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Oscillators (Continued) 
 

We had discussed a variety of oscillators so far. R C oscillators - under this category, we 

had discussed Wien bridge oscillator, phase shift oscillator. L C oscillators - under this 

category, we had discussed Hartley Colpitts oscillator and also variegated simulated 

oscillators.  
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And crystal oscillators - we just mentioned at the end of the last class that the crystal can 

replace an L C circuit because basically, a crystal is a combination of series resonance 

and parallel resonance circuit, actually represented...  

 

  

1 
 



(Refer Slide Time: 02:11) 

 
 

So, this crystal has an inductor in series with a capacitor and a small resistance and then a 

shunt with... Of course, this is not --- This is going to be the electrode capacitance here. 

So...and also this ---- capacitance. It has a series resistance and a series capacitance and 

an inductance. And therefore, at the series, resonance frequency is Omega naught is equal 

to 1 over root L s C s. That is the series resonance frequency.  
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And the parallel resonance frequency is, Omega naught is equal to 1 over root L... Across 

L, you have C s coming in series with C shunt. So, C s C shunt...we will put down this 

elsewhere. 

 

This is series resonance. This is parallel resonance. 1 over root of L C s C shunt divided 

by C s plus C shunt. They are coming in series. So, effective capacitance is there. That is 

the parallel resonance circuit. Parallel resonance. It can be seen that this is very nearly 

equal to 1 over root L s C s primarily because you can take this out; root of 1 by 1 plus C 

s by C shunt. 
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This L s C s you take out, then divide by C shunt. Because this factor is going to very 

small value, that means actually, if you put additional C shunt, it is closer to the actual. 

That means, basically, this ratio is very small compared to 1, by structure. So, additional 

C shunt will again make it closer to this series resonance. 

 

So, this fact has made this very popular because you can get a wide range. For example, 

when it is in series resonance, it is a short circuit basically. That means, actually, it is a 

small resistance in series. That is R s. And a parallel resonance, it is going to be an open 
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circuit. That means a huge resistance value which is Q square times R s. Basically, the 

quality of this is very high. 

 

So, it is an open circuit. So, the impedance level can go from short circuit to open circuit 

around a small change in frequency. That small change in frequency depends upon this 

deviation here.  

 

So, you can see that this is a very versatile circuit which will act as capacitive or 

inductive or short circuit or open circuit around the same frequency. This is an important 

property in what we call now as frequency stability in oscillators. Let us understand this 

basic concept. Why? What is frequency stability? The frequency of oscillation in all these 

oscillators, for example in R c oscillators, is determined by the resistance and the 

capacitance this way. Omega naught is invariably equal to K by R c. 

 

You need a minimum of 2 R c networks, 2 time constants in order to make any oscillator. 

Not single...with single time constant, you cannot make a harmonic oscillator because 

second order is the basic requirement of second order differential equations. 

 

So, 2. That means basically, this is going to be some K divided by root of some R 1 R 2 C 

1 C 2, for any oscillator; K differing depending on the type of oscillator. That means 

sensitivity of Omega naught to R 1 R 2 C 1 C 2, they are all same. Sensitivity in this case 

is equal to half. What is sensitivity? Sensitivity is defined as, Omega naught to R 1, is 

defined as Delta Omega naught by Omega naught for Delta R 1 by R 1. This is the 

definition of sensitivity. 

 

What is the change, percentage change in frequency, for a change in the component 

value? That is defined as sensitivity. Percentage change in the frequency for percentage 

change in the component value; that is defined as the sensitivity of Omega naught to R 1. 

Similarly, sensitivity of Omega naught to R 2; this R 2 will come here, Delta R 2 by R 2. 
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Now, this one if you determine for this, will be equal to minus half for all these 

components. That is because there is a root coming. So, you will see that sensitivity is 

going to be minus because it is coming in the denominator. So, whenever anything comes 

in the denominator we have negative coming. That...when that component increases, this 

other parameter decreases. That is indicating negative and it is half. 

