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Heterojunction Bipolar Transistors (HBT) – 4 (contd.) 

We will have yet another session on HBT. We have had three sessions focusing mainly on 

gallium arsenide-based heterojunction bipolar transistors. The reason for switching over to this 

gallium arsenide-based HBT is to reduce the base width and still accommodate high doping in 

the base region. This is possible because in the emitter region, you can reduce the doping when 

the band gap is large, without hurting the emitter efficiency – you can still have very high emitter 

efficiency.  

We also saw how the surface effects control the performance of this device. We saw that it is 

important to passivate the surface of gallium arsenide if we want to get reasonable beta, 

reasonable performance. Otherwise, the entire performance will be masked by the surface 

recombination effects. In fact, the first result that was done by Bell Labs, New Jersey was 

disastrous in the beginning – they expected beta of about 2000 but they got a beta of about 30; 

the whole reason was the surface effect. Once they passivated the surface, they found that the 

beta goes up by a factor of 60 right up to 1800, but there were problems with stability and that 

was sorted out over several years by switching over from sodium sulphide passivation to 

ammonium suphide – ammonium suphide with a coating of PECVD nitride or polymide. Things 

like that have been going on over the past decade now. I have brought that scenario almost up to 

date with gallium arsenide-based HBT. 
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(Refer Slide Time: 02:52) 

 

The other types of HBTs are gallium indium arsenic phosphide – that is quaternary, it is gallium 

indium arsenide on a ternary and on a binary compound…. Here, all these are lattice patch, that 

is, gallium indium arsenide matches with gallium indium phosphide – you add a little bit of 

phosphorus to that and the band gap goes closer to indium phosphide. In fact, I just wanted to put 

that diagram. 

(Refer Slide Time: 03:26) 
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For example, we have… I am just drawing in the diagram indium arsenide, gallium arsenide. I 

am not putting the axis, etc. In the axis, you have got the band gap and here you have got the 

lattice constants. This is indium arsenide. Somewhere here, you have got gallium indium 

arsenide where one of them is 0.47 and the other one is 0.53. Now you add and here, you have 

got indium phosphide. The band gap of that is higher than gallium indium arsenide and the 

gallium indium arsenide band gap is lower than that of gallium arsenide.  

Now to this ternary compound, you add phosphorus – you can call instead of galliumx, indiumx, 

etc., you can add phosphorus and arsenicy. You can call it like this: galliumx indium1-x arsenicy 

phosphorous1-y. We are matching all those things, so if I add phosphorus to that, you move along 

this vertical line – keeping the same lattice constant x, you move up and so this will be actually 

somewhere here (Refer Slide Time: 04:42) gallium indium arsenic phosphide. Why I do this 

diagram is, you know that this lattice matches with gallium indium arsenide and indium 

phosphide, because after all, adding phosphorus does not change the lattice constant with respect 

to that, because in the same phosphorus atom, [05:01] lattice. Now why should you go for this? 

This type of structure has a benefit. One is gallium indium arsenide as you know has much better 

mobility than gallium arsenide, because indium arsenide has got higher mobility. When you mix 

with gallium, gallium indium arsenide has got better mobility – but in between indium arsenide 

and gallium arsenide. The band gap is also different – lower than that of gallium arsenide, but we 

get a fairly decent band gap there. The main reason is that it gives better mobility and of course, 

you put this material that has got a wider band gap region on top of that.  

Here, the advantage of gallium indium arsenide over gallium arsenide is not merely higher 

mobility but it also has lower surface state densities – that is what I have seen. Gallium indium 

arsenide is easier to passivate compared to gallium arsenide. This is one of the key reasons why 

people are trying to look into that. Of course, the added attraction for those who are working on 

indium phosphide substrates, it is the same material – that is of course on a lighter sense. Now 

there is another HBT. I am not going into details of that – it is only the change in the material but 

performance-wise, it gives slightly better performance compared to gallium arsenide. Of course, 

it has the disadvantage of lower band gap – you pay for that in terms of lower band gap and 

associated effect on the breakdown voltages, etc. Now you can have a double heterojunction. In 
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fact, when starting with the gallium arsenide HBT, I pointed out that the structure…. Let me just 

put it on the board here.  

(Refer Slide Time: 07:00) 

 

The structure of aluminum gallium arsenide. That is n and in fact lightly doped, then p-type 

gallium arsenide. This is the emitter, this is the base and the collector… in a heterojunction 

transistor, we have one heterojunction. In a double heterojunction, we have this also – AlGaAs. 

