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Hello and welcome to lecture 51 of Analog Integrated Circuit Design. In the past few 

lectures, we have discuss the type 2 phase lock loop and also we discussed the effect of 

random noise from the charge pump and the loop filter on the output phase noise of the 

phase lock loop. Now, there are two important sources remaining that is, the phase noise 

of the oscillator itself and it is contribution on the phase noise of the phase lock loop, 

also the phase noise of the reference oscillator. 

The reference is the periodic source and it will also have it is own phase noise, now what 

we will do here, is to first do some analysis based on an idealize model of an oscillator, 

to get a field for the general nature of phase noise in oscillator. We will not try to exactly 

calculate the phase noise from the device noise sources that is, rather to complicated and 

simulator is usually used for that. We will just see, why the phase noise of the oscillator 

has a certain shape that is commonly assumed. 
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Now, what is an oscillator, oscillator there may be models that we can consider such as, 

resonance circuit with a negative resistance to cancel it is loss or a comparator in the 



negative feedback and so on. We will use the comparator in negative feedback that 

model, because it turn out to be easy for this particular aspect that is, to determine the 

nature of phase noise. And what is the kind of comparator that we will assume, the 

comparator can be thought of us nothing but, a high gain amplifier with some saturation 

levels. 

Well sure does this and we would expect that, the characteristic V naught verses V i 

would be something rather very high gain and saturation. We will approximated by an 

infinite gain and let us assume symmetrical saturation levels of V SAT and minus V SAT 

and no comparative will make a discussion instantly. We will see that, it has a certain 

delay T d prime and also the output, if the input crosses 0, the output does not change 

instantaneously and let us say, it has certain slew rate. 

Now, what happens, let us say that, the input verses time it is changing in some manner 

like this and here is where the input crosses 0. And what happens to the output, before 

this instant, the input was negative, the output would be at minus V SAT. And at this 

point, input crosses 0, but let us say that, the output starts changing after the delay of T d 

prime. This is because of the delay in the comparator and then, it starts rising at a certain 

a slew rate S R and finally, we will reach plus V SAT. 

And it takes some time to rise from this minus V SAT to 0 and that amount of time is 

nothing but, V SAT divided by S R. So, effectively there is a delay of T d prime plus V 

SAT by S R, between the zero crossing of the input and zero crossing of the comparator. 

So, this is one thing to keep in mind and we cannot denote this entire thing by delay T d 

that is, the delay between zero crossings. The way you have initially modeled it is that, 

the comparator takes some time to start responding and after that, it also take some time 

to rise up, so the net effect is capture in this parameter T d. 

Now, in addition to these things, we will also have noise and like with the most 

amplifiers, you can represent the noise of a comparator with some input refer noise 

source V n. So, what happens is that, the actual input of the comparator is V i plus V m, 

so let me reverse the polarity here. So, let us say the noise is of this value at this 

particular point around this point, it will also changing in some random way. The noise 

could be doing something other shot, but I was assume that, it is of this value over this 

into all. 



So, V i plus V n will be this thing with some shift, it looks something, this is V i plus V 

n, whereas this is V i. Now, you see that, the zero crossing of V i plus V n is obviously 

different from the zero crossing of V i. And let say that, there is a time shift delta t 

between the zero crossing when noise is present and the zero crossing when the noise is 

not present. Now, how much is this delta t, we have to calculate V i plus V n and find it 

is zero crossing. 

Now, that is generally difficult thing to do, but if we assume that, the noise is not 

changing much over this interval delta t. We can see that, noise can assume to be 

constant, so V i has been simply shifted down by amount of noise and amount of noise 

can be computed at the original zero crossing that is, what we want to find out is, where 

V i of t plus V n of t equals 0. And if I call this time instant, the original zero crossing p 

naught, I know that V i of T naught is 0. Now, the shift delta t can be calculated 

approximately as the negative of V n at T naught divided by the rate of change of the 

input. 
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So, simple algebra shows that this is the case, if you want, you can expand it in Taylor 

series, V i of t plus V n of t must be 0. If we expand it in Taylor series, can retain only 

the first order term V L of T naught plus d V i by d t evaluated at T naught times t minus 

T naught and similarly for noise, V n of T naught plus d V n by d t evaluated at t naught, 

t minus T naught must be 0. What we assume is that, the noise is not changing much 



around the zero crossing, which is a reasonable assumption, this is 0 and this we know is 

0, V of T naught that is the definition of t naught. 