 

(Refer Slide Time: 08:27) 

 
 

You can see this. Therefore, the sensitivity of passive component here for L C oscillators 

is also the same – half, minus half; L and C. This is the same; R 1 R 2 C 1 C 2; L C. So, 

these are all... So, sensitivity to passive components remains the same in all these cases. L 

s and C s also is half except that for C shunt, it is not sensitive at all. This you can see. 

For sensitivity of Omega naught for C shunt is very nearly zero.  

 

So, I am discussing this passive parameter sensitivity in order to illustrate that apart from 

this passive parameter sensitivity, it is bound to be sensitive. There is no way avoiding it. 

What it means is if resistance varies with respect to time, temperature, etcetera, the 

frequency is going to drift; but therefore, we will make sure that these resistances are 
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chosen in such a manner that there is no drift in the frequency of oscillation, because they 

are pretty sensitive to these variations.  

 

So, passive parameters are made stable in their value. They are selected in such a manner 

that these values do not change with temperature or time so that the frequency does not 

change with temperature or time. That is one aspect of frequency stability. Whether it is 

R C oscillator or L C oscillator, the performance is the same in terms of passive 

parameter sensitivity.  

 

It is the same. What it means is if I am designing a L C oscillator, the capacitor I put 

should be more domining than the parasitic capacitor so that the frequency stability of my 

circuit is good; or the inductor I put in my design should be greater than any lead 

inductance in order that the stability of oscillator is good. 

 

So, this is illustrated in the crystal situation also. The parasitic normally comes as a shunt 

capacitor and the sensitivity to shunt capacitor should be very low. That is one aspect. 

Next aspect is...this is different. Active parameter sensitivity.  
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In realizing these oscillators, we had used op amps, transistors, etcetera. What is active 

parameter sensitivity? It is the same thing. If Omega naught is sensitive to, let us say, the 

parameter, active parameter of the device that you are using...let us say, Beta of the 

transistor, for example, one active parameter is Beta of the transistor; or, g m of the 

transistor. These are all active parameters. In the case of --- self for transistors; FET and 

this thing. For...and also input resistance, output resistance. These are all the parameters 

which will influence the...in fact, I should not put input resistance. I should put as input 

impedance, output impedance; these are parameters which will affect the performance of 

the oscillators. 

 

Similarly, in the case of op amp, A naught, open loop gain, and actually, A naught also 

depends upon frequency. Let us say this is called the band width; let us say dominant 

pole. We will discuss this later. It has a frequency dependence; the gain has a frequency 

dependence; so, its frequency dependence. Again, input impedance, output impedance. 

These are the parameters which are responsible for changing this. 
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If the frequency is dependent upon these parameters, then these parameters in turn will 

depend upon supply voltage, temperature, and the device itself; when I change the device, 
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these may change because these properties are different for the other device. So, the 

stability of such oscillator which is designed using these components is now poor, if the 

dependence is heavy. If the dependence is not so heavy, the stability is good. Now, how 

does stability come into picture in oscillators? This part we will discuss now.  

 

In any oscillator we have seen that...we have discussed it in terms of two things: one is 

the loop gain. This is the loop gain. The loop gain becomes equal to 1. This is both in 

phase as well as magnitude. That is, there is no phase, zero phase; and the magnitude 

becomes equal to 1 at a certain frequency Omega equal to Omega naught. Then it 

oscillates. This is what we have shown. At that frequency, it oscillates. This is the basic 

principle. 

 

(Refer Slide Time: 14:52) 

 
 

Now, let us consider this. I am, for illustration, taking Wien bridge oscillator so that you 

can understand this clearly.  

