
Virtual Reality
Prof. Steve Lavalle

Department of Multidisciplinary
Indian Institute of Technology, Madras

Lecture - 15-2
Visual Rendering (rasterization)

(Refer Slide Time: 00:16)

So, in the case of a Lambertian model, the B R D F is constant, it turns out. So, the only

part that is really left is. If this does not look constant, here, it still depends when I put it

in this expression. It depends on still the angle with that, the light source makes with

respect to the surface, but again, as I said that is, that will decrease the amount of energy

coming in and this ratio is based on comparing the amount coming in to the amount

going out. So, if I make this constant, then I get a Lambertian model. So, that is one

special case of this. So, that gives you the easiest case and then, you can handle all the

other cases through various complicated expressions. Here, you can go off and research

that on your own if you like.



(Refer Slide Time: 00:39)

But it is going to give you the sense that you know, people do these simple kinds of

hacks to generate and render scenes very quickly, but then, they also know how to do it

in the complex way, but there is a lot of research going on, in trying to make this more

efficient and, it is quite challenging. Especially when we get to the problems of virtual

reality, when we want even higher resolution right and faster frame rates, we want higher

quality. So, it is going to push us more towards making some kind of hacks, but the

hacks end up looking worse in virtual reality because we can move our heads around, we

can see a lot more than we could on a simple screen and that some of the details I will

get to.

One of the complications that V R causes right away for these kinds of problems is that,

the viewing direction right I get one viewing direction on a screen, but if I have stereo

rendering going on, I have two different viewing directions, right? So, that is one simple

complication that happens right away. One clear complication that happens right away is

that, I have two different viewing directions to take into account here each time. So, that

is already at least double the amount of work or. So, it seems right? That makes sense.

So, stereo just because I am rendering to each eye had different viewpoints for each eye,

I told the mathematics of it when I gave the geometry of the transforms that you just

perform a simple shift, but already you have to do more than a simple shift here. You

have to calculate. Some difference reflectance, if it is diffuse it might not matter, but if



you have a specular component right, if it starts looking very close to a mirror and for

that to look right, you will have to very carefully take into account each one of the eyes.

The left and right eye should see a different light, should receive different light. This

seems correct right?

Questions I want to now move over to the. The next part, which is the object oriented

rendering object order, rendering I keep saying object oriented because of C plus plus

and other object oriented programming models and things. So, I do not mean that an

object order rendering which again is going to be looping over the triangles, first, for us I

am  still  going  to  have  to  take  into  account  shading  somewhere  in  this  pipeline  of

processing. So, these concepts still are relevant. I am not going to cheat our way out of

this.

So,  we  are  up  to  object  order  rendering  and  if  you  have  had  computer  graphics

background before, if you had a course on it before, try to think about what is unique to

virtual reality as we go through these things, Right as we are reviewing some of this

material, all right?

(Refer Slide Time: 03:34)

So, in this case, the most important step is rasterization and this is you know, object

oriented rendering and rasterization is the most common method in GPU’s. So, this is

mainly what is going on in hardware. This is the approach that has been widely used in

industry, not the ray tracing methods and there is a lot of complications to what is going



on here, but by being object order rendering under, that I said it is going to be triangle by

triangle. Let me draw part of the screen here, ok? This is getting tedious, good enough.

So, I have some kind of low resolution image here, right and suppose this is what I am

going to ultimately render to my display.

This is how the display will look and, we are going triangle by triangle and you might

recall the transformations that we did quite a few lectures ago, where we talked about if I

define a triangle in the body frame, I move it into the world frame and then, I perform

more transformations to figure out exactly where it ends up in terms of pixel coordinates.

Well if I do all of that, then I end up with a triangle here somewhere. So, my triangle will

end up somewhere with pixel coordinates and as I said when I covered that topic, these

pixel coordinates do not need to line up exactly with the integer or integral values of the

pixels, right?.