On that, you can have.… This may be n minus and then you have got n-plus layer. The n-plus 

layer can be gallium arsenide, but the main thing is that both this junction and this junction are 

heterojunctions. What is the merit of this? The merit of that is whatever you gain here (Refer 

Slide Time: 07:55), you gain here also. 

When the transistor is in the active region, not a big role for this, because this layer will be 

depleted. But if the transistor goes into saturation as in switching circuits, if you are not using 

ECL, then in TTL and structures like that, the transistor goes into saturation, collector–base 

junction gets forward-biased and if the collector–base junction is forward-biased, what happens? 

You have the carrier concentration like that, stored charge there, this is n and of course here, you 

have got hole injection. Since this is a wide band gap material, we saw that the hole injection into 

this region is negligibly small: ni square by doping; ni square is very small, so the carrier 

concentration here is very low and that is why you get higher beta – emitter efficiency is very 

4 
 



high in spite of lower doping; here also, it is lower doping, but we have got wider band gap. So if 

it is forward-biased, the device is in the saturation region, if this were the same gallium arsenide, 

you would have got the hole concentration reached like that. Of course, I just draw a small 

region there to signify the transition region. You would have got high concentration hole 

injection like that if it is a narrow band gap material.  

(Refer Slide Time: 09:44) 

 

If it is a wide band gap material, what happens here? Same thing. The hole injection from the np 

region to the n region when it is getting forward-biased is very very small, because the boundary 

value here is pn0 – p in the n region; pn0 is related to ni square; ni square is small, because it is a 

wide band gap material, so you will have very small injection there. That is what we mean by 

saying that the transistor will go to saturation. Still, you will not have the stored charge effect; in 

double heterojunction or switching transistors, this will be ideal. You do not have to use lifetime 

control techniques, etc. All that you have to worry about will be charge in that region. No stored 

charge here, no stored charge here, because this is a wide band gap material. We can minimize 

the stored charge here by shrinking the base width, so you are in business for high-speed circuits. 

That is one of the merits of double heterojunction transistors (10:37). 

That is why I just thought I will point this out to you because this is something that people have 

been exploring, but if you are working on any emitter-coupled logic circuit, you do not have to 
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worry about that, because there is no forward bias on the collector–base junction and there is no 

saturation – it is only active. Still, you can make use of that (10:58). Without using ECL, you can 

use it for high-speed devices. So you can see that bipolar is a potential candidate for high-speed 

devices – HBTs. The other one that has gained popularity over the past decade is the silicon 

germanium HBT.  

What is the merit of silicon germanium? The merit is apparently or evidently, you have got 

silicon germanium in the base, silicon in the emitter, because the band gap of germanium is 0.7, 

the band gap of silicon is 1.1 and silicon germanium will be somewhere in between, depending 

upon how much germanium is there. You have a narrow band gap material and a wide band gap 

material and if you can grow one over the other and still get a defect-free layer, then you can 

make heterojunctions with silicon. This is where the joy of the silicon technology person is, 

because silicon technology is so much advanced today – if we can bring in HBT in that, nothing 

like that. People are working on that and they came up with the silicon germanium transistor.  

Compatibility with silicon technology: I can have a silicon germanium transistor HBT and I can 

have CMOS of silicon, I can have BiCMOS – bipolar and CMOS combination, which will give 

real high speed; in fact, IBM has been working on it and it has succeeded in doing this – 

combination of silicon germanium transistors and BiCMOS. Let us go through that and see why 

and how this gives better performance or comparable to that of compound semiconductors like 

gallium arsenide-based devices.  
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(Refer Slide Time: 12:51) 

 

That is the structure: silicon emitter, silicon germanium p type, silicon n minus, silicon n plus. 

You will be wondering why we are putting a lower band gap material, but that is the whole key 

here. Let us go through this quickly and see what benefits we get – other benefits. The band gap 

of silicon germanium, which is this base, depends upon x – the mole fraction of germanium; x = 

0 is silicon and x = 1 is germanium. Now the lattice constant of germanium is different from that 

of silicon; germanium would match with gallium arsenide, 5.63 Angstroms – that is (13:38); 

silicon is lower than that – 5.43 or so; you may say it is just 4 percent, but 4 percent is quite large 

when you grow one layer over the other, because for each 25 atoms, there will be one mismatch. 