 

We have put here resistances, let us say, R a and R b. The gain was 1 plus R b by R a and 

we had put here resistors. In fact, it could be just R 1 C 1 R 2 C 2. You remember this. 
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Then we had closed this loop. So, this was our Wien bridge oscillator and we had got 

some condition for oscillation, etcetera. We again derive that. 
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1 plus... if this is V i, we just said this is 1 plus... I will break this loop here. This is V i; 

this is 1 plus R b by R a times V i. That multiplied by... this is how we had derived. Let 

us say, Z 1 by Z 1 plus Z 2 is the voltage here and I divided by Z 1, 1 plus Z 2 by 1 it 

became. And then, we considered this as Z 2 is R 2 plus 1 by S C 2 and Z 1 is 1 over R 1 

plus S C 1; and we just wrote this as 1 plus R b by R a V i by 1 plus R 2 by R 1 C 1 by C 

2 plus 1 over S C 2 R 1 plus S C 1 R 2. 
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This was frequency dependent and this was... I brought out the j here, let us say. This 

became minus Omega and this became plus Omega. 
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So essentially, we had this going to zero at Omega naught equal to 1 over C 1 C 2 R 1 R 

2. This all vanishing; and we made R b by R a...that was the condition for oscillation, 

equal to R 2 by R 1 plus C 1 by C 2.  

 

(Refer Slide Time: 18:00) 

 
 

You remember this. And we made it all equal. R b by R a equal to R 2 by R 1 equal to 1; 

C 1 by C 2 equal to 1; R b by R a equal to 2. When R 1 equals to R 2, C 1 equal to C 2, 

this was R, this was C.  
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And therefore, this was Omega naught square, this was C square R square. 

So, Omega naught was 1 over C R. This, I am just repeating for completion sake.  
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Now, what is active parameter sensitivity? Passive parameter sensitivity is clear. What is 

active parameter sensitivity? 
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The gain here is finite; let us say, A. If that is the case, it is not infinite. I am considering 

only one aspect here. The gain is not infinite. We are not considering input impedance, 

output impedance. That will further add to our troubles because output impedance will 

add in series with R 2 and input impedance will add in shunt with R a. 

 

So definitely, if input impedance and output impedance become comparable to R a and R 

2, it is going to cause stability problem. In this case, we will not consider that. We will 

consider only the gain aspect and show... So, if this is A, we had earlier derived that the 

gain is not this; the gain is A divided by 1 plus A into R 1 R a by R a plus R b. Do you 

remember this? For the non-inverting amplifier, we had derived this gain, when it is not 

infinite. A by 1 plus A into Beta, Beta being R a by R a plus R b. 
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So, actually speaking, we will divide it by A Beta throughout. So, the gain is really 1 plus 

R b by R a which is correct, divided by 1 plus 1 over A Beta. A Beta is considered as the 

loop gain for this. So, the loop gain A into Beta, it can be rewritten this way. That is the 

error.  
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It will...if A is real and equal to A naught, there is no problem. It is less than 1 plus R b 

by a R a by certain amount. I have to make R b by R a slightly higher than 1; still 

frequency stability is not going to be disturbed. Is this clear? 

 

If A is real, this will be simply A naught and this whole factor has to be made equal to, let 

us say, 2. That is, this whole factor has to be made equal to 1. R b by R a should be close 

to 2 --- higher than 2. That is all that has to be done. So, this whole factor should be made 

equal to 1 plus, let us say, R 2 by R 1 plus C 1 by C 2. This is the condition. 
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And therefore, if A naught is not infinite, there is no problem of satisfying this condition. 

That is not coming into picture in the frequency of oscillation. Nothing comes into 

picture as far as A naught is concerned; but if A naught is also frequency dependent, then 

there is a problem. 

 

Let us say A naught... A is frequency dependent and it is A naught by 1 plus s by Omega 

d, as we have put.  
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If this amplifier gain is frequency dependent, then we will see that this A naught divided 

by n... now, this is not the case. This is not the real part at all because this is also 

contributing to phase shift. Do you see that? That means this was purely real from here to 

here. Earlier it was purely real; either it was 1 plus R b by R a or 1 plus R b by R a 

divided by 1 plus 1 over loop gain, as long the loop gain was real. 

