a longer time. That is the 

reason why the time constant for a higher gain amplifier with the same integrator will be 

more than the time constant for a lower gain amplifier. 

We will now look at another type of time wearing input which is a sinusoidal input. As 

you know sinusoidal inputs are very convenient for analysis of linear system because 

when you apply a sinusoidal input, the output consists of a sinusoid of the same 

frequency and it modifies an amplitude and phase. So, this is described by the transfer 



function. So, it is very easy to evaluate the output of a linear system for a sinusoidal 

input. We also know that from Fourier series and Fourier transform, any input can be 

decomposed into sinusoids. 
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So, combining these two, we know that for any input we can find out the steady state of 

output easily by evaluating the response of the system to sinusoids. So, what we will be 

evaluating will be steady state response to sinusoids. We will ignore the transients. 

What we will be evaluating will be steady state output in response to sinusoidal inputs. 

We will be ignoring the transients, that is when you have a 0 input and then, you change 

to a sinusoidal input. The output will go through some transients and finally, reach 

sinusoidal steady state. What we will be evaluating is only the sinusoidal steady state 

will ignore the transients. 

Now, from the analysis of step inputs, we know how long it takes for transients to die 

out and when you have a sinusoidal input, it is about the same time that takes for the 

transients to die out. So, we will not analyze this. Further, we will only look at 

sinusoidal steady state. So, in this case we assume that the input as sinusoidal of 

frequency omega. So, this is the system we want to analyze, and we want to see what 

the output is in steady state and as we know, this is very convenient to analyze not in the 

time domain, but in the Laplace domain where we replace the integrator with its 

Laplace transfer equivalent. 



So, what is an integrator? In the time domain is the same as this algebraic operation in 

the Laplace domain that is omega u integral of time is the same as omega u by s is the 

same as multiplying the input by omega u by s, and you also see the dimensional 

consistency. Here, omega u has dimensions of frequency and s also has dimensions of 

frequency. So, the transfer function is dimensional less. If you apply the voltage, you get 

a voltage out. 

So, to analyze the sinusoidal steady state response of our amplifier, what we need to do 

is to replace this by h Laplace transform equal. Now, as I had mentioned in the 

introduction, the advantage of Laplace transform analysis is that instead of solving the 

differential equations, we will solve algebraic equation and from the algebraic equation, 

it is very easy to get the solution by using the inverse Laplace transform and we are 

looking at sinusoidal steady state. So, it is even easier. We substitute s equal to j omega 

and calculate the magnitude and phase of the output sinusoid. Now, before we do that let 

us just examine the integrator by itself to see what it behaves like. We already examined 

integrator in the time domain and I have seen the implication of the constant omega u.  
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Now, we will do the same thing in the frequency domain or we will be different symbol 

for the input. Let me call it v in of s and v out of s and in the Laplace domain, v out of s 

is simply omega u by s times v in of s and in the time domain, we know that v out of t is 

omega u integral of v in of t d t. Now, the sinusoidal steady state response of this can be 



very easily seen from in the bode plot. It can also be easily seen from the transfer 

function. What we will be using is bode plot. So, it is a good practice to use, bode plot 

for a simple system such as this one. So, for sinusoidal steady state, what we need to do 

is to simply substitute s equals j omega and this uses v out of j omega to be omega u 

divided by j omega v in of j omega or the transfer function v out by v in is given by 

omega u divided by j omega. 
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So, we will just draw the bode plot of this, and see how it behaves and the bode plot 

consists of the magnitude plot and the phase plot, that is real plot. I will denote the 

transfer function by h, the magnitude of h or j omega versus omega on a log scale. This 

is what is plotted for a bode plot and similarly, we plot the angle of h or j omega versus 

omega on a log scale and the combination of these two is what is referred to as bode 

plot, ok. 

So, now, the magnitude is given by magnitude of omega u by j omega which is simply 

omega u divided by omega. So, the bode plot of this is very simple on a log scale, where 

you plot the magnitude on a log scale as well as the frequency on a log scale. This is the 

straight line with a negative slope and the slope is given by minus 20 db per decade that 

is if you take it in the decibel units. If you take 20 logs to the best of the magnitude 

drops with 20 db per every factor of an increasing frequency that is for every decade 

changes in frequency. 



That is what the meaning of this one is. Where does it reach unity? It is very obvious. 