They do not necessarily end up being integers. Just some floating-point numbers and

now, we end up with a triangle here and we have to figure out. Now, in the rasterization

process, which one of these pixels to color based on the light hitting that triangle, right

that makes sense? How do we decide that? Well one simple way to do it and one very

common way to do it is to just take a pole at the center of each one of these pixels and

then, color in the pixel based on the shading models, whichever you decide to use, if the

center ends up falling inside of the triangle. So, you have a inside - outside test that you

need to implement to determine whether or not.

The point a sample point is inside or outside of the triangle and then, you go along and

shade it in. I guess we could try this here. So, if I go stepping along, this is outside. This

is a bad example maybe. So, maybe this is just barely inside. So, I decided to color that

and I will just pick a color here and color it in and, see outside coming along here, ok?

This is on the border, you have to decide what to do in those cases and so, you are right.

On the border, here I will say these are all inside. So, I color these and coming along

again, let us see it looks like, this would be inside. This is, in these are all inside, that is

outside. See, this is inside. This one looks like it is inside.

So, it looks like, try to draw a nice outline of this. So, it looks like the rasterized version

of this triangle from my somewhat haphazard example,  looks like that right. Do they

even look like a triangle anymore? Not too much. So, with very - very poor, a low level



of resolution, if that is a very small triangle, maybe they; maybe have a high-resolution

display, you end up with a significant amount of distortion of the triangle. This problem

is generally referred to as aliasing when you end up with significant distortion, of the,

say the geometry of the triangle, we will talk about that as we as we go along, I will talk

about  anti-aliasing  methods.  So,  if  we are  going triangle  by  triangle  of  course,  you

probably do not want to scan the entire image to figure out where one tiny triangle has

landed.

So, you can develop very simple tests to eliminate most of this image, when performing

these samples in the center of each one of these pixels to determine if it is inside or

outside of the triangle. So, you can do some simple tests to call away, let us say, large

portions of the of this image that you're making., the next problem outside of that after

determining, where the triangle falls in terms of pixels.

(Refer Slide Time: 09:13)

The next problem we have is  called the depth ordering problem. In other words,  on

which triangle is in front, we have the same thing when we talked about ray tracing. I

mention that you extend array and you have to figure out which triangle is hit first. So,

the problem does not go away. You have to figure out, essentially the same thing here, if

there is a kind of virtual camera looking at this image, I need to figure out which triangle

do I see first and, especially I would. Let us say, at a particular pixel is this triangle in



front or is there some other triangle that would be in front of this in my scene after I have

placed all the triangles into the appropriate place here.

Well, this might seem easy enough. I can apply what is called the painter's algorithm,

which is just sort the triangles by furthest to nearest. That is with respect to the eye that is

looking at the triangles, right? So, from furthest to nearest and then, paint or in other

words, do the rendering, it is called the painter's algorithm. I will say paint, then paint in

far to near order all right. So, that sounds really easy and then, I can just quickly loop

over all of my triangles and if I have them ordered nicely, I start with the ones that are

furthest away and if I start rendering the ones that are closer, later the whole thing should

work that makes sense. So, that I just destroy whatever I have rendered before and I do

not  worry  about  it,  this  makes  a  very  simple  loop  for  going through  and  rendering

everything correctly - two problems with that.

 (Refer Slide Time: 11:21)

One problem is that the sorting is too costly. If you have millions of triangles you pay all

of N log in time for the best sorting algorithms, you end up with. Then too much time

spent on sorting. Another problem is what is called a depth cycle. See if I can, if I can

draw these correctly here, trying to draw a triangle. So, let us see I have this triangle

appears to be in front of that triangle, but then, I make let us see another part here, that is

in front of this one. I will erase that. Continue this one on or to make it look. I have fixed



a bit here and now, I think I would like to make this part of the triangle look like it is

behind this, is that ok? So, which triangles in front right. So,.