 

But now, the loop gain is contributing the phase shift. The whole thing therefore says that 

the output is not exactly in phase with input. This is not an exact non-inverting amplifier. 

There is an error. To that extent... Earlier, from here to here, the phase was zero; and 

therefore, at the frequency Omega naught, we could just make the phase equal to zero for 

this network also. So, it was oscillating with output being equal to input or loop gain 

being equal to 1. So, I could close this exactly. 

 

But now, what happens? Let us say there is a phase error, phase lag of 1 radian. I mean, I 

am just giving it an as an example. At the frequency of interest to me, it is giving as much 

phase shift as 1 radian, let us say. That depends upon the Omega d; 1 radian. Then the 

frequency at which I should select this network is not Omega naught any longer. It should 

be deviating from Omega naught such that it will give a phase lead of 1 radian. 
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So the phase shift of this should be such that it will give you a phase lead. That means, it 

will be different from Omega naught. How much it is going to be different is going to 

depend upon this phase shift here. So, we have to study the phase variation of this 

network, passive network, Z 1 by Z 1 plus Z 2, in order to say how much it should be 

different from Omega naught, in order to give a phase contribution of 1 radian phase 

lead, so that the phase lag there by the active device is compensated for by the phase lead 

here. 

 

Suppose that I compensate at certain frequency and for 1 degree it gives you the 

frequency of oscillation slightly different from Omega naught, so as to give a phase lead 

of 1 degree. Next, it will change to 1 point 5 degrees because of temperature variation. 

Then this will change correspondingly to a phase lead of 1 point 5. That means the 

frequency has to change again. 

 

So, now you see how frequency of oscillation of this Wien bridge oscillator is directly 

dependent upon the frequency; that is, variation and the phase variation with respect to 

frequency here. So, let us plot the phase variation of this network with frequency. If you 

plot that... 

 

You can see that this part of the network gives you this kind of thing. 1 plus 1... R 2 over 

R 1 C 1 over C 2 plus j into Omega C 1 R 2 minus Omega C 2 R 1. This is the 

expression.  
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R 2 is equal to R 1, nominally. So, consider the nominal values. R 2 is always made equal 

to R 1. So, this is equal to 3. So, this is C, this is R. This is the condition.  
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You will see that at Omega equal to 1 over C R, at Omega equal to 1 over C R, this phase 

is zero. It is just 1 over 3. So, at Omega equal to 1 over C R, which we are calling as 

Omega naught, this is not the actual frequency of oscillation. This is the theoretical 
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frequency of oscillation. At Omega naught, the phase is zero. Let us say, phi is zero here. 

At very low frequencies, just consider; at very low frequencies, this is going to zero. This 

is going to become very huge. 

 

So, it is only the contribution due to this. This is minus... 1 over minus j; or, plus j. That 

means it will give you a phase shift of 90 degrees. At very low frequencies, it gives you a 

phase shift of 90 degrees. At very high frequencies, this goes. This becomes dominant. 

This becomes negligible. So, at very high frequencies, this gives you a phase shift of 

minus 90 degrees. So, it is going to change in this manner. 
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How it changes at this point is important. Now, you can see. If this 90 degree is lag, this 

90 degree is lead. That means if it has to contribute to lead angle, then the frequency 

fixed by this network should be less than Omega naught, which is 1 over C R.  

 

So obviously, if amplifier network is giving you lag, this frequency at which this is going 

to give lead is going to be less than Omega naught. That is invariably the case. By how 

much it is going to be less depends upon the phase that you want; lead that you want to 

give; to compensate for the phase lag that it has suffered through the active device. 
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How much it is going to deviate here depends upon this slope here. That means Delta phi 

by Delta Omega is an important factor because this is one curve; another curve may look 

like this. You know. Another curve may look like this. Let us now see this curve. 
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If Delta phi by Delta Omega is very high, Omega oscillation, actual oscillation will be 

very close to Omega naught irrespective of the phase lag contributed by my active 

device. This is an important aspect. That means if this is a steep thing like this, then the 

frequency stability is good. If the passive network can give a steep thing, whereas, in the 

case of passive R C network, this you can find out. For this phi is minus tan inverse 