So, the shift in the zero crossing is nothing but, the sample of the noise at the original 

zero crossing divided by the slope of the signal at the zero crossing, so this is the shift in 

the zero crossing due to noise. To summarize, we have a comparator and if the input 

crosses 0, the output will cross 0 after a certain delay T d and that T d is composed of the 

starting delay of the comparator and something related to the slew rate of the comparator. 

And in addition to this, if the comparator has an input referred noise as most real 

comparator do then, the output zero crossing will be shifted from the ideal zero crossing 

by certain amount. And the amount is the sample of the noise at the original zero 

crossing divided by slew rate of the input signal, also evaluated at the zero crossing, 

keeping these things in mind, we can analyses the oscillator and it is noise. 
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The comparator is characterized by delay slew rate and the saturation voltages and to 

make an oscillator all I do is, put it in negative feedback. Now, what happens in this case, 

let us say initially that, the output is at positive saturation level, that is V o, this is V o. 

So that means, that the input will be at the negative saturation level, minus V SAT and 

this is V i. What happen is, if the input is V i, after the certain delay, the output will 

changeover also to minus V i. 



We do not know what the initial condition was, so we will say that at this certain point, it 

will cross over to minus V i. Obviously, the input will do the opposite and it will do that 

and the output will again switch to the positive value after delay of T d this is something 

we have seen. At this point, the input is changing to positive value, so the output will 

change to a positive value after a duration of T d, which is T d prime plus V SAT by the 

slew rate. 

And now of course, input also switch sign and the output will change it is sign after the 

delay of another T d and this will gone repeating. So, this will keep happening and you 

see that, the output is periodic with a period T naught of 2 T d or an oscillation frequency 

f naught is 1 over T naught, is 1 over 2 times T d. So, this is what going to happen, now 

the question is, what happens in presence of an input referred noise. And presence of an 

input refer noise, let us first assume that, the first zero crossing appears over there, 

whatever this time is that, is time of first zero crossing and will call that, t equals 0. 

Now, what happens is that, the input changes from minus V SAT to V SAT at that 

instant and the output must follow it, after the delay of T d. So, the input change is like 

this and the output must follow it after delay of T d, but what happens is, because of this 

noise, the input here does not change it is sign at this particular instant. So, what it will 

do is, the input may change it is sign at a slightly different instant. So, the output will 

change it is sign at that instant and let me call that, if this was t equal to 0, originally this 

would have been t equals T d that is, the time of the first zero crossing. 

Now, it is something else and I will call that T d plus tau r 1 and r refers to the rising part 

of it, we will remove all these intermediate variables later, but that is what it is for. And 

then, what happens, the output will of course change to positive saturation value. And the 

input should have done that, again because of the noise, it will not change it is sign 

exactly at that instant, so it may do something like that, it could be even earlier. So, what 

the output is do is, it will also go down a little earlier compare to before. 

So, again this would have been t equals 2 times T d and in the presence of noise, it will 

be t equals 2 T d plus tau f 1, where t au f 1 is this time shift and tau r 1 is the time shift 

between the red and blue curves over there. It is very easy to see that, these time shifts go 

on accumulating, this would have been 2 T d plus tau r 1 plus tau f 1, because you are 



starting from T d plus tau r 1. And then, from there, it would go to 0 at distance of T d, 

now it does it at T d plus 2 f 1, it is not this shift that is 2 f 1. 
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So, the cycle is as follows, let us say the output V changes sign at t equal to 0, this is the 

definition of t equals to 0. Now, after this, the input which is inverted, changes sign at t 

equals tau r 1 let us say in presence of noise. Now, because of this, output changes sign 

at t equals T d plus tau r 1, now input should change sign at the same instant. But, again 

because of noise, input changes a sign at this plus T d, which is the nominal value plus 

some number tau f 1. 