If you have to grow a layer over that, how do you do that?  
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(Refer Slide Time: 13:59) 

 

This diagram is a very popular diagram – silicon germanium people always flash this. What we 

have on the y-axis is the critical thickness of germanium on silicon or silicon germanium on 

silicon substrate. What is the maximum? I have discussed this earlier when I talked of chain 

layers. You can grow a lattice match layer, epitaxial layer on a substrate up to a certain thickness. 

I am not flashing the diagram again, but if you recall, if the lattice is wider, the top layer gets 

compressed like that and elongated that way so that there is no defect, there is no misfit, no 

dislocation, you get a single crystal but a strained layer – that is better than a defective layer. 

Now if you keep on growing, the stress keeps on building up and at a particular point, the bonds 

will break and you get a defect. We discussed all this earlier – just recall that. There is a 

maximum thickness layer that you can tolerate, which does not have a defect but it is strained. 

You can see here the strained layer maximum thickness. This curve (Refer Slide 15:21) shows 

you one of the theoretical calculations that has made strain equilibrium – the maximum layer 

when the strain is in equilibrium. For example, I can grow germanium on silicon but the 

thickness of layer that you can grow is about 10 Angstroms. It may be just two atomic layers, but 

you keep on reducing x, go towards silicon. You can see that I can go even to 1000 Angstroms; x 

is 0.2 – 20 percent germanium, I can grow a layer about 100 Angstroms that is defect-free. This 

was the initial theoretical value, but if you do this growth by ultra-high vacuum techniques like 

MBE, etc., you can get thicker layers that are defect-free in the sense that as you grow, you do 
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not provide the high temperature required for them to break up the bond and so it grows without 

breaking the bond for thicker layers – that is what is shown here in the dotted line.  

The dotted line is actually the one that is called metastable – you grow it at lower temperature; 

though it has a tendency to create defective layers at this point, if you grow at lower 

temperatures, you can get thicker layers; not too thick – you are not pitching up on very thick 

layers, you are talking of base width (16:47) microns and you are happy with that; if we are able 

to get 1000 Angstroms, that is quite sufficient. I do not know whether you are able to see but 

there are points one (Refer Slide Time: 16:55), two, three, four, five – those are the experimental 

points. People have grown silicon germanium by MBE and found that strained layers that are 

defect-free can be grown with that thickness – that matches with this curve, dotted line. What we 

are telling is I can have 0.2 x and still get a strained defect-free layer that is about 2000 

Angstroms. Now that gives us confidence in this technology and people have gone ahead with 

making these devices.  

(Refer Slide Time: 18:08) 

 

Let us take a look at the band gap. There are a number of curves we have. All that you have to 

understand is if you just have a silicon germanium alloy, you will get a band gap some particular 

band – no strain, just make an alloy of silicon germanium, single crystal and grow a thick layer, 

the intermediate layer will be defective, but the top layer will be silicon germanium with no 
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defect – thick layer; that is not suitable for making HBT, but if you do that, that will be the band 

gap, the top curve. 

Germanium is 0.72, silicon is slightly more than 1.1 and in fact, we will talk of 1.111 or 1.115 – 

that range we will talk of. This curve shows it is varying from about 1.15 to… it all depends also 

on what temperature you are measuring that at – 2.72, but what we are talking of is silicon 

germanium that is strained – the top layer is unstrained silicon germanium. When the layer is 

strained, this lattice is under stress, the energy band diagrams also undergo changes and because 

of that, you get different band gap – in fact, you get lower band gap and you can see that here 

and in fact, that suits you, you can mix very small quantities of germanium and still get a band 

gap that is lower than that of silicon.  

The top curve here is unstrained silicon germanium. This particular curve (Refer Slide Time: 

19:07) is actually strained silicon germanium on unstrained silicon. If you grow thick silicon 

substrate n type, grow silicon germanium, that is a strained layer, then this is the band gap that 

they have estimated. You get a band gap that follows this (19:29), which is much smaller than 

that of silicon germanium unstrained. You can see that for about 0.2, you will have about 1 

electron volt; instead of 1.15 here, you have got 1 electron volt (19:44); you have got about 0.15, 

which is (19:46) about 0.2 – in that ballpark; you have got a material that is strained but with a 

band gap definitely smaller than that of silicon by about 0.1 electron volts; that is good enough – 

to get that e to the power of delta EgB by kT, e to the power of 4 – 50 times more. What is the 

benefit of using that?  