Omega C R minus 1 by Omega C R; this divided by 3. So, this is the phi.  
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So, you can differentiate and find the maximum at Omega equal to 1 over C R; and you 

will find that this quantity is not much for any passive network, for that matter. Whether 

it is phase shift or Wien bridge, you can always find out Delta phi by Delta Omega. It is 

not going to be minus; whereas in the case of a crystal or an L C oscillator, this is going 

to be pretty high. It is directly proportional to Q; and Q for the passive R C network is 

never greater than half.  

 

That means all the poles of these passive networks always lie on the negative real axis. 

You cannot get complex conjugate pair of poles and you can prove that Q cannot be 

greater than half; whereas, in the case of L C network and crystal, Q can be pretty high. 

Complex conjugate pair of poles will occur and these pair of poles can be very close to 

the imaginary axis. If they are very close to the imaginary axis, the resonance frequency 

is close to the actual frequency of oscillation; and therefore, the phase shift variation is 

directly proportional to Q. The higher the Q, the steeper is the phase variation. And that is 

why frequency stability of any oscillator directly depends upon the Q, quality factor of 

the passive network that composes the frequency determining network.  
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So, irrespective of the device that you use...in the case of crystal, apart from the phase 

varying so rapidly, even the magnitude of the impedance goes from zero to infinity. So, 

this facilitates the crystal being used in the loop; and invariably, the crystal oscillator 

oscillating at the crystal frequency.  

 

At any temperature or any situation, extreme situation, the crystal still makes the 

oscillator oscillate at the crystal frequency, as long as what? - the loop gain is greater than 

one in magnitude, at that. That has to be provided by the active device. At all 

temperatures, if this is satisfied, that is enough; but the phase part of it is automatically 

getting satisfied. Even the magnitude part is going to be somewhat getting satisfied 

because the impedance value itself changes in the case of a crystal. So, this is an 

important aspect of frequency stability. 

 

In order to understand what we have discussed so far in terms of frequency stability, let 

us try to solve this problem. This problem may also illustrate a typical situation of an 

amplifier used with L C oscillator or a crystal. 
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The crystal can be connected here or in place of this 100 K; and the 100 K can be put 

there. That kind of illustration we can do.  
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Ultimately at resonance, this L C network will act as a pure resistance 100 K, and that 

frequency Omega naught is going to be 1 over root L into C; L is 10 to power minus 3. 

This is the value of L; and C is 10 to power minus 7, 100 nanofarads. So, that is C. That 

is going to be therefore equal to 10 to power 5 radians per second. That is the resonance 

frequency which is equal to 15 point 9 Kilohertz.  
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That is the frequency of oscillation I say, because at that frequency of resonance, this 

whole thing resonates and this will act as a 100 K resistance; and from here to here, the 

attenuation is half. 100 K divided by 100 K plus 100 K; so, half. So, output voltage will 

be same as input voltage. 

 

If I make R b equal to R a equal to 1, R b by R a equal to 1, then the gain is going to be 2 

from here. So attenuation, half. So, this is the condition for oscillation. This gain is 1 plus 

R b by R a; and this into the effective attenuation here is nothing but Z divided by Z plus 

100 K. This is the effective attenuation. 
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This impedance, we will call it as Z; and that is the loop gain. From here to here, 1 plus R 

b by R a into Z by Z plus 100 K is the loop gain, if I break the loop here. So, this is the 

loop gain. So, this has to be... I close this. That means it is made equal to 1. 