So, it should have been at 2 T d, so it will be 2 T d plus tau r 1 plus tau f 1, so because of 

this, the input change sign at T d plus tau r 1 plus tau f 1 and output change a sign at a 

distance T d from this one, which is 2 T d plus tau r 1 plus tau f 1 and it will go on 

accumulating. So, the next time the output changes sign will be 3 T d plus tau r 1 plus tau 

f 1 plus tau r 2 and so on and the following term will be, so it will go on doing that. 

Now, if I consider only the completes periods, so this is the starting point 0 and after one 

period, it will be this one, 2 T d is the ideal period, but you have tau r 1 plus tau f 1 and 4 

T d is two periods, but we also have these two additive quantities. So, what happens is, 

each cycle is different from what it is, what it should have been, because of noise added 

during that cycle. I will say, noise added during that cycle, it really is the noise sample at 

the beginning of that cycle. 



And also in the middle, because the noise is added during both the positive and the 

negative 0 crossings. But, it is very easy to visualize that, every period will be different 

from, what should have been. Ideally it should be 2 times T d, but the input crosses 0 at 

twice and each of those instances, some noise is added which shift the zero crossing, so 

the period will be T d plus tau r for that period plus tau f for that period. 

Now, if you look at the deviations of the zero crossing from the ideal values, what 

happens is, let say the first zero crossing is defined to have happened at t equal to 0. The 

next one will have this error added in the first cycle, the next one will have the error 

added in the first two cycles and so on. So, it is cumulative, so if you look after n 

periods, you will have errors added in the first n periods. 
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I will define 2 T d to be a period T naught, so the zero crossings, so it would ideally 

occurred at T naught, 2 T naught. First one is at 0 then, T naught, 2 T naught and so on 

and with noise what happen is, I have 0 T naught plus tau 1, where tau is basically the 

sum of the shift in the rise and fall adjust in that particular period. So, it will be 2 T 

naught plus tau 1 plus tau 2 and so on and T naught plus tau 1 plus tau 2, all the way upto 

tau n. 

So, this will go on, so this part here, this is the jitter and represented in a different way, it 

will be the phase noise. So, these are the errors in the positions of the zero crossings, 

correspondingly you can think of the mesh errors in the phase of the signal. So, what will 



be the phase noise spectrum look like, by the way this jitter which is the total jitter that 

is, you assume that, you have an ideal oscillator and a noisy oscillator and both of them 

have their first zero crossing at t equal to 0. 

Then, you measure the differences between corresponding zero crossings in the 

following cycles, the resulting difference is known as jitter, it is one particular kind of 

jitter, it is the accumulated jitter. Now, if you look at each period, tau 1 is added during 

the first period, tau 2 is added during the second period and so on and tau n is added 

during the n th period. These quantities taus are known as period jitter, so accumulator 

jitter is nothing but, cumulative sum of the period jitter values. This makes sense very 

easily, the oscillator is an autonomous system, there is no input, it will start at some 

point. And then, at every period, it accumulate some error, some timing error because of 

noise in the circuit and this will go on accumulating. 
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Now, first of all what is the value of tau k that is, sum of rising and fall jitters and that is 

nothing but, value of V n at the rising edge divided by this slew rate plus the value of V n 

at the falling edge divided by the slew rate, in fact in the k th cycle also. We would not 

worry about the details of these things except to say that, it is inversely proportional to 

slew rate. The values of, if you look at the k plus 1 th period, this will be related to the 

rise and fall noise values, the noise values are added during the rise and fall times 

divided by the slew rate. 



Now, what is the kind of noise that will be this V n, most frequently this V n would be 

white noise. It could have other types of components, but we see that, the white noise is 

fundamental property of the MOSFET and every amplifier including comparator will 

have some input referred white noise. It may also have other kinds of noise like the 1 

over f noise and maybe some other frequency depended noise, because of the frequency 

dependence inside the circuit, but there will be white noise. 