Now let me go back to this diagram. You can put a layer of 1000 Angstroms very comfortably – 

with a base width 1000 to 2000 Angstroms, with a band gap that is smaller than that of the 

emitter. Compared to a silicon NPN transistor – silicon germanium base with changeover, what 

benefit do you get? We have seen already what benefit you get – you can dope that region 

heavily.  
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(Refer Slide Time: 20:41) 

 

Apart from that even in gallium arsenide-based devices, that holds good. The collector current Ic 

is larger for a given VBE. How do you say so? We have been writing this expression on and off 

for the collector current. That depends upon q DnB ni square by total integrated doping into e to 

the power of VBE by VT – this is a very familiar formula for you. You know that you can 

increase the doping for a given current or you can actually.… When I reduce this band gap, ni 

square goes up. If ni square goes up for everything same, Ic goes up exponentially, ni square is 

proportional to e to the power of minus EgB by kT, so the collector current is larger for the same 

VBE. What I am comparing is a silicon bipolar junction transistor and a silicon germanium base 

HBT. A silicon germanium base HBT will give higher collector current for the same VBE. In 

other words, you can go to lower VBE to get the same current.  
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(Refer Slide Time: 21:57) 

 

We can go to the active region. How is that? That is the way the carrier concentration is. Now 

the band gap is smaller and you get a larger current. How do you do that in this diagram?  

(Refer Slide Time: 22:12) 

 

This is fixed, that goes up and it is like that for the same voltage because after all, np(0) is equal to 

np0 e to the power of VBE by VT and np0 is actually the minority carrier concentration, thermal 

equilibrium. For a given doping, when ni square is larger, this will be larger (Refer Slide Time: 
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22:47) and that is why that is larger. np(0), the minority carrier concentration, is larger if the band 

gap is here, ni square divided by pp0. This is ni square divided by doping. If that increases, that 

increases and if that increases, np(0) increases, current decreases. It is a simple way of 

understanding from the formula we have put in the slide. So for a given voltage, the current is 

more; this current does not change – what you have injected to the metal, total current increases.  

(Refer Slide Time: 23:32) 

 

What is the impact of that? The impact of that is that beta improves – collector current increases 

means beta improves, the base current does not change much because the base width we are 

talking of is very small, volume recombination we saw is negligible in HBT – it all depends upon 

the emitter efficiency. Then, the increase in Ic decreases the emitter charging time or any 

charging time for a given VBE for a given change in collector current; the collector current 

change is more for a given change in VBE in this case compared to BJT and so, all the charging 

times are smaller; particularly, the emitter charging time is smaller and this improves the 

switching speed.  

It is a well-known fact that if the currents are larger for a given change in voltage, the switching 

[24:26] are large; even an integrated circuit has a device (24:28), because after all, the cut-off 

frequency will depend upon the transit time in the base and the charging time in the emitter – 

emitter base capacitor charging time. The emitter base charging time depends upon how much 
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the current is – that is larger here for VBE. You have to charge the smaller voltage to get a 

particular current or for reaching a particular voltage, you have a larger current available, so it 

charges faster. That is why the charging time of the emitter base capacitor is smaller, so (25:04).  

(Refer Slide Time: 25:04) 

 

Another very important advantage that is there for all HBTs but is mainly exploited in the case of 

HBT silicon germanium transistors is this factor – germanium content (x) in silicon germanium 

can be controllably graded across the base. I do not know whether it rings a bell. As I move from 

here to here (Refer Slide Time: 25:35), I can vary the germanium content, I can make the 

germanium content more here and I can keep on changing that; that means I can vary the band 

gap across the base – narrower band gap, wider band gap here. You can do that by just growing, 

varying the mole fraction of germanium by adjusting the flow rates or by adjusting the 

germanium content in MBE – you can vary the band gap. What do you get out of that? You get 

of course the band gap change; if you change the band gap, it introduces an electric field.  

Do you remember? When I draw a diagram like this, the carrier concentration is linear varying – 

injected carrier concentration. What you are assuming in this carrier transport is through 

diffusion – there is no electric field here and the transit time is w square by 2Dn. You can 

increase the speed or reduce the transit time by not only reducing w but if I can bring in an 

electric field, the transport will be faster. The velocity by diffusion is smaller compared to 
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velocity by drift. If I introduce drift by some means, I am in this (27:01). I can increase the speed 

and the transit time can be reduced by a factor of 5 to 10. From 10 GHz, you may go to 100 GHz 

– people go there; 100 GHz is not a joke – it is a reality, it is not a myth; (27:21) reported 100 

GHz silicon germanium transistors, HBT. One of the reasons is this – you can introduce that. I 

will just quickly go through the analysis of this. Now I have put this as a statement here: you 

have an electric field that aids the electron transport across the base, thereby decreasing the base 

transit time.  