So, in three dimensions, just pointing this does not happen in two dimensions. If you just

arrange some line segments, but in three dimensions, there is no well defined notion of in

front in some cases, right? So, you cannot simply sort from far to near. You have to take

into account these in some special way by breaking them into pieces. So, it is still not a

clean solution. So, how is this problem solved in rendering what do people normally use

in graphics, because of what is used in a GPU, anybody know?

There is no graphics gurus here z buffers right. So, z buffers end up getting used. So, I

will explain that briefly as the main technique and then, we will start to talk about. I will

talk exactly about how the, how the pixels are getting shaded in these buffers and then,

we will start to talk about the virtual reality problems, but probably the after the break

into the next lecture for that, but till we get to that part, ok? So, we are going to give up

on the painter's algorithm. For a bit it can be used as I said, if you take into account depth

cycles in some special way and if you are not afraid of the sorting cost.

(Refer Slide Time: 14:13).

The z buffer and remember that in computer graphics, the z axis has been chosen. So,

that corresponds to depth right, which is distance from the viewing direction. So, you

could also call this a depth buffer, if you want it is also fine, just the z coordinate is what

people always end up using. So, they just identify that with depth and so, what you do in



this case is, you store a depth value, all right? So, some z value at each pixel. So, any

image you are making, imagine you decide you rendered a triangle, you have colored the

pixels with RGB values, which I have not exactly said, how to do yet, but you do that,

but you also store the depth for exactly that pixel, all right? So, you go ahead and do that.

Now, you can render the triangles in arbitrary order. In other words, in unsorted order.

Any way, you like and then, you render the pixel. In other words, you assign the RGB

values,  only  if  the  new z  value.  The  new z  value  is,  what  the  new z  value  should

correspond to. So, if I have already been drawing on the screen, I have been coloring in

pixels. I now have a new triangle that I want to render. I will only render it if it is in front

right, so; that means, that it is z value should be less depending on whether Z's increasing

or decreasing.

Playing how we set things up, but only after z value is less then restored z value, as it

less or greater to be careful there depending on how the coordinate systems are set up. It

should correspond to being closer. In other words, the new point is closer, then the stored

one. So, that is the important part,  not necessarily less, but it actually corresponds to

being closer to the virtual eye, right questions about that, ok? Let me mention just a little

bit more and then, we can take a break.

(Refer Slide Time: 17:15).

So, I want to talk about clipping and calling. These are both very related and people use

the terms sometimes interchangeably, sometimes quite distinctly, but basically it means



eliminating triangles from full consideration in this rendering pipeline here. So, rather

than going all the way to the stage of calculating RGB values for every pixel, there may

be a quick way to know that you do not need to look at them.

For, example this usually is called simple clipping, remove triangles that are behind the

eye right.  So,  behind the viewpoint.  So,  there is  a  particular  point  at  which you are

viewing the scene. Everything that is behind why not just do a simple test and you know

make a simple flag that just eliminates all those from consideration right. So, we can skip

over  all  of  those  triangles,  then  end up being behind.  So,  that  is  very  easy kind  of

clipping. I should point out something that is already interesting with respect to virtual

reality.

Here,  if  I  am looking at  an image on a  screen and it  is  not taking into account  the

viewpoint adjustments because of tracking our head then. This clipping,  let  us say, a

clipping plane. Imagine a vertical clipping plane that eliminates everything behind me,

that remains fixed right when you are just looking at a fixed screen. Now, what should I

do in virtual reality? Where should I put the clipping plane? I could put it exactly where

my eyes are and then, I could have it move with me. So, that clipping occurs. What if I

put it hmm, but even if I do that, I think it means that if I have some geometry, some

information, those are some walls or something in front of me, I should be able to put my

face up very close to it, right?.

So, that in the virtual world it is only one centimeter in front of my eyes. What is going

to happen in that case is, it going to be in focus if I have a head-mounted display and I

put my face up to it, then, it is one centimeter away. Let us say, I do that in the real

world. I put something up. Once a meter away from my eyes, it does not look like it is in

focus to me and if I, if you did the same experiment yourself, my guess is it would not be

in focus to you.