Now, if this V n is white, we can easily see that, the period jitter values tau 1, tau 2, 

etcetera also form a white sequence. Because, from these expressions you can see that, 

the value of jitter added in the k th cycles is uncorrelated from value of jitter added in the 

k plus 1 th cycle. This is because, V n itself is white and the noise added in one cycle and 

the noise added in the other cycle are uncorrelated, so this means that, the periodic jitter 

sequence tau k is white. 

And let us assume that, it has some mean square value or the variance, sigma tau square, 

all that we are saying here is that, the period jitter values are white that is, noise added in 

each period is uncorrelated from noise added in other periods. This is sort of easy to 

understand, we have encountered white noise earlier and this also comes from white 

noise. Now, what we are interested in for phase noise is the accumulated jitter, the 

accumulator sum of taus. 

So, first of all, we will evaluate the spectral density of this tau k with the spectral density 

of period jitter. So, note that, the period jitter is a set of samples, sampled at frequency f 

naught that is, the frequency of the oscillator of itself. So, it will have energy upto f 

naught by 2, the Nyquist frequency and also the area under this spectral density has to be 

equal to the mean square value of variance, which is sigma tau square. 

So, it is easy to see the level of the white spectral density that is, simply 2 times sigma 

tau square divided by f naught. So, that is the spectral density of the period jitter, now 

how is the phase noise related to the period jitter. Phase noise is really the phase 

difference between the ideal signal and the signal with noise. Now, here we have a time 

differences and to convert time differences to phase differences, we have to multiply by 

2 pi divided by the period. 
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The samples of the phase noise at integer multiples of T naught will be summation from 

1 to n tau k and the whole thing multiplied by divided by 2 pi divided by T naught. To 

calculate the spectral density of phi of t, what we do is, first we take the positive 

difference of this phi of n T naught minus pi of n minus 1 T naught that is, the difference 

between the summation for n and n minus 1, so that leave only the term for n, this tau n 

times 2 pi divided by T naught. 

Now, what is phi of n T naught minus pi of n minus 1 T naught, you have this continuous 

process phi of t, you delayed by a delay T naught and sample the output at n T naught. 

The resulting samples will be exactly this, it will be phi of n T naught minus phi of n 

minus 1 T naught and also assuming that, there is an significant earlier sign and so on. 

The spectral density here and there that is, before and after sampling will be exactly the 

same, there will be different if there is the earlier sign, which we have assume is not 

there. 

The signal here is phi of t minus the same signal delayed by T naught and in the spectral 

domain, if I represent these, if this is phi of f, this will be phi of f exponential minus j 2 

pi f T naught. And the spectral density of that is the spectral density of this quantity, 

scaled version of tau n. So, what is that, the signal here is phi of f 1 minus exponential 

minus j 2 pi f T naught. 
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And that spectral density would be S phi of f times the magnitude of 1 minus exponential 

minus j 2 pi f T naught square, which is given by and this will be equal to the spectral 

density of the period jitter times 4 pi square by T naught square. So, here we have 2 pi by 

T naught, we will have spectral density of this multiplied by 4 pi square by T naught 

square. So, what does this mean, S phi of f is S tau already calculated that is, 2 sigma tau 

square divided by f naught times 4 phi square by T naught square and divided 4 sin 

square pi f T naught. 

You see that, this spectral density is significant at lower frequencies when the sign 

function goes towards 0 and that is where, we want to estimate the phase noise. So, I will 

approximate the sign by the argument and get 2 sigma tau square divided by, I have T 

naught to the 4 and f naught, so T naught cube, f square let me separate out the 1 over f 

square dependence. So, the main lesson to take on from this is that, the phase noise of an 

oscillator has 1 over f square dependence. 

The other way of driving this, I feel that this is an easy way of looking at it, basically the 

principle is that, in every period some jitter is added. And if the noise of the amplifier or 

whatever you device use for the oscillator is white then, the jitter added in each period 

will be uncorrelated from jitter added in other periods. And the total jitter is simply the 

cumulative version of this jitter, the jitter added in the second period, the jitter after the 

second period is the jitter added in the first two periods and so on. 