(Refer Slide Time: 28:00) 

 

When I say an electric field is present here aiding the transport of electrons, the field direction is 

plus here, minus there – electrons are moving in that direction and it attracts towards positive 

(27:58), so there is a field in this direction, a built-in field comes in and in the next diagram, you 

will see it clearly. 
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(Refer Slide Time: 28:08) 

 

The tautb is of course reduced, fT is better due to smaller transit time. 

(Refer Slide Time: 28:13) 

 

That diagram tells us the whole story of grading the band gap across the base. I just put of course 

both the conduction band and valance band. It could be that the valance band is not changing, 

only the conduction band (28:27), but I have shown both. Now what we are interested in seeing 

is the impact of this change in the conduction band and the valence band – you can see smaller 
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band gap Eg at WB, larger band gap Eg at 0. I hope you would understand that the x that I am 

using here is for the distance – I tried to change it but I am stuck with the thing, so I am just 

keeping that; this x is the distance – it is not the mole fraction that we are talking of here now 

when you write the equations. 

x silicon germanium, there we can put x is the mole fraction, but this is actually the distance. So 

you can see that if I have an energy band diagram like this, conduction band like this, what does 

it mean? Whenever there is a tilt in the band gap, there is an electric field. A tilt in the band gap 

like this would mean that this is positive here, minus here (Refer Slide Time: 29:30). The 

electrons that are injected here find themselves in an electric field that pushes them in that 

direction towards the collector – drift velocity.  

You do not worry about what is happening to the hole here, because we do not care about the 

holes. In fact, in this type of thing, the electric field, the nice thing about this added thing is if 

you have a band gap like this, the field for electrons will be in this direction, the field for the 

holes will be in the other direction. The holes are being prevented from moving into the emitter 

and the emitter efficiency further improves. This is a classic thing – the nice thing about this type 

of structure band gap varying continuously across the base region. Eg is a function of x. In fact, 

what you can also understand is…. We will come back to this if we have time to see the physical 

meaning of this, but right now from this diagram itself, you can see that there is an electric field 

like this. Whenever there is a band gap changing like that, the field is plus on the lower energy 

side and minus on that side.  
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(Refer Slide Time: 30:48) 

 

Now let us go back and see what is the magnitude of this field – we will rush through that very 

quickly, very simple equation. Instead of writing the current as due to diffusion alone, since you 

know that if there is electric field, you have to write diffusion current and drift current, it is q Dn 

dn by d of x. I am writing this equation at thermal equilibrium; no bias – we are not applying any 

bias, so it is q Dn dn by d of x. I am putting np0 instead of n – thermal equilibrium and it is a 

function of x and q np0 (31:27) (31:28), E is the electric field and that should be equal to 0. No 

electron current under thermal equilibrium conditions. np0 is actually the thermal equilibrium 

value of np – electron concentration in the p region.  

If I remove the 0, it will be actually injected carrier concentration and it is a function of distance 

x from the emitter to the base, from the emitter–base junction. Why? Because np0 is ni square by 

pp and pp is the doping; doping may also be function of x; even if it is constant, you will have the 

np varying; even if it is constant, if the band gap is varied, ni is varying, ni is actually increasing 

as you move from the emitter to the other end and so np actually increases. The thermal 

equilibrium concentration value is more in that region as x goes on. Now to find out the field, 

you have to equate this current to 0, because it is thermal equilibrium. There will be a 

concentration gradient existing, but if the current flow has to be 0 when the concentration 

gradient is present, the only way possible is presence of electric field and that comes because of 
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this charge redistribution. So that electric field is the one we are going to find out. Equate this 

diffusion current to drift current and plug in this np0 equal to ni square by NA(x). 

(Refer Slide Time: 33:00) 

 

I have rewritten that equation. Instead of np0, now I am putting ni square by NA, so q Dn d by d 

of x np0, this is ni square by NA, q np is ni square by NA (33:21). That is 0 in thermal equilibrium 

condition. That is what we mean by equation 1 and 2. Now, all that you do is differentiate this. 

When I differentiate that, the first term, I am retaining the second term retaining as it is here – q 

ni square by NA mun E is retained as it is; remember that NA may be a function of x, so we will 

take that also into account and E is a function of x.  

