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All right, let us do homogeneous transformation matrices, one of the reasons why I want

to jump to this now is I want to combine rotation and translation, because I need to use

both of those operations to be able to place a rigid body anywhere I like in the world

because remember these are the movable parts of our model the moveable models. So,

one way to achieve that is to do rotate rotation followed by translates.

So, in other words, I get my transform point x prime, y prime, z prime by multiplying out

this rotation matrix R which I will just again not write all the entries involved just put

points here. So, that is a valid rotation matrix, and then xyz is my 3 D point, where I

would like to rotate we agree that that is just simple rotation that we have been doing

using the matrix, and now I add to it some translation I do not want to do, I was using

this notation last time he was x t, y t and z t for translation. So, if I go ahead and do this, I

should be able to generate any position and orientation for the rigid body, how many

degrees of freedom do I have here.

Student: 6.



6, correct. So, I have 3 different parameters here I can apply for translation, and then I

have 3 independent parameters I can apply in here after we satisfy all those constraints I

gave last time for a rotation right. So, that gives a full 6 degrees of freedom, again we

could  do  this  part  of  the  computation  we are  using  quaternions,  but  I  am doing all

matrices  today at  this  point  because  of some of the particular  transformations  I  will

beginning  into.  There  are  interesting  questions  and  about  when  to  convert  the

quaternions and why at different various times.

So, one thing to note is that the rotation part is a standard linear transformation, but this

addition part comes outside of that because I am not multiplying a matrix here in the

front right. So, I am not multiplying and adding matrices, I somehow I do not have a

simple equation of the form y equals A x, I have added some extra term to it. So, one

simple  trick  that  people  like  to  do  is  just  extend the  matrix  by  one dimension,  add

another row add another column and then you can get this expression into a form that

looks  like  this  or  there  is  just  a  single  matrix.  So,  it  is  just  a  kind  of  let  us  say

mathematical  or  algebraic  hack,  and  we  end  up  getting  something  that  is  algebraic

equivalent.
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So, let me just you know there is no real magic to it other than just recognize that it

algebraically computes the same thing. There are some deeper interpretations having to

do with projective geometry, but I do not need to go into that for this part. So, we make a



4 by 4 matrix that is algebraically equivalent when applied to a point. So, what I do is I

take  my xyz point  over  here,  when I  just  applied  the rotation and translation  in  the

standard way my point is just x y z, over here I am going to extend the vector by one

dimension and just put a one at the end. So, I am going to have the point look like this I

will put a one at the end, but I will just know that this one is something extra that I am

using to perform an algebraic trick.

So, I am not really increasing the dimension of the point itself, and then I am going to

calculate some x prime y prime z prime and the results going to be one for that, and now

have a 4 by 4 matrix, and the upper the upper left 3 by 3 component is just going to be

the rotation matrix. So, this will be the rotation matrix R just copy it exactly from here

and place it in, and then I am going to take my translation parts and put them down here

x t, y t, z t and the bottom row is going to look like the a piece of the identity matrix.

So, it would be 0 0 0 1 and then I will apply this matrix to my new 4 dimensional vector

x y z 1. So, I go ahead and perform this multiplication now, do we believe that we get the

same result as we would from performing this multiplication right. It should not take too

much to see the algebra of that for example, if I just look at the calculation of x prime, I

get I get the upper row of the rotation matrix the first row of the rotation matrix applied

to  this  column xyz here  right.  So,  that  gives  me exactly  the  rotation  part,  and then

because I am carrying this one along here right, I get because I am carrying this one here

this one will multiplied with this x t and just add it on right when I take this inner product

between this 4 dimensional row, in this 4 dimensional column I add on this xt that is

exactly what I get over here right I am just adding on this x t for the translation.

So, it is just a very simple hack that converts it into what is called homogeneous form.

So, this is a homogeneous linear transformation and if by the way you want to add some

extra part to it where there is an offset vector, then this is called an affine transformation.

It has very different properties and sometimes it is difficult to work with and you know

just algebraically a bit difference. So, if you want to start chaining matrices together, and

have there be translations and rotations happening all the time then you do not have to

switch operations, you do not have to sometimes add on a vector sometimes multiplied

by a matrix. If you use homogeneous transformation matrices then you are always just

multiplying matrices to achieve both rotations and translations.