 

So, 1 plus R b by R a into 1 by 1 plus 100 K, that is 10 to power 5, into Y.  
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Y is the inverse of Z, 1 over Z. That is nothing but 1 over 10 to power 5. This is the 

resistance. 1 over 10 to power 5, conductance of that, plus s c, plus s c. C is really equal 

to 10 to power minus 9; plus 1 over s l; l is 10 to power minus 3. So, that is the transfer 

function, composite transfer function. So, we will take this inside where... This s c is 10 

to power minus 7. It is 100 nanofarads. Yes, thank you. So, we take this inside. This is 

going to be loop gain.  
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Now, we would like to write it in general for for finite value of A. That means 1 plus R b 

by R a gets modified. We have seen in the lecture that it will get modified as 1 by 1 plus 

1 over loop gain. That is 1 over A into Beta, Beta being equal to R a by R a plus R b. So 

this, if A is infinity, this will be zero. Otherwise, this is the composite loop gain. This has 

to be equal to 1 for oscillation to take place. 
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Now what it means is 1 plus R b by R a divided by 1 plus A. A is 1 over A naught plus s 

by Omega d. That is what... See, A naught by 1 plus s by Omega d. That is how we have 

taken. So, A naught is in this case, 10 to power 6 and Omega d is 10. That into R a by R a 

plus R b. We can take the nominal value here. R a by R a plus R b is very close to half, 

we have chosen; because this is going to be still very close to half. So, we will take this 

nominal value in this case and this is going to be how much? Half. That means this factor 

will be 2. 

 

This is R a by R a plus R b is half, nominally. It is not exactly now. It is exactly half only 

when A is infinity. Now it will be less than half so that the gain, overall gain, is slightly 

greater than 2. 
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So, to that extent, what value of R b by R a we should get? We will come to know from 

this expression. So, this is an approximation to a certain extent, into 1 plus 10 to power 5 

by 10 to power 5. That is 1 plus s into 10 to power minus 2 plus 1 over s into 10 to power 

8. 

 

(Refer Slide Time: 39:47) 

 
 

28 
 



So, this is equal to 1 plus R b by R a. Once again, I say that R b by R a, we have taken as 

equal to 1. Only in the non-ideality it will be close to 1, but will be different. That value 

is going to be fixed by this. 

 

So, this is a factor of 2. That factor 2 you take out. This 2. So, it gets normalized now. 1 

plus s into 10 to power minus 2 divided by 2. We have taken out 2 here. This is nothing 

but 2; that 2 we have taken out; 10 to power 8 by 2 s. So, this is the expression. Now you 

can see that this loop gain has to become equal to 1. Now, actually speaking, I think I 

removed this. Where is that? Where is this factor? This into 1 plus...what is that? 2 into 1 

plus s by 10 divided by 10 to power 6.  
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So, now you can see that the phase shift is governed by this factor here. This is the active 

parameter phase shift.  

 

This is contributing to active parameter phase shift and that is going to be very little 

because there is a 10 to power 6 factor coming here; and therefore, we can evaluate this. 

Now, you can see that this is not contributing to anything; R b by R a should be made 

equal to 1 so that this 2, this 2, get cancelled. So, the loop gain becomes the magnitude 
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equal to 1. Frequency is determined by this factor. This is j Omega and this is minus j by 

Omega. So, these factors equated will give you the frequency Omega naught as 10 to 

power 5 radians. Is this clear? 

 

So, we will see that it really depends upon a Q factor coming here. I have earlier, in the 

case of filters, explained to you how to normalize this whole thing so that we get this as... 

Now, I can multiply this as a... There is a 2 s factor here. This factor has to be made equal 

to 1. That means I multiply the whole thing by 2 s by 10 to power 8. 

 

So, that means this factor becomes equal to 1; this factor becomes equal to 2 s by 10 to 

power 8; and this 2 s means s square by 10 to power 8. Is it correct? 2 s. So, 2, 2, gets 

cancelled and 10 to power 8... Here you get this as 10 to power minus 10. So, this whole 

thing simplifies to in the denominator.  