This function reaches unity when omega equals omega u. So, the magnitude of the 

integrators transfer function reaches unity when omega equals omega u. In fact, it is for 

this reason that the particular symbol has chosen omega u as the unity gain frequency of 

the integrator. 

Now, for the phase of the integrators transfer function, this is even easier because we 

have a single j in the denominator. The phase of this, the transfer function is always 

equal to minus pi by 2 or minus 90 degree. So, the integrators transfer function as a 

magnitude that is decreasing with frequency at 20 degree per decade slope and it has a 

phase which is constantly minus 90 degree for all frequencies. 

Note that in the bode plot, you do not have a representation for dc because the x axis is 

the log scale and you cannot represent zero frequency on a log scale, but you can extend 

it down to as lower frequency as you want, and for an integrator, the magnitude will 

keep on increasing as you go to lower and lower frequencies. So, this is what the 

transfer function of the integrator itself looks like, and like a mentioned omega u is the 

unity gain frequency of the integrator. 

So, this will be a crucial parameter that will govern the behavior of negative feedback 

system that we build using this integrator. So, you choose an integrator which has a 

particular omega u. We have a time domain interpretation for it that relates to how pass 

the integration happens. If you apply a step, the output slope will be omega u times the 

input step. Now, we also have a frequency domain interpretation for it. So, omega u is 

the frequency at which the magnitude response of the integrator is unity that is if you 

apply a sinusoid at this frequency in steady state, the output sinusoid will have the same 

amplitude as the input sinusoid. 

So, with this background, we can go back and analyze the transfer function of the entire 

negative feedback amplifier and then, relate it to the transfer function of the integrator 

by itself. So, this is the system we have and because it is an algebraic, because the 

integrator can be represented by an algebraic relationship, the analysis is very easy. So, 

here we have v naught by k and here we have v i minus v naught by k. So, all we have 

to do is to recognize that the input of the integrator is v i minus v naught by k, and that 

times v omega u by s is v naught. 
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So, this can be rewritten as the transfer function v naught by v i is given by omega u by 

s divided by omega u by k times s plus 1. Of course, normally transfer function is not 

represented in this form. They are represented as a ratio of polynomials in s. So, we 

multiply both the numerator and denominator by k times s by omega u. So, when we do 

that v naught by v i become k divided by 1 plus k times s by omega u. So, what is this 

saying? Now, first of all this is the transfer function of our amplifier h of s and the value 

of h at 0 frequency is k. 

So, what does this mean? Now, s is equal to 0 corresponds to dc. So, what this 

expression is saying is that the dc gain of the amplifier is k. Now, this we already knew 

from the previous analysis and it is good that these analysis is consistent with it because 

it was not we would be in trouble, but previously we calculated that the steady state 

solution to our amplifier is that the output will be k times the input when the input is 

constant. Now, when the input is constant, then it is the same as saying the input is dc 

and the analysis confirms that the gain of the amplifier equals k when the input is cd, 

and we will examine this transfer function little further. The transfer function v naught 

by v i of our negative feedback amplifier is this much. 

Now, for this the dc gain that is h of 0 equals k and this is consistent with our time 

domain analysis. Now, it also has a pole at minus omega u divided by k. The pole is the 

value of s at which the denominator becomes equal to 0. So, you can easily see that for s 



equal to minus omega u by k and the denominator becomes equal to 0. So, this is a first 

order system and we have a single pole at minus omega u by k. So, if I draw it on and 

explain here, I show the real and imaginary part of s. There is a single pole on the 

negative real axis and it is at minus omega u divided by k. Of course, we know that for 

stable systems, the poles have to be in the left half plane and in this case, the pole is the 

left half plane. 

So, that means, that this is stable. We already knew that it was stable from the time 

domain solution to the step input because the exponential had a negative argument and 

the exponential would always lie down. So, this means that the system was stable and it 

is again confirmed by our analysis in the frequency domain, and this is one thing which 

is very important, this type of comparing analysis because you cannot find the single 

analysis that will reveal all the aspects of the problem. So, you will always for any 

problem, you will go through multiple types of analysis. Sometimes you analyze it only 

for dc, sometimes for higher frequencies, sometimes in the time to time and frequency 

domain.  
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It is extremely important for you to reconcile one type of analysis with another because 

there are areas so overlap. For instance, we evaluated the steady state solution time to 

time. We have evaluated the dc gain in the frequency domain and these two have two 

matched up. Otherwise, there is something wrong with the analysis, either one of them. 



