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Now, we will be coming to Hypothesis Testing, which is another application involving 

these statistical concepts. 

(Refer Slide Time: 00:15) 

. 

This is very interesting and plays an important role, even if a bit understated in design of 

experiments. Nobody really looks at design of experiments as a hypothesis testing, but 

this is a very important part of design of experiments. Here what you do is you specify a 

hypothesis or you postulate an hypothesis, and use the data contained in the sample to 

see whether your hypothesis is adequately supported. We are using the hypothesis testing 

to make decisions on the population; we are not making decisions on the sample. 
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There are two hypotheses: one is the null hypothesis and the other is the alternate 

hypothesis. As the name implies the alternate hypothesis is contradicting the null 

hypothesis. If the null hypothesis says that something is working, the alternate 

hypothesis will say that is not working. If the null hypothesis says the person is innocent 

the alternate hypothesis says that the person is not innocent. So, when defining the two 

hypotheses we imply that the rejection of the null hypothesis means automatic 

acceptance of its alternate. 
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Okay so, we use the sample data and identify a test statistic, which is a function of the 

sample measurements, using which we try to establish the null hypothesis or its alternate 

and subsequently make a decision okay. So, what we do is, we take the sample, and then 

extract a sample statistic from it; it may be the variance of the sample or it may be the 

mean of the sample - these are the two more common ones. And using this estimate, we 

try to infer about the population parameters. If we are using the sample mean, then we 

are trying to infer about the population mean; if you are using the sample variance, we 

are trying to infer about the population variance. So, the decision making is always 

associated with the errors; nobody can really say that all their decisions have been 

completely correct. So, we have to see what are the possible errors in decision making. 
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So, let us look at this table. Here the columns are headed as a H naught is true and H 

naught is false. The null hypothesis is true; null hypothesis is false. And the statistical 

decision may be either do not reject H naught; we are a bit careful, we don’t accept H 

naught, we instead say that do not reject H naught. And the next one is a bit more 

unambiguous - reject H naught. Okay so, if H naught is true and that the decision made is 

do not reject H naught, obviously, you have made a correct decision. But when H naught 

is false actually, and you have made a decision not to reject H naught, a less serious type 

II error has been made okay. When you reject H naught, when H naught is actually true, 

then you have made a more serious type I error. And again, when H naught is false and 

you have rejected H naught, you have definitely made a correct decision. 



 

 

Why is a type I error more severe? I can give a very simple example or may be a couple 

of examples. If the null hypothesis says that person accused of a crime is innocent, and 

the court rejects that hypothesis H naught, and instead says the person is actually guilty, 

and convicts him, then a wrong decision has been made, and an innocent person has been 

punished. So, a type I error is said to be made. On the other hand, if the person is really 

guilty, but if the court exonerates him, then the guilty person is getting away scot free, 

and type II error is supposed to be made. Perhaps you may recall that even though many 

guilty people may escape punishment not a single innocent person should be wrongly 

punished. 

Another example which I can think of, from an industrial point of view, is a company is 

having a well established process, and a newcomer to the an industry, perhaps a new 

recruit or an old hand from another industry, comes and says this process is not really 

that good, I can improve upon the process. The management is skeptical and says, look 

we have been using this process for the last 20 years so on, and it has been working fine 

without any problem, and we are making profits. So, when something is working why 

tinker with it. So, the null hypothesis would be the proposed process is not a really great 

improvement on the existing process and the alternate hypothesis would be definitely the 

proposed process is a improvement over the existing process. 

So, if you make a type II error, then even though the original or the existing process is 

not that good, you are not losing that much; anyway, you are back to where you are 

previously, and so you are still making profits, and the plant is running. So, a less serious 

error has been made. On the other hand, if you say that the existing process is bad, it’s 

not good and the new process is better, and that decision is wrong, that means, you are 

throwing away an actually good process, and then investing lot of time, money, 

resources, and man power in bringing up a new process, which does not really give any 

great benefit over the existing process. So, then we say that a type I error has been made. 