 

(Refer Slide Time: 43:29) 
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This is going to be neatly written as 1 plus R b by R a into 2 s by 10 to power 8 divided 

by 2; 1 plus 2 s by 10 to power 8 plus s square into 10 to power minus 10.  
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And we said the coefficient of s square here is going to be 1 over Omega naught square, 

which is called the resonance frequency, in the case of filters. So, you can see that 1 over 

Omega naught square is 10 to power minus 10. So, 1 over Omega naught square is equal 

to 10 to power minus 10 or Omega naught is equal to 10 to power 5, which we have got. 

So, we will write it as s square by 10 to power 5 square. This is s squared by Omega 

naught square. 

 

So here, we have to have s by Omega naught for normalizing. s by Omega naught means 

s by 10 to power 5. Apart from that, we will have 10 to power 3 and this factor, 2 by 1000 

is going to be written as 1 by 500 which we have earlier defined in our filters as Q factor 

of the pole; pole Q, if you remember. 

 

So here, the pole Q is equal to 500. So, pole Q is 500; resonance frequency is 10 to power 

5; and this is the normalization. So, this L C network has a pole Q of 100, 500; so pretty 

high value.  
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That means the variation in phase here with respect to frequency, Delta phi by Delta 

Omega in this case, is going to be around... Omega equal to Omega naught, is directly 

proportional to 500. It is a huge quantity. How do I really determine that?  
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You can now find out the phase of this network, phase variation here. This contributes to 

a constant phase of 90 degree here. 

 

This only contributes to a phase. This is going to be 1 by 500 into Omega by 10 to power 

5 divided by 1 minus Omega square by 10 to power 5 square. This is tan inverse of this. 

This is the phase contribution due to the pole, imaginary part, divided by the real part. 

Imaginary part, put s is equal to j Omega. 

 

So, Omega by 10 to power 5 into 1 over 500. That is the j Omega part; one without j 

omega. Real part is 1 minus Omega square by 10 to power 10; 1 minus Omega square by 

10 to power 10. So, the real part divided by imaginary part; tan inverse of that is the 

phase. Is this clear?  
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So now, I am going to make an approximation here and show... I want to establish only 

that at very close to Omega equal to Omega naught; very close to Omega equal to Omega 

naught, I would like to find out the slope. So, instead of differentiating, we will adopt this 

procedure. At Omega very close to Omega naught, Omega minus Omega naught, I will 

take it as change from Omega naught and Omega plus Omega naught is going to be twice 
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Omega naught. This is the approximation. At Omega very close to Omega naught, 

Omega minus Omega naught is Delta Omega; that change. Omega plus Omega naught is 

twice Omega naught. If you do that, this 1 minus x square is 1 plus x into 1 minus x. So, 

this denominator can be put as 1 minus Omega by 10 to power 5 by 1 plus Omega by 10 

to power 5.  

 

(Refer Slide Time: 48:20) 

 
 

So, this quantity is equal to 2. At Omega very close to Omega naught, this quantity is 

equal to 2. This quantity is 1 minus Omega plus Omega naught; or, Omega minus Omega 

naught. Omega plus Delta Omega, we can put. Omega plus Delta Omega or Omega 

minus Delta Omega. 

 

That means this is Delta Omega by 10 to power 5. So, this 10 to power 5 gets cancelled 

with this 10 to power 5. We get this phi as tan inverse Omega by 1000. This is important. 

You can see that the Q factor will come in the denominator of this; 1 by 1000 Omega by 

Delta Omega. Is this clear? 
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From this, we can see that Delta Omega tending towards zero. That Omega equal to 

Omega naught. This is going towards infinity. That means phi is equal to pi by 2. That is 

the phase shift contributed by the pole; phase shift contributed by the zero remains 

constant at pi by 2. So, overall phase shift is zero. So, phase shift contributed by the pole 

alone is pi by 2 at Omega equal to Omega naught. As Omega changes from Omega 

naught, it keeps changing. We would like to know how much it is changing from pi by 2.  