So, this is something that you have to do and this also gives you multiple points of view 

to look at the same problem.  

So, this summarizes that we have a dc gain of k and a single pole at minus omega u 

divided by k. Now, we would also like to look at the magnitude and phase plots of this 

transfer function. So, finally what we started off was in that we will look at the 

sinusoidal steady state response that is we will see what happens when you apply 

sinusoids to the output. We expect a sinusoid, but we want to see what its amplitude and 

phases. So, we are going to do that by evaluating bode plot or the magnitude and phase 

of this particular transfer function. 
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In the second expression here, I simply replaced s by j omega which is what I want to 

evaluate. The sinusoidal steady state and the magnitude of h is given by this. Simply 

take the magnitude of the complex denominator and the angle of h is given by minus tan 

inverse and from the second draw, the bode plot and if you are fluent enough with bode 

plots, you do not have to evaluate these things explicitly. Simply by looking at the 

transfer function and remembering the rules for bode plots, you can draw them. 

So, first we will plot the magnitude as usual on a log scale versus omega also on a log 

scale. So, for very low frequencies, the second term in the denominator k square omega 

square by omega u square is much smaller compared to 1 and therefore, it can be 

neglected in comparison to 1. So, the magnitude of h will be very close to k. So, the 



magnitude of h will be very close to k and for very large values of omega, what happens 

is that the second term in the denominator is going to be much greater than 1 and 1 can 

be neglected in comparison to k square omega square by omega u square. So, in this 

condition, we can approximate the magnitude by omega u divided by omega.  

So, What I have done here is to simply neglect the one here. So, in the denominator I 

get square root of k square omega square by omega u square which is nothing, but k 

times omega by omega u and k cancels out, and you simply get h of j omega 

approximately equal to omega u divided by omega and this is an approximation that is 

valued for omega much more than omega u divided by k, and we have already seen that 

h of j omega approximately equals k for omega, much smaller than omega u divided by 

k. 

So, for very high frequencies, the magnitude response is inversely proportional to 

omega which means that it simply rolls of at minus 20 db per decade, and you also see 

from this particular expression that at omega equal to omega u, it approximately reaches 

unity. So, the frequency at which the transition occurs is nothing, but the pole frequency 

of the amplifier and it is equal to omega u divided by k. So, the magnitude will be close 

to the ideal value of k. We would like to have a gain of k. So, the magnitude will be 

close to the ideal value of k for low frequencies, where low frequencies are defined as 

frequencies much lower than omega u by k and for high frequencies, it also of at 20 db 

per decade. 

So, this is the story of the magnitude response of the amplifier. So, now it is for the 

phase response. So, the phase is nothing, but minus tan inverse omega times k by omega 

u. Now, clearly for very small values of omega, we have almost zero phases. So, it starts 

with zero phases for omega equals omega u by k. The argument of tan inverse will be 

unity and we get the phase of minus pi by 4 and for very high values of omega, the 

argument of tan inverse will be very large and we get an angle of minus pi by 2. So, the 

phase changes from 0 to minus pi by 4 at the pole frequency and becomes minus pi by 2 

at very high frequencies. So, this gives the magnitude and phase plots of our transfer 

function.  

The summary to take home from this is that the dc gain of the transfer function is k. As 

we expect, it has a single pole at omega u divided by k and if you look at the magnitude 



plot, the magnitude remains at k for frequencies less than omega u by k and after that it 

roles of at first order meaning minus 20 db per decade. If you look at the phase 

response, the phase log is very small at very low frequencies and the phase log is minus 

pi by 4 or 45 degrees at the pole frequency, and it becomes minus pi by 2 at very high 

frequencies. Now, if you know the rules of drawing the bode plot, you do not have to 

evaluate the magnitude and the phase explicitly. The bode plot says that there will be 

break points at every real pole and 0 at every pole.  

By appropriately evaluating the breakpoints, you can draw the entire bode plot without 

actually evaluating the magnitude and phase response, but maybe in the beginning you 

experience, you can evaluate it and see how it behaves. So, the next thing we have to do 

what we have started of it doing was to try and evaluate the sinusoidal steady state 

response, and what we have to do is to use this magnitude and phase functions and 

evaluate the sinusoidal steady state that we will do in the following class. 