So, this kind of decision making you will employee in design of experiments, for 

example, you may have several variables influencing your process, upfront you start 

saying that none of the factors are really significant in the experiment. And then, based 

on the information provided by the experimental data, you do this hypothesis testing, and 

then you can conclude if some of the parameters alone are significant and the rest of 

them are not significant. 
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Now, we come to another important distribution called as the F distribution. The chi 

square distribution is not really immediately used in design of experiments, but the F 

distribution finds direct application, and the F distribution is similar to the chi square 

distribution, and it is based on that. So, when you do hypothesis testing on population 

variances designed experiments and linear regression, we compare ratios of variances in 

order to infer whether they are comparable to one another or one is much different from 

the other. So, when you want look at the variability of the data, the variability can be 

caused by variation in the factor levels or the variability may be simply caused by 

random effects on which you have no control of. So, when you claim that your 

experimental factors which you are controlling are impacting the response of the 

experiment significantly, then you have to prove that this variability caused by these so-

called important factors is much higher than the variability caused by noise or random 

error. 

If the variability shown by changing the factors is comparable to the variability due to 

noise or random errors, then you cannot say that this factor is really making an impact. 

When you change the factor may be the random effects are causing the experimental 

response to deviate considerably. So, you have to compare the variability due to the 

change in factor with the variability because of the prevailing a random error sources, 

and for this comparison of variability, the F distribution is very useful. So, let us a look at 

the basics of the F distribution. 
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So, again, we start off with the set of assumptions: the two populations from which the 

variances were taken for comparison are both normally distributed. We are comparing 

two variances and we assume that both of them are coming from populations, which are 

normally distributed. And we also do not know the population parameters namely the 

means and variances. 
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So, how do you define the F random variable? The F random variable is defined in terms 

of the chi square distributions. It is simply defined as the ratio of the independent chi 



 

 

square random variables. Let’s call them C D 1 and C D 2. Each of which is scaled by its 

own degree of freedom okay. So, we take the first chi square distribution, and then we 

divide it by m 1; m 1 representing the degrees of freedom for the first chi square 

distribution  Then, we take the second chi square distribution and then divide it by m 2, 

and m 2 representing the degrees of freedom for the second chi square distribution. 
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So, when you expand the chi square distribution, you see that C D 1 is given by m minus 

1 S 1 squared by sigma 1 squared that is the definition for the chi square distribution one 

and then when you divide that by m minus 1, the m minus 1, the numerator and the m 

minus 1 the denominator gets canceled, and then you get S 1 squared by sigma 1 

squared. Similarly, when you do the same thing for the second chi square distribution, 

you will get S 2 squared by sigma 2 squared. So the F distribution in fact becomes S one 

squared by sigma one squared divided by S 2 squared sigma 2 squared. S 1 square and S 

2 squares are the sample variances of the first and second samples respectively, and 

sigma 1 and sigma 2 are the standard deviations of the first and second populations 

respectively. 
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So, we get back to our percentage point. We saw the percentage point cropping up in a 

normal distribution and in chi square distribution; it’s not a surprise that it is now coming 

in the F distribution. The F distribution is slightly different from the other two 

distributions we saw previously, because it has two degrees of freedom. One called as the 

numerator degrees of freedom, so m minus 1 is the numerator degrees of freedom, and n 

minus one is the denominator degrees of freedom. It is convenient to represent the 

numerator degrees of freedom first followed by the denominator degrees of freedom. So, 

then, we have probability of F greater than alpha m 1 m 2, and f is the random variable, f 

random variable and f alpha m 1 m 2 is a particular value. So, we have to identify f 

alpha, m 1, m 2 such that we get a probability of alpha.  

So, going back to the mathematics g of x represents the mathematical form of the F 

distribution, we will not get into it right now. And so, we have the mathematical form 

here; we integrate it between the limits f alpha m 1 comma m 2 to infinity, and we have 

to identify what is the value of f alpha, m 1, m 2 such that the area under the curve is 

equal to alpha - the required probability. So, there is another interesting mathematical 

manipulation here which I will leave you to go through. 
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 Now, let us look at the F distribution. For this distribution, we have to specify the 

numerator and denominator degrees of freedom; in this particular case, it is actually 10. 