 

(Refer Slide Time: 50:04) 
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So, we will put this as Delta Theta plus pi by 2. It is going to change to some phi. So, this 

phi is going to be put as around pi by 2. So, how much it is going to be different from pi 

by 2 is going to be given by this Delta Theta. The phase is going to change from pi by 2. 

At Omega equal to Omega naught, it is pi by 2.  

 

(Refer Slide Time: 50:38) 

 
 

So, if I put that this is going to be Delta Theta plus pi by 2, so I take tan. 

 

(Refer Slide Time: 50:52) 
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So, tan pi by 2 plus Delta Theta equals Omega divided by 1000 Delta Omega. So, Delta 

Theta being very small, we are close to Omega naught. 

 

(Refer Slide Time: 51:05) 

 
 

So, this is equal to cot, cotangent Delta Theta which is cos Delta Theta divided by sine 

Delta Theta. Delta Theta is very small and therefore cos Delta Theta is 1 and sine Delta 

Theta is Delta Theta itself.  

 

So, from this expression, you get Delta Theta. The change in phase for a change in 

frequency around Omega naught. Omega naught, this is important, equals 1000 divided 

by Omega. This is important. In this 1000, Q of 500 is there. So, it is really equal to 2 

into 500 by Omega naught because we are substituting Omega equal to Omega naught. 

So, this is nothing but 2 Q by Omega naught. This is an important expression. 
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For any such circuit with pole Q equal to Q, this change in phase with respect to 

frequency is equal to 2 Q by Omega naught. This can be done by regular mathematics by 

finding out the Delta phi by Delta Omega straightaway. Instead, by the approximation, 

you can do it this way also; 2 Q by Omega naught. 

 

So, this is very steep variation of frequency with Omega naught. Now, if you consider the 

whole expression at Omega equal to Omega naught, this expression is going to contribute 

to zero phase shift. But, there is going to be a phase lag contributed by this gain, finite 

gain; and therefore this is 1 plus 2 divided by 10 to power 6. So, that 1 plus 2 by 10 to 

power 6 can be ignored. So, this can be ignored compared to this. So, it is 2 s by 10 to 

power 7 that is going to remain here.  

 

So, if you put s is equal to Omega, j Omega, this is going to contribute to a phase, 

additional phase lag of... At that frequency, the additional phase lag will be 2 Omega 

naught by 10 to power 7. That being very small angle, you can say that tan inverse of that 

is that angle itself. So, 2 Omega naught by 10 to power 7 is the additional phase error. 
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So, to that extent, this will have to contribute and that can be done by that changing very 

little from Omega naught. So, this phase error can be compensated by this slope here. The 

slope is directly proportional to Q and therefore, because Q is very high, the Omega has 

to change very little from Omega naught, in order to accommodate this phase lag. Is this 

clear?  

 

So, you will just equate this to this phase error; and therefore, you will see that the actual 

phase frequency that is going to be different is going to be different from Omega naught 

by a factor which is determined by Q; 1 over Q of this factor. So, this is the phase error. 

This has to be compensated for by Delta phi, by Delta Omega, by Delta Omega changing 

accordingly from Omega naught.   

 

Delta phi by Delta Omega is 2 Q by Omega naught. That means this into Delta Omega. 

So, Delta phi is 2 Omega naught divided by 10 to power 7. That is the phase error and 

what should be the Delta Omega? That Delta Omega is given by 2 Omega naught square 

by 10 to power 7 divided by 2 Q. So, you will see that Q always comes in the 

denominator. So, the Delta Omega which has to be different now becomes very very 

small.  
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In this particular case, you can now substitute what? Omega naught and C. 2 into 10 to 

power 10 divided by 10 to power 7 into 1000; 10 to power 3, is it? 1000, is it? So, this is 

the 2... What is that? Radians per second. 

(Refer Slide Time: 56:20) 

 

Omega naught is 10 to power 5 radians per second. So, it...this much deviation can be 

accommodated by frequency of oscillation, changing only by 2 radians per second. So, 

we have solved the problem as well as made you understand what is frequency stability.  
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