So, after n periods, it will be the jitter added in the first n periods, because of this we get 

a cumulative sum and the spectral density of that reduces with frequency and for low 

frequencies, it reduces as 1 over f square. So, this is an approximate way of appreciating 

all oscillators have a spectral density of 1 over f squared. Now, the same results can also 

be derived most famously by what is known as Le Chant model which assumes that, you 

have an L C resonate network and you have a negative resistance to cancel it. 

And then, that is done in the frequency domain, but this time domain accumulation is 

probably easier to understand. Now, the comparatives noise always will have the white 

component, but it may have other frequency dependences such as, the 1 over f noise. 

And it turns out that, because white noise gives you 1 over f square dependence, the 1 

over f noise will give you 1 over f cube type of dependence. Now, there are lot of 

satellites involved here, which have glossed over such as, a sampling the noise and so on. 

I will not deal with them, but all oscillators you will find that, you have 1 over f square 

region that is, the region of frequencies, where the phase noise goes as 1 over f square. 

And also in many oscillators, you may have find significant region, where it goes as 1 

over f cube, this is because of 1 over f noise of MOS transistors. 
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The phase noise will have 1 over f square dependence and 1 over f cube region, if 1 over 

f noise contributes significantly, so if you plot S phi verses f, both on a log scale, you 

will see a minus 20 degree per decade. This is the spectral density, which has a 1 over f 



square dependence, so it is a minus 20 dB per decade slope and there is also a minus 30 

dB per decade slope and if you plot it on a linear Y axis, it looks something like that. 

Now, what does it mean, to have this particular phase noise spectral density, this is the 

spectral density of phi of t, the term phase noise means something slightly different from 

this, which I will show shortly. 
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So, if we have an oscillator whose output is, let say cos 2 pi f naught t plus phi of t, as I 

said many times earlier, this does not have to be across, it can be any other pulse shape. 

And let say, this spectral density of phi of t that is, S phi of f verses frequency is like that 

then, the output signal, let me call it V out, verses frequency will have something which 

can be approximately thought of as an impulse at f naught. And this goes into a two side 

banks, above and below f naught. 

We will have that and that also goes over there and each of them will contain half the 

power of this S phi of f. So, the phase noise, the traditional definition of phase noise is L 

of f, which is half of S phi by of f. Then, the actual oscillator will have the upper side 

band, which is L of f minus f naught and the lower one, which is L of f naught minus f. 

And because of used unit amplitude here, this has unit power 0 dB and this S phi is an 

radian square per hertz, basically some dimensionless this quantity divided by hertz. 

So, here it is measured as the difference between 0 dB and this value in hertz and that 

usually referred to as d B c per hertz that is, d B relative to the carrier level. This 



represent, this impulse here represents the power of the carrier, again I have to say that, 

this is only an approximate representation. In reality, if you have an ideal periodic signal 

you will see an impulse, if you have a phase noise you will not see an impulse, you will 

see something that is neared out. 

But, for small values of phase noise, which is of course always the case, you can think of 

it as this impulse plus some additional noise side bands. And a noise side bands have 

dimensions of 1 over hertz and they are measured relative to the carrier and hence, this 

phase noise L of f is measured in d B c per hertz. And this L of f is nothing but, half of 

the spectral density of a phi of f and sometimes you may have to calculate the variance of 

this phase or maybe the variance of the jitter. 

Variance of the jitter is simply T naught square by 4 pi square times variance in the 

phase. If you want to do that, you have to double phase noise that is, take 2 times L of f 

to get S phi of f and integrate it from 0 to infinity to get the variance. The variance of the 

mean square value is given by integral 2 times L of f 0 to infinity and any time you have 

to calculate the variance or the variance of the phase or jitter, this is what you will have 

to do. And this turns out is true for every oscillator, it will have a 1 over f square type of 

a behavior in it is phase noise. This is basically, because the oscillator is autonomous 

system and each cycles starts from the end of the previous cycle. So, the jitter gets 

accumulated over all the cycles. 
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Now, just to contrast this, let us say we have a same comparator and it has noise, let say 

it is driven by an ideal periodic signal. Now, what happens, the output will have jitter in 

fact, this is one of the problems that you will encounter, when realizing buffers and so on 

for the periodic signals. You put a periodic signals through a string of buffers, the buffers 

themselves will add noise and you have to make sure that, the noise of the buffers is not 

significant. 