Alpha we set it 2.05; that is usually very popular; for example, you know the 95 percent 

confidence intervals are based upon a value of alpha of 0.05. So, the f alpha m 1 m 2 is 

identified here to be 2.98. So, when you look at the area under the curve beyond the F the 

value of 2.98, you will find area under the curve to be 0.05. 
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So, now let us get into simple experiments. These are very scarce, but this is a very good 

basis for illustrating some key concepts. So, what we do here is we are looking at 

experiments involving only one factor. So, what we look at here the comparison of 

variance due to change in treatments with the variance due to repeats. So, when you do 

repeats, you find variability in the data. If all the factors are kept at the same values, then 

the variability can be due to only random factors. We assume that all the equipment, 

instruments are all working fine, there are no systematic errors. So, the error is only from 

the random components and to identify the error from the random components, you have 

to do the repeats of the experiments. So, the more number of repeats you do, the more or 

better idea you have about the experimental error. 

You may be asking - what is meant by this treatment whereas this treatment is it a 

medical treatment or what kind of treatment it is? It is just a classical term, which has 

survived over the years. So, we just call it as the levels of the factors. So, what we have 

to do is remember that we are considering only one factor and they may be having 

different levels or different treatments. For example, it can be fertilizer A can be one 

treatment to the land, and fertilizer B can be the second treatment to the land, and so on. 

So, essentially, as I said earlier we are comparing the variation between treatments to 

variation within the treatments. Good ! 
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Now, we will be coming to a very popular and very important table called as the ANOVA 

table. ANOVA stands for analysis of variance. So, you can see that finally, everything is 

boiling down to the analysis of the variability. So, this table has several columns and the 

first column is the source of variation. So, it can be treatments, and then, it can be the 

error. As I said earlier, variability from treatments and the variability from error, and this 

column contains a sum of squares of treatments and this is sum of squares of error; I am 

not getting into all the details. So, the variability due to treatments is represented in terms 

of the sum of squares of the treatments.  

Normally, we don’t take the absolute variability or the actual variability because some 

variability with the reference to the defined average value can be positive and some 

variability can be negative. So, instead of taking the variability as it is, we take the 

square of them. Similarly, we do the sum of squares of the error. So, I am not getting into 

how these sums of squares were actually evaluated, but I am just indicating that these are 

measures of variability in a squared form. A is the number of levels for the particular 

factor or the so-called number of treatments. 

So, what you have to remember is the degrees of a freedom you have to keep in mind, so 

that rather than comparing the sum of squares of treatment with the sum of squares of 

error, because the sample size for the treatments and the sample size for the error may be 

considerably different. So, to put them on a same basis, you scale each of the sum of 

squares by the appropriate degrees of freedom. So, you divide by a minus 1, where a is 

number of treatments, and for error - to get the scaled error squared, we divide sum of 

square of error by a into n minus 1; a into n minus 1 is the degrees of freedom for the 

error component. So, when you divide the sum of squares by the respective degrees of 

freedom we get the mean square treatment and the mean square error.  

And what we are doing here is comparing the two mean squares, mean square treatments 

by mean square error. Let us see if I can correct this small typo here. There should be 

capital S, okay that takes cares of it and so here we go.  

If you look at the mean square treatment it is similar to the variance. We know the 

variance is the sum of square of the deviations. Here also when you calculate the sum of 

squares of the treatments, you define a suitable average, and then, you find the deviation 

of the response with the respected average, and then square them, and each deviation is 



 

 

squared, and then all the deviations are added to get the sum of squares of the treatments. 

And when you divide with the degrees of freedom we get the mean square treatment. So, 

this is a kind of variance okay. And then, similarly, you also have the error term, where 

you have the mean square error, where the sums of squares of errors are divided by the 

degrees of freedom. So, you compare mean square treatments by mean square error to 

get the F value and based on the probability values associated with this F value, you can 

make the adequate conclusions. 
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There is another important thing you have to remember in mind or keep in mind when 

you do experiments is the randomization of your experimental runs. Normal tendency, in 

any experimenter - a new experimenter, let us put it like that is to systematically vary the 

factor settings. He may or she may go from a low factor setting to a high factor setting 

for one variable, and then take the next variable, and the again do in a very systematic 

manner that shows the organized mind of the experimenter, but in reality, it is better to do 

the experiments in a randomized fashion. 