In the first term, if I take NA also as a function of doping, then I get q Dn, I pull out 1 over NA, 

qdV formula: first function into differential of second function – it is 1 over NA, differential of 

second function is d by dx of ni square I am not differentiating it right now but keeping it intact 

plus second function is ni square into differential of 1 by NA, which is minus 1 by NA square into 

dNA by d of x, because NA is a function of x; if NA is independent of x, that term goes off. This 

term is written here (Refer Slide Time: 34:34). Now, E is given by equating to 0. What I do is I 

find E equal to.… I take all these to the other side, divide by q ni square by NA. Let us take this 

term and divide by q ni square by NA. 
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(Refer Slide Time: 35:06) 

 

ni square by NA… when you do that, you get that. Just rearranging the things, what you get is 

actually that the electric field is equal to Dn by mun. We can just see it here. You get Dn by mun 

when you divide the whole thing. Dn by mun is there for both the terms and in this term (Refer 

Slide Time: 35:22), ni square cancels and you get 1 by NA and since it goes to other side, it is 

plus, so you get Dn by mun into 1 by NA dNA by d of x. Similarly, the second term becomes Dn 

by mun into 1 by ni square d by dx of….  

You can just see for yourself by rearranging those – this is what you get. Now, the electric field. 

Dn by mun is actually equal to VT kT by q, so VT by NA into dNA by d of x – this is a very 

familiar formula for some of you who have taken more courses. If there is a doping gradation, 

there is an electric field due to the built-in field due to that. Wherever there is doping, gradation 

will be there, that is the first term. You get now additional terms due to the band gap variation. 

That is VT by ni square d by dx of ni square. Now let us take a look at that. Now this ni square is 

actually proportional to E to the power of minus Eg by kT. I differentiate this (Refer Slide Time: 

36:19) and divide by ni square. 
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(Refer Slide Time: 36:11) 

 

So d by dx ni square is actually… When I differentiate that, you get minus 1 by kT ni square, 

(36:33) is the exponential term. When you differentiate this with respect to x, you get ni square 

itself, because it is exponential e to the power of minus k – minus Eg by kT, but 1 by kT into 

differential of dE by dx, df by dx is a function you are differentiating once and then.… 

Simple differential equations, differential formula, so you get that because when you 

differentiate, you get whole term on the numerator, by kT, differential of this, minus is there 

because of that. I plug in this quantity into the previous equation, which actually has VT by ni 

square into dEg – we will just go back to that. See here, the first term is VT by NA into dNA by d 

of x – that I am retaining as it is; second term, I am substituting for d by dx ni square, which is 

nothing but minus 1 by kT into dEg by dx into ni square; ni square cancels, so I get that.  

What you get now is VT by NA into dNA by d of x plus VT by kT into dEg by d of x. It tells you 

totally now that the electric field is decided by doping gradation plus gradation in the mole 

fraction – that is gradation in the band gap. Now let us take a look at that. That was missing 

there. This is the formula that we have got now, which tells us what is the electric field thermal 

equilibrium. Now when you forward bias the emitter–base junction and inject carrier electrons, 

that electron experiences this built-in field. What is the direction of this field? Dn by d of x. If the 

doping is changing from here to here, more doping and less doping there (Refer Slide Time: 
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38:46), if there is doping naturally and if you do a diffusion, it will have doping here, n0 e to the 

power of minus x by L, something like that – exponentially it is falling. Then, the field actually 

will be…. Dn by dx is negative (39:01) in that direction. What about the second term – plus dEg 

by d of x? If the band gap is going on falling here, Eg is going on falling and that also in that 

direction. Both are in this direction (Refer Slide Time: 39:18). Both the electric fields actually 

support the faster movement of electrons from the emitter to the collector – this is the added 

benefit that you get for silicon germanium HBT compared to BJT with silicon alone. You can 

also put this term particularly as… sometimes, you will see this put as VT is kT by q, so that 

becomes 1 by q.  

(Refer Slide Time: 39:56) 

 

It is 1 by q dEg by d of x. The first term is due to doping gradation and it gives the electric field 

component aiding the electron flow, provided doping gradation is in that direction from the 

emitter to the base collector, which is usually the case when you do diffusion. Take a substrate, 

diffuse from top, doping is higher on the top and so as you move down towards the collector, 

doping is reduced – that is aiding the electron flow. What about the second term? The second 

term is due to the band gap gradation and it aids electron flow if dEg by dx is negative. It means 

actually that the band gap at the collector edge, at WB should be less than the band gap at the 

emitter–base junction (40:44). 
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(Refer Slide Time: 40:46) 

 

Now let us get an idea of what sort of fields are there in the transistor. You see here this 1 by q 

dEg by d of x – that is the second term; we are seeing what is the magnitude of the field due to 

the band gap gradation – that is that. For a linear gradation, you have got the linearly varying 

band gap – delta Eg varies as a function of x linearly, then you have got delta Eg by d of x, the 

negative sign is there, that minus that by WB. Your dEg by d of x is negative, that is why it is put 

it there. Magnitude is that quantity – it is delta Eg by WB.  