So, that makes it very nice people who do work in computer graphics who want to code

algorithms very efficiently and say GPUs, would like to use the same piece of code or

the same circuitry  let  us say over  and over again.  So,  that  is  another motivation for

putting everything into one standard form and just performing the same algebra every

time. I have an interesting question for you. Now, what is the inverse of this right. So,

this is a homogeneous transformation matrix this 4 by 4, that performs rotation followed

by  translation.  Well  before  I  asked about  the  inverse  completely  though before  you

answer that we should also understand what is the axis of rotation here right so.

So, if I translate first and then rotate is that the same as rotating and then translating,

right. So, if I translate first then have effectively moved the axis of rotation. So, you

could do that you could consistently go in to find things that way; we are going to do it

and be easier to interpret way which is first apply the rotation so, that we when we think

about the axis angle representation, we are rotating exactly about that axis in the axis

angle representation.

So, you grab the book here. So, if we are if this  were the origin you first apply the

rotation and then translated somewhere. If you were first to translate it somewhere then

the rotation would be offset by quite a bit right depending on how large this displacement

was that was induced by the translation. So, it is something to pay attention to alright.

So, these operations do not commute.  So, if  I  take the inverse of this  I need to pay

attention to that. 
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So, just something to warn you about and so, what is T inverse and I have not written

exactly what T is; T is this 4 by 4 matrix. So, will say T is the 4 by 4 matrix.

So, this part here that is just the matrix T; so, what is T inverse let me write a candidate

for it. So, is T inverse equal to well why do not I just invert the rotation matrix what is

the inverse of a rotation matrix.

Student: (Refer Time: 09:37).

Just the transpose right. So, this only happens for what are called orthogonal matrices;

and orthogonal matrices are also have might you might want to call them orthonormal

matrices, because the columns are have been normalized as well. So, not only are they

orthogonal columns, but the lengths are normalized as well the magnitude of the column

vectors. And so, if I do that I could just maybe let us say take the 3 by 3 part here and I

will just put R transpose in there, because R transpose equals R inverse that does not

work for general matrices, but it works here.

So,  we can go ahead and do that,  and now let  us  see why do not  I  just  negate  the

translation. So, I could that is the inverse translation right. If I move forward five meters

the inverse of that is moving backwards 5 meters. So, why do not I just negate that. So, I

can go minus x t minus y t minus z t and then I complete the rest of this matrix 0 0 0 1

how is that is that the inverse.



Student: No.

Why not?

Student: In case its every (Refer Time: 10:48).

Ok, very good. So, so the operations in the wrong order here. So, if you apply this matrix

it is going to first unrotate, and then untranslate if you like and then inverse translate that

seems fine  except  for  that  point  that  I  made a  little  bit  earlier  when you have  non

commutative algebra you have to swap the order of operations, when you take an inverse

right you have to invert the order of operations. So, this is not going to work. So, the

answer is no for that. 

So, let us write what the inverse actually is, it is very helpful to observe these kinds of

things when you are writing code, when you are doing development for these systems, I

found it very helpful myself when doing development and oculus just being very quickly

able to find inverses change order of operations fix different kinds of bugs that happen.

Very  often  you can  get  things  working most  of  the  time  and then  doing  something

catastrophically bad like maybe the yaw and the pitch will be aligned correctly and then

the roll is backwards for some reason.

So, lot of things happening like this, and these are the kinds of tricks I think that are that

are helpful the kind of insights let us say, that are helpful that can save you a lot of time

in trouble. 
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So if we go T inverse; for the first thing I would like to do is undo the translation right

because that was the last thing applied. So, to undo the translation I will put it over here,

I will make a matrix that undoes the translation. If I want to make a perfect matrix that

undoes the translation, what should go inside of here?

The identity rotation, which also just looks like the rest of an identity matrix, so that just

undoes the translation that gets applied first, but remember that I am going from right to

left that is why I made a big deal out of that as well. So, we are in from right to left that

gets applied first and then we come over here, and in this case we undo the rotation. So, I

have my R transpose there and then I fix the rest of this matrix here, I had better not do

any translations here now, this is a pure rotation. So, I just put zeros and I complete the

bottom in the same way always for these I do not need to multiply that out and simplify

it you can go ahead and do that there is not you know this is a fairly generic matrix here

anyway. So, I like to keep it in that form. So, once again to summarize T is rotation, then

translation  when applied to a point  and T inverse is  inverse translation,  then inverse

rotation questions about that.