What I mean by randomization is to mix up the order of the runs - why should we do it? 

Suppose we are looking at a photocopier, and we are looking at three different toners 

used in the photocopier, let us say that you put for each toner you do three trials, and 

look at the picture quality, and then decide which toner is better, and the which toner is 

not so good, and so on. So, in this very illustrative example, what you can do is do toner 



 

 

A for the first 10 minutes - 3 copies with the first toner, and then 3 copies with the 

second toner, and 3 copies with the third toner. When you do that, the photocopier may 

be getting heated up. So, by the time you come to the third toner, the external heating of 

the photocopier may lead to poor quality copies for the third toner okay. So, this will lead 

probably to the wrong conclusion that toner C is not good. What you should have 

actually done is the heating of the photocopier is inevitable and probably not 

controllable, and you have to finish all these evaluations within 30 minutes. 

So, what you can do is you can mix up the order of the runs, you can put toner A or toner 

1 first, then followed by toner 2, then by toner 3, and then 2, 3, 1, 1, 3, 2 like that, if you 

do it in randomized fashion, then the higher temperature effect is also reflected or 

indirectly influencing the performances of all the three toners than a specific toner. So, 

by randomization any unaccepted effects is evenly spread or distributed cross all the 

factor settings. So, randomization is a good idea and I request that when you are doing 

experiments, you please randomize your order of the runs. 
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So, randomization is implemented by running the designed experiments in a random 

fashion and the allocation of the experimental material to the different runs is also done 

in a random fashion. 
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Okay now, we are coming to the design of experiments slowly and one of the important 

experimental designs is the factorial design; you might have heard about the 2 power n 

factorial design, where 2 is the number of levels and n is the number of factors. So, for 

example, if you are having three factors a, b, and c – temperature, pressure, and 

concentration, each factor you investigate at two levels - a higher level and lower level; 

that is why we have the number 2 okay. So, we end up actually doing 8 experiments; 2 

power 3 which is equal to 8; 8 experiments are being done; and each factor is 

investigated at only two levels a higher level and the lower level. 

So, there are many advantages of factorial design. You may think okay why should I do 

only at two levels, it looks better if I do it at multiple levels; you are right, but even with 

the two levels of many factors, you can economize your experimental program and still 

get valuable information. And even 2 power n becomes quite a large number when the 

number of factors become too large. So, the advantages of factorial design are: you can 

scientifically interpret your results; it enables optimization approaches like the responder 

phase methodology. And one another beauty of this factorial design is both qualitative 

and quantitative factors may be analyzed together. For example, if you are having three 

different types of catalysts catalyst 1, catalyst 2, catalyst 3, you don’t really a consider 

them as any continuous entities, because you are not representing them in terms of the b 

e t surface area, and poor volumes, and things like that.  



 

 

So, these are discrete entities. On other hand, you may also want to investigate the effect 

of temperature or pressure which can vary over a continuous range. So, the design of 

experiments involving the factorial design, you can have both the mix of discrete and 

continuous factors or continuously varying factors. And now, it has been realized that for 

industrial competitiveness factorial design is compulsory. 

(Refer Slide Time: 25:17) 

 

 And again, you can do limited number of experiments to recover maximum information. 

The normal way of doing the experiments is to vary one factor at a time; this is not a 

very good strategy, because it leads to more number of runs and also it has not pick up 

the variability cost by interaction between the factors okay. One factor can influence the 

other factor; the value taken by the first factor can determine the response when you are 

changing the second factor. When you are doing experiments involving, let us say, two 

factors A and B, the interaction between A and B may also influence the outcome of the 

response. When you are doing experiments from one level of B and going to the other 

level of B, the response may depend upon the value of the first factor. Okay when you 

are changing B, if the value of A determines the response considerably, then the two 

factors are said to interact. 