Now if delta Eg is 0.15 electron volts – (41:54) vary the band gap from the collector to the 

emitter by 0.15, then for a 0.1 micron base width, we can still get a strained layer that has band 

gap and has no defects. The electric field is 0.15 by 10 power of —5, 15 KV per cm. This is the 

benefit that you get. Current (42:21) by drift and diffusion. Now, there are a couple of things I 

want to point out here. If you take the electric field in the case of doping gradation, what sort of 

electric field do you get? 
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(Refer Slide Time: 42:43) 

 

Let me put that. If I take the NA(x) equal to NA0 into e to the power of minus x by L, what is the 

electric field? No band gap gradation. You get this all the time in the case of BJT – all modern 

BJTs have an electric field built in the base because of this gradation that you saw just now. 

What is that actually? VT by NA of x into dNA by dx. We just now saw this; go back and see that 

term – that is due to doping gradation. In fact, you can derive that equation right from the 

fundamentals when ni is constant – we will get only that one term. The way we started, we have 

taken ni varying and nA also as varying. When you take ni constant, you will get the second term 

dropped out, if delta Eg by dx is 0.  

If that is the thing, what is the electric field? L is a constant, the decay constant for doping. What 

is the electric field? VT by L. dNA by d of x is this (Refer Slide Time: 44:12) into divided by L 

and that is the quantity. You will get (44:20) minus – that is minus. From here, the minus sign 

comes and this tells you that the electric field is in that direction – the minus sign is right and it 

must be there; otherwise, whatever we have been telling is not correct. The minus sign comes 

from there and in fact, it tells that dNA by dx is negative and it is a constant electric field. What 

will be the magnitude of this quantity VT by L? Some idea we must have. That depends upon L.  
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(Refer Slide Time: 45:15) 

 

How much will L be? I go back down here. NA(0) is NA0. NA at WB is NA0 into e to the power 

of minus WB by L. What I am getting at is this: that field depends upon the base width and L. 

Therefore, NA(0), the doping at the emitter base (45:50), divided by NA at WB is actually equal 

to e to the power of WB by L. This WB by L therefore depends on logarithm of that (Refer Slide 

Time: 46:09). Supposing WB…. You will get the benefit of this only if the doping here is smaller 

compared to doping there – gradation. When we have doping concentration like this – 0 and x, 

some variation like that, NA0 and that is nA(WB), that is what you are talking of – exponential 

doping concentration gradation, you will get the doping variation like this. Now WB ….  

Supposing this ratio is 100 or let us say this ratio is 54 – doping at the emitter and doping at the 

collector edge, that ratio is 54, which is reasonable to assume, what will be this factor? 4, e to the 

power of 4 is 54; if this ratio is 54, you get this as e to the power of 4, so WB by L is equal to 4. 

If WB by L is 4, if WB is let us say 0.4 micron, I am just giving some example, L will be equal to 

0.1 micron – I am just computing some number to see what is the order of the field here. If this 

ratio is 54, this is e to the power of 4; that means WB by L is 4 and if WB is 0.4, L is 0.1.  
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(Refer Slide Time: 47:50) 

 

If L is equal to 0.1, I am just computing the (47:52). What is the order of this L? It may be 0.1, 

0.2, whatever. If it is 0.1, what is the VT by L field now? 25 millivolts divided by 0.1. So for this 

case, this is actually minus VT by L, which is actually equal to 25 millivolts into 10 to the power 

of —3 divided by 10 to the power of —5. How much is that? This is 2.5 KV per cm. I just took 

this example to illustrate that you will have in the conventional transistor itself a built-in field of 

this order. In fact, the factor WB by L is called the field factor, which actually decides what is the 

potential change there due to that electric field. You have this much field and you also saw that 

in this case, I have taken an example where the base width is 0.4. If I take the same example with 

base width is 0.1, one-fourth of that will be 4 times that – 10 KV per cm. I took a wrong example 

there of L equal to 0.1, taking WB as 0.4, but if you have to compare with WB equal to 0.1 

microns and if this is 4, L will be 0.1 by 4 and this will be 10 KV per cm. It just depends upon 

the base width and the doping gradation there. In other words, it depends upon the WB by L ratio 

and that L depends upon the doping concentrations.  
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(Refer Slide Time: 49:48) 