Can your eyes converge and give a stereo picture there? Cannot do that either, but in

virtual reality, you can very easily render things all the way up to one centimeter away

from your eyes. They will remain in focus because if you remember the optics of the

screen on the lens in front of your eyes, it will remain in focus, but you cannot converge

on it. So, it is a terribly uncomfortable situation. What do you do? Well you could move

the clipping plane further away. So, that as soon as anything gets beat within, let us say,



be safe maybe 15 centimeters of your eyes, you just clip it. So, what is wrong with that

solution?

Student: (Refer Time: 20:12) vanishes.

Not vanishes. So, now, there is a look too good. If I want to come up and put my face up

to the board in VR, I have a virtual board here. The board just disappears, that does not

look right either. So, what should we do? I do not have a good answer for them. I am just

pointing this out right and if I turn my head at an angle and I start putting it up to the

board like this, right? So,. So, so I am turning my head at an angle on it and I have come

in like this, then, this eye is getting closer to the board, my right eye is getting closer to

the board than my left eye so; that means, the clippings are not going to match exactly

and I have to get things matching within stereo with my eyes right.

So, I will have mismatched clippings too to deal with. So, I may have some parts of the

board that both eyes can see and in some parts of the board that have been eliminated for

one of the eyes, but included for the other. So, so that is a mess right. So, there is already

even with something as simple as clipping there is already a miss match problem and

some kind of difficulty  corresponding to  virtual  reality  because of this  vergence and

accommodation conflict that we talked about.

And it is always in focus. The fact you can move your head what should happen, all of

these come into play. Here, with regard to virtual reality. So, how do we deal with that?

Not  completely  sure,  but  I  am  just  letting  you  know  this  is  a  problem.  So,  more

complicated kinds of culling operations which I will not cover in detail, but I want to

point these out is that there is, the remaining part of the clipping is to call the way or clip

away. Everything outside of the viewing frustum, you might remember the frustum from

our transformations that we did.

So, remove triangles outside of our viewing frustum. So, that is one kind of calling that

goes on. There is also occlusion calling this could be quite complex, but this is if you

know that a bunch of triangles are behind some large object, then you can remove them.

Now of course, you have to be very complicated. Visibility analysis and reasoning to

accomplish that it  might be too complex to do the calculations nevertheless in many

settings, it is worth considering. So, remove what are called hidden.



And then, another one is back face culling, which in this case is remove triangles on the

back of an object. Okay, that looks a lot like the occlusion case, but the back face in

particular; the surface normal’s are pointing the wrong way. So, they are pointing away

from the  light  source.  So,  you know they are  not  going  to  contribute  anything.  So,

remove these and of course,  if  you have a problem with your model,  which is  very

common, especially if this model was constructed in some kind of automatic way., using

slam for example,, you may have some inconsistencies.

You may have some of the triangles with the normal’s pointing in the wrong direction,

accidentally and then,, you have to be very careful. You will get these operations wrong.

So, remove these. So, these are just several operations that happen, to try to reduce the

number of triangles in each step and there is a lot of important work, that is going on.

Here, a lot of experimentation,  a lot of highly optimized efficient algorithms that get

implemented in the graphical processing units in hardware, to do all of this efficiently.

So, that gives you the idea of this graphical rendering pipeline, which has been very well

optimized for computer graphics on a screen, but not so.

Well optimized for virtual reality and so, we have to go back and rethink about all these

things that happen and are they appropriate for us in the virtual reality context. You can

use them because they exist right there. You can buy a graphics card, plug it in and start

using these operations, but are they right for virtual reality? Some yes, some no. One

final thing I should say about z buffers and I will take a break, is that z buffers are also

very useful for rendering shadows.

If you want you can move the viewpoint instead of being the viewpoint of the observer,

you can make the viewpoint.  Be a light source and then,  you can take a look at the

ordering of objects with respect to the light source and calculate where shadows will fall.

So, z buffers are also useful for calculating shadows. I just wanted to point that out, as

another side benefit of using z buffers questions on this.