So, the output will be something, it should be delayed, the first zero crossing should be 

delayed by nominally, the value T d. But, in reality, it will be T d plus the noise value at 

this zero crossing divided by the slew rate of the input signal and so on. And this will be, 

also T d plus noise value, let me call this t 1 and t 2, V n of t 1 and V n of t 2 divided by 

this slew rate. So, the point here is, the input is appearing exactly periodically and so, 

there is no accumulation of jitter. 

Now, in this case, if you evaluate the phase noise of the signal, phase noise also will be 

white if V n is white. And this is for the case of a driven system that is, a comparator 

driven by an ideal periodic signal. So, if you have driven systems, white noise sources 

usually result in white noise and if you have a autonomous system like an oscillator, 

white noise will give you 1 over f square noise. 
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Now, we will look at the oscillator topologies in brief, we see that the jitter added in the 

n th period is the noise added during the rising edge divided by the rising slew rate plus 



noise added during the falling edge divided by the falling slew rate. So, how do you 

reduce this, to reduce phase noise this is what has to be reduced, so if there is a lot of 

phase noise that means, that there is the lot of deviation from periodicity and you may 

have to reduce this value. 

So, what are the two things you have to do, first of all reduce the noise values that is, you 

have to basically reduce the input refer noise of this comparator in some way. And this of 

course, the standard way to do this is, if you are able to find a different circuit that has 

less noise, that is good. But, for a given circuit, you have to do impedance scaling and if 

you do this, you will automatically increase the power dissipation. 

And we can also reduce the jitter by increasing the slew rate that is, increasing the slopes 

of signals in your circuit, this also can be done and this also usually involves increasing 

the power dissipation. So, whichever way you try to compact phase noise, either by 

reducing the added noise sources in the circuit or by making the circuits faster and faster, 

you will end up with a higher power dissipation. And there is consistent with everything 

else that, we know more about noise in circuits also to increase the signal to noise ratio, 

we have to increase the power dissipation. 

Now finally, before we move on to oscillator topologies, why is the phase noise 

important at all. Now, a jitter is important in many context, you can have digitals circuits, 

there also jitter can be important, because it basically takes away from the period 

available for our signal processing. So, jitter is important in sampling, if you use a jittery 

clock to sample a signal, you will effectively add noise to the signal. So, the higher the 

precisions or the faster the sampling, you have to have lower jitter. Also there is another 

communications application, in which periodic signals are used very widely that is, to 

mix a signal. 
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Normally what happens is, the radio spectrum consist of a number of signals, which are 

separated by a small frequencies and the standard architecture in a radio is to use a 

periodic signal to translate one of these signals. Let me level these channels 1 2 3 4 5, 

etcetera to convert one of these signals to a desired intermediate frequency. For 

simplicity let me assume that, I will use a carrier here to select this channel number 2 and 

move it to base band. 

This is multiplied by this carrier to give you the IF and this channel number 2 must 

appear over there. But, let say you have these noise side bands with a carrier, what 

happens is that, this carrier does not have components only at this particular frequency, it 

has at all this other frequencies as well. Now, this strength here is smaller than that of the 

impulse, but it is not 0. So, what happens is that, the portion of a this channel number 3 

can appear over there that is, from 3 and from 1 also could appear over there. 

What happens is, this 3 will get mixed by this part and appear there and 1 will get mixed 

with this part and appear there and so on. So, it affects the phase noise to increase the 

noise and reduce the signal to noise ratio of channel number 2 or the desired signal and 

also the desired signal can be much smaller than the undesired signals, so this effect can 

be very strong. So, this is why, there is usually a specification on phase noise in 

oscillator that are used in a radio receivers. 

Thank you, I will see you in the next lecture. 