 

Now, let us go further down. This is the structure that.… Now, we can run through the results 

that people have reported. They have made devices that can go right up to 100 GHz. You go to 

the Web and say ‘silicon germanium HBT’, you will see IBM results put across – they have 

made BiCMOS, they have made ECS and all sorts of things using the silicon germanium 

technology. It is a big contender for gallium arsenide technology – silicon germanium. This is 

the answer, challenge thrown by silicon technology towards gallium arsenide-based HBT, but 

still the high electron mobility transistor stays there and there is no contender here – that is one 

thing that you have to remember. But there are other issues: when you want to go to harsh 

environments like higher temperatures, you cannot use base materials that have smaller band 

gap. Silicon germanium has a smaller band gap compared to gallium arsenide, etc., and so for 

those harsh environments, you still have to look at gallium arsenide-based devices. 

This is the type of structure that you see. In a bipolar technology, you have the integrated circuit, 

you have the p minus layer substrate and n plus collector contact (51:08) from the top, then n-

type layer, collector and you can see the narrow p plus epitaxial base made of silicon germanium 

and contact is taken laterally there. Of course, I am not going through the technology of this – 

this is a self-aligned technology where you can grow layer by layer without too much difficulty 

in aligning single alignment (51:32) defined already, you can realize this. This is that. This is the 

emitter, base, collector; the emitter is polysilicon, n-plus polysilicon – this is another thing that is 
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actually very attractive for self-aligned techniques; you also put n plus contact – it is slightly 

diffused into that region; then you make a single crystal – a very shallow n plus junction or n-

type junction and then a contact is taken on the n plus layer. This is the structure here. Of course, 

people use silicon technology for trench isolation, etc., where you put a trench, oxidize it, put 

polysilicon... all those techniques are there for isolating devices integrated circuits. (52:25) IBM 

(52:26) and the layers, the device structures are microns. 

(Refer Slide Time: 52:33) 

 

Doping profile. I will just quickly run through this because there is no more explanation needed. 

This particular structure that is used here does not show doping concentration changes; arsenic 

emitter doping (Refer Slide Time: 52:45), base doping gradation and germanium; we have not 

shown that gradation that much in this case, but you can see from here to here that the gradation 

is there; germanium gradation is there, that is, the band gap is varying from larger to smaller 

value (52:59) other way and there is a built-in field coming up; the percentage of germanium 

goes right up to about 10 percent, 0.1, so band gap is narrower compared to that. 
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(Refer Slide Time: 53:12) 

 

As I said right at the beginning, the collector current is larger in the case of silicon germanium 

BJT compared to the.… There are two curves: collector current in the silicon germanium HBT 

(Refer Slide Time: 53:21), collector current in the case of silicon BJT – that is about a factor of 

4.5 larger; one is due to the field and the other one is heterojunction effect – both. The base 

current is the same and the device size as we can see is 0.5 by 2.5 micron – very small strip for 

the emitter, which reduces all the capacitance (53:42). 
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(Refer Slide Time: 53:44) 

 

Then, cut-off frequencies. Once you get actually larger current for a smaller voltage, the 

charging times are all smaller and you get much higher cut-off frequencies. For this particular 

device that has been reported quite some years back, the cut-off frequency depends upon the 

collector current, because that gives better charging capability for the emitter–base junction and 

that is why as you go to higher currents, you get higher cut-off frequency, but what you have to 

do is compare with the single BJT – much higher. For 20 or 25, we get about 50. This is an older 

result that I am putting here, but I have seen 100 GHz; these all are GHz, 50 GHz.  

In the emitter-coupled logic circuit they have made, there BJT, if we get 30 picoseconds, the gate 

delay – unloaded of course, (54:45) of 1, fan-in by fan-out 1, that is 30 in the case of BJT if you 

have minimum and here you get 20 for HBT (54:53). In fact, they have gone down further below 

that picosecond range (54:58) – much lower than that when you go to GHz. These are the merits 

that we get in the case of silicon germanium. In fact, I think I do not need to discuss more about 

these things. In summary, silicon germanium is playing a key role today and a lot of people are 

putting in efforts, because we can realize silicon germanium transistors bipolar along with 

CMOS integrated circuits. With that note, I will close today. We will take on the circuit aspects 

in the next lecture.  
